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Preface

This book describes the two main applications of plasma physics, laboratory re-
search on thermonuclear fusion energy and plasma-astrophysics of the solar sys-
tem, stars, accretion discs, etc., from the single viewpoint of magnetohydrody-
namics (MHD). This provides effective methods and insights for the interpretation
of plasma phenomena on virtually all scales, ranging from the laboratory to the
Universe. The key issue is understanding the complexities of plasma dynamics in
extended magnetic structures.

The book starts with an exposition of the elements of plasma physics, fol-
lowed by an in-depth derivation of the MHD model. By means of the conserva-
tion laws, different model problems for laboratory and astrophysical plasmas are
formulated. The spectral theory of MHD waves and instabilities is then developed
in analogy with quantum mechanics. The centrepiece is the analysis of inhomo-
geneous plasmas with intricate spectral structures that provide a unified view of
waves and instabilities in plasmas as different as tokamaks and coronal flux tubes.
This is illustrated by the magnetic structures and dynamics observed in the solar
system, and analysed in detail for cylindrical flux tubes. Advanced chapters on
wave damping and resonant heating expose the wonderful interplay of physics and
mathematics.

In order to provide the student with all the tools that are necessary to understand
plasma dynamics, the classical MHD model is developed in great detail without
omitting steps in the derivations. The necessary restriction to ideal dissipationless
plasmas, in static equilibrium and with inhomogeneity in one direction, is more
than compensated by the insight gained in the intricacies of magnetized plasmas.
With this objective the size of the original manuscript, including advanced topics
of magnetohydrodynamics, became impractical so that we decided to split it into
two volumes.

In the companion volume Advanced Magnetohydrodynamics, that will appear
later, the restrictions of the classical theory are relaxed one by one: introducing

xiii



xiv Preface

stationary background flows, resistivity and reconnection, two-dimensional
toroidal geometry, linear and nonlinear computational techniques, and transonic
flows and shocks. These topics transform the subject into a vital new area with
many applications in laboratory (thermonuclear fusion), space (space weather),
and astrophysical plasmas (stellar winds, accretion discs and jets).

This book (Volume 1) and its companion (Volume 2) consist of three parts:

• Plasma Physics Preliminaries (Volume 1, Chapters 1–3),
• Basic Magnetohydrodynamics (Volume 1, Chapters 4–11),
• Advanced Magnetohydrodynamics (Volume 2).

Inevitably, with the chosen distinction between topics for Volume 1 (mostly ideal
linear phenomena described by self-adjoint linear operators) and Volume 2 (mostly
non-ideal and nonlinear phenomena), the difference between ‘basic’ and ‘ad-
vanced’ levels of magnetohydrodynamics could not be strictly maintained. The
logical order required a quite advanced derivation of the MHD equations from ki-
netic theory (Chapter 3) at an early stage, different sections on advanced topics
interspersed throughout the book, and a rather complete discussion of the initial
value problem (Chapter 10) at the end. These parts are marked by a star (�) and can
be skipped on a first study of the book. The same applies to text put in small print,
in between triangles (� · · · �), usually containing tedious derivations or advanced
material. The serious student is advised though not to skip the Exercises, which are
also put in small print for typographical reasons only. In particular, frequent use of
the vector expressions and tables of the appendices is encouraged. The subject of
magnetohydrodynamics can only be mastered through extensive practice.

An overview of the subject matter of the different chapters of this volume may
help the reader to find his way:

– Chapter 1 gives an introduction to laboratory fusion and astrophysical plasmas, and
formulates provisional microscopic and macroscopic definitions of the plasma state.

– Chapter 2 discusses the three complementary points of view of single particle motion,
kinetic theory and fluid description. The corresponding theoretical models provide the
opportunity to introduce some of the basic concepts of plasma physics.

– Chapter 3 gives the ‘derivation’ of the macroscopic equations from the kinetic
(Boltzmann) equation. The quotation marks because a fully satisfactory derivation
cannot be given at present in view of the largely unknown contribution of turbulent
transport processes. The presentation given is meant to provide some idea on the lim-
itations of the macroscopic viewpoint.

– Chapter 4 defines the MHD model and introduces the concept of scale independence.
The central importance of the conservation laws is discussed at length. Based on this,
the similarities and differences of laboratory and astrophysical plasmas are articulated
in terms of a number of generic boundary value problems.
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– Chapter 5 derives the basic MHD waves and describes their properties, with an
eye on their important role in spectral analysis and computational MHD. The
theory of characteristics is introduced as a vehicle for the propagation of nonlinear
disturbances.

– Chapter 6 treats the subject of waves and instabilities from the unifying point of view
of spectral theory. The force operator formulation and the energy principle are exten-
sively discussed. The analogy with quantum mechanics is pointed out and exploited.
The difficult extension to interface systems is treated in detail.

– Chapter 7 applies the spectral analysis developed in Chapter 6 to inhomogeneous
plasmas in a plane slab. The wave equation for gravito-MHD waves is derived and
solved in various limits. Here, all the intricacies of the subject enter: continuous spec-
tra, damping of Alfvén waves, local instabilities, etc. The analogy between helioseis-
mology and MHD spectroscopy in tokamaks is shown to hold great promise for the
investigation of plasma dynamics.

– Chapter 8 introduces the enormous variety of magnetic phenomena in astrophysics, in
particular the solar system (dynamo, solar wind, magnetospheres, etc.), and provides
basic examples of plasma dynamics worked out in later chapters.

– Chapter 9 is the cylindrical counterpart of Chapter 7, with a wave equation describ-
ing the various waves and instabilities. It presents the stability analysis of diffuse
cylindrical plasmas (classical pinches and present tokamak models) from the spectral
perspective.

– Chapter 10 solves the initial value problem for one-dimensional inhomogeneous
MHD and the associated damping due to the continuous spectrum.

– Chapter 11 discusses resonant absorption and phase mixing in the context of heating
mechanisms of solar and stellar coronae. Anticipating Volume 2, numerical methods
to solve these problems are indicated. Sunspot seismology is introduced as another
example of MHD spectroscopy.

We wish to acknowledge support of our colleagues and collaborators over many
years: Jeff Freidberg (his returning question starting the day, ‘What is the news,
Hans?’, remains a source of inspiration), Paulo Sakanaka, Dan D’Ipolito, Ricardo
Galvão, Jan Rem, Marcel Goossens, Wolfgang Kerner, Marnix van der Wiel (his
stimulation of new scientific enterprises has significantly facilitated our research),
Max Kuperus, Tony Hearn, Sasha Lifschitz (his usual remark at the end of lengthy
calculations, ‘And now comes the hard part, the part we want to avoid at all cost,
now we have to think’, has crucially motivated the writing of this book), Henk
van der Vorst, Bram Achterberg, Lydia Van Driel-Gesztelyi, Brigitte Schmieder,
Andro Rogava, Eric Priest, Bernard Roberts, Alan Hood, Tom Bogdan, Boon
Chye Low, Herman Deconinck and, last but not least, Rony Keppens. Ph.D.
students and post-docs created the essential inquisitive environment for scien-
tific research: Guido Huysmans, Giel Halberstadt, Hanno Holties, Sander Beliën,
Ronald Nijboer, Bart van der Holst, Hans De Sterck, Arpád Csı́k and Fabien
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Casse. Rob Rutten contributed substantial improvement of Chapter 8 (remaining
misconceptions are entirely ours). Numerous students contributed suggestions
for improvement; Victor Land produced most of the exercises. With the grad-
ual take-over of supporting tasks by computer programs, the original time-
consuming figure drawing, type-writing, and literature search by Wim Tukker,
Rosa Tenge and Hajnal Vörös for earlier versions of the manuscript is gratefully
acknowledged. We thank our copy-editor, Frances Nex, for careful and efficient
editing of our text.
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Plasma physics preliminaries





1

Introduction

1.1 Motivation

Under ordinary circumstances, matter on Earth occurs in the three phases of solid,
liquid, and gas. Here, ‘ordinary’ refers to the circumstances relevant for human
life on this planet. This state of affairs does not extrapolate beyond earthly scales:
astronomers agree that, ignoring the more speculative nature of dark matter, matter
in the Universe consists more than 90% of plasma. Hence, plasma is the ordinary
state of matter in the Universe. The consequences of this fact for our view of nature
are not generally recognized yet (see Section 1.3.4). The reason may be that, since
plasma is an exceptional state on Earth, the subject of plasma physics is a relative
latecomer in physics.

For the time being, the following crude definition of plasma suffices. Plasma is
a completely ionized gas, consisting of freely moving positively charged ions, or
nuclei, and negatively charged electrons.1 In the laboratory, this state of matter is
obtained at high temperatures, in particular in thermonuclear fusion experiments
(T ∼ 108 K). In those experiments, the mobility of the plasma particles facilitates
the induction of electric currents which, together with the internally or externally
created magnetic fields, permits magnetic confinement of the hot plasma. In the
Universe, plasmas and the associated large-scale interactions of currents and mag-
netic fields prevail under much wider conditions.

Hence, we will concentrate our analysis on the two mentioned broad areas of
application of plasma physics, viz.

(a) Magnetic plasma confinement for the purpose of future energy production by controlled
thermonuclear reactions (CTR); this includes the pinch experiments of the 1960s and

1 In plasma physics, one can hardly avoid mentioning exceptions: in pulsar electron–positron magnetospheres,
the role of positively charged particles is taken by positrons. In considerations of fusion reactions with exotic
fuels like muonium, the role of negatively charged particles is taken by muons.
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4 Introduction

early 1970s, and the tokamaks and alternatives (stellarator, spheromak, etc.) developed
in the 1980s and 1990s and, at present, sufficiently matured to start designing proto-
types of the fusion reactors themselves;

(b) The dynamics of magnetized astrophysical plasmas; this includes the ever growing
research field of solar magnetic activity, planetary magnetospheres, stellar winds,
interstellar medium, accretion discs of compact objects, pulsar magnetospheres, etc.

The common ground of these two areas is the subject of plasma interacting with
a magnetic field. To appreciate the power of this viewpoint, we first discuss the
conditions for laboratory fusion in Section 1.2, then switch to the emergence of the
subject of plasma-astrophysics in Section 1.3, and finally refine our definition(s)
of plasma in Section 1.4. In the latter section, we also provisionally formulate the
approach to plasmas by means of magnetohydrodynamics.

The theoretical models exploited lead to nonlinear partial differential equa-
tions, expressing conservation laws. The boundary conditions are imposed on an
extended spatial domain, associated with the complex magnetic plasma confine-
ment geometry, whereas the temporal dependence leads to intricate nonlinear dy-
namics. This gives theoretical plasma physics its particular, mathematical, flavour.

1.2 Thermonuclear fusion and plasma confinement

1.2.1 Fusion reactions

Both fission and fusion energy are due to nuclear processes and, ultimately, de-
scribed by Einstein’s celebrated formula E = mc2. Hence, in nuclear reactions
A + B → C + D , net energy is released if there is a mass defect, i.e. if

(mA + mB) c2 > (mC + mD) c2 . (1.1)

In laboratory fusion, reactions of hydrogen isotopes are considered, where the deu-
terium–tritium reaction (Fig. 1.1) is the most promising one for future reactors:

D2 + T3 → He4 (3.5 MeV) + n (14.1 MeV) . (1.2)

This yields two kinds of products, viz. α-particles (He4), which are charged so that
they can be captured by a confining magnetic field, and neutrons, which are elec-
trically neutral so that they escape from the magnetic configuration. The former
contribute to the heating of the plasma (so-called α-particle heating) and the latter
have to be captured in a surrounding Li6/ Li7 blanket, which recovers the fusion
energy and also breeds new T3.

Deuterium abounds in the oceans: out of 6500 molecules of water one molecule
is D2O. Thus, in principle, 1 litre of sea water contains 1010 J of deuterium fusion
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Fig. 1.1. Deuterium–tritium reactions.

energy. This is a factor of about 300 more than the combustion energy of 1 litre of
gasoline, which yields 3 × 107 J.

A number of other reactions also occur, in particular reactions producing T3 and
He3 which may be burned again. Complete burn of all available D2 would involve
the following reactions:

D2 + D2 → He3 (0.8 MeV) + n (2.5 MeV) ,

D2 + D2 → T3 (1.0 MeV) + p (3.0 MeV) ,
(1.3)

D2 + T3 → He4 (3.5 MeV) + n (14.1 MeV) ,

D2 + He3 → He4 (3.7 MeV) + p (14.6 MeV) ,

so that in effect

6D2 → 2 He4 + 2 p + 2 n + 43.2 MeV . (1.4)

In the liquid Li blanket, fast neutrons are moderated, so that their kinetic energy is
converted into heat, and the following reactions occur:

n + Li6 → T3 (2.1 MeV) + He4 (2.8 MeV) ,
(1.5)

n (2.5 MeV) + Li7 → T3 + He4 + n .

This provides the necessary tritium fuel for the main fusion reaction (1.3)(c) [156].
Typical numbers associated with thermonuclear fusion reactors, as presently

envisaged, are:

temperature T ∼ 108 K (10 keV) , power density ∼ 10 MW m−3 ,

particle density n ∼ 1021 m−3 , time scale τ ∼ 100 s . (1.6)

It is often said that controlled thermonuclear fusion in the laboratory is an at-
tempt to harness the power of the stars. This is actually a quite misleading state-
ment since the fusion reactions which take place in, e.g., the core of the Sun are
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different reactions of hydrogen isotopes, viz.

p + p → D2 + e+ + νe + 1.45 MeV (2 ×) ,

p + D2 → He3 + γ + 5.5 MeV (2 ×) , (1.7)

He3 + He3 → He4 + 2 p + 12.8 MeV ,

so that complete burn of all available hydrogen amounts to

4 p → He4 + 2 e+ + 2 νe (0.5 MeV) + 2 γ (26.2 MeV) . (1.8)

The positrons annihilate with electrons, the neutrinos escape, and the gammas (car-
rying the bulk of the thermonuclear energy) start on a long journey to the solar
surface, where they arrive millions of years later (the mean free path of a photon
in the interior of the Sun is only a few centimetres) [190]. In the many processes
of absorption and re-emission the wavelength of the photons gradually shifts from
that of gamma radiation to that of the visible and UV light escaping from the pho-
tosphere of the Sun, and producing one of the basic conditions for life on a planet
situated at the safe distance of one astronomical unit (1.5 × 1011 m) from the Sun.

At higher temperatures another chain of reactions is effective, where carbon acts
as a kind of catalyst. This so-called CNO cycle involves a chain of fusion reactions
where C12 is successively converted into N13, C13, N14, O15, N15, and back into
C12 again. However, the net result of incoming and outgoing products is the same
as that of the proton–proton chain, viz. Eq. (1.8).

Typical numbers associated with thermonuclear reactions in the stars, in partic-
ular the core of the Sun, are the following ones:

temperature T ∼ 1.5 × 107 K , power density ∼ 3.5 W m−3 ,

particle density n ∼ 1032 m−3 , time scale τ ∼ 107 years . (1.9)

Very different from the numbers (1.6) for a prospective fusion reactor on Earth!

1.2.2 Conditions for fusion

Thermonuclear fusion happens when a gas of, e.g., deuterium and tritium atoms is
sufficiently heated for the thermal motion of the nuclei to become so fast that they
may overcome the repulsive Coulomb barrier (Fig. 1.2) and come close enough for
the attractive nuclear forces to bring about the fusion reactions discussed above.
This requires particle energies of ∼ 10 keV, i.e. temperatures of about 108 K. At
these temperatures the electrons are completely stripped from the atoms (the ion-
ization energy of hydrogen is ∼ 14 eV) so that a plasma rather than a gas is ob-
tained (cf. our crude definition of Section 1.1).
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+ n D 2

Fig. 1.2. Nuclear attraction and Coulomb barrier of a deuteron.

Because the charged particles (occurring in about equal numbers of opposite
charge) are freely moving and rarely collide at these high temperatures, a plasma
may be considered as a perfectly conducting fluid for many purposes. In such flu-
ids, electric currents are easily induced and the associated magnetic fields in turn
interact with the plasma to confine or to accelerate it. The appropriate theoretical
description of this state of matter is called magnetohydrodynamics (MHD), i.e. the
dynamics of magneto-fluids (Section 1.4.2).

Why are magnetic fields necessary? To understand this, we need to discuss the
power requirements for fusion reactors (following Miyamoto [156] and Wesson
[244]). This involves three contributions, viz.

(a) the thermonuclear output power per unit volume:

PT = n2 f (T̃ ) , f (T̃ ) ≡ 1
4 〈σv〉ET , ET ≈ 22.4 MeV , (1.10)

where n is the particle density, σ is the cross-section of the D-T fusion reactions, v
is the relative speed of the nuclei, 〈σv〉 is the average nuclear reaction rate, which
is a well-known function of temperature, and ET is the average energy released in
the fusion reactions (i.e. more than the 17.6 MeV of the D-T reaction (1.3)(c) but,
of course, less than the 43.2 MeV released for the complete burn (1.4));

(b) the power loss by Bremsstrahlung, i.e. the radiation due to electron–ion colli-
sions:

PB = αn2T̃ 1/2 , α ≈ 3.8 × 10−29 J1/2 m3 s−1 ; (1.11)

(c) the losses by heat transport through the plasma:

PL = 3nT̃

τE
, (1.12)
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where 3nT̃ is the total plasma kinetic energy density (ions + electrons), and τE

is the energy confinement time (an empirical quantity). The latter estimates the
usually anomalous (i.e. deviating from classical transport by Coulomb collisions
between the charged particles) heat transport processes.

Here, we have put a tilde on the temperature to indicate that energy units of keV
are exploited:

T̃ (keV) = 8.62 × 10−8T (K) ,

since T̃ = 1 keV = 1.60 × 10−16 J corresponds with T = 1.16 × 107 K (using
Boltzmann’s constant, see Appendix Table B.1).

If the three power contributions are considered to become externally available
for conversion into electricity and back again into plasma heating, with efficiency
η, the Lawson criterion [140],

PB + PL = η (PT + PB + PL) , (1.13)

tells us that there should be power balance between the losses from the plasma
(LHS) and what is obtained from plasma heating (RHS). Typically, η ≈ 1/3. In-
serting the explicit expressions (1.10), (1.11), and (1.12) into Eq. (1.13) leads to
a condition to be imposed on the product of the plasma density and the energy
confinement time:

nτE = 3T̃
η

1 − η
f (T̃ ) − αT̃ 1/2

. (1.14)

This relationship is represented by the lower curve in Fig. 1.3. Since
Bremsstrahlung losses dominate at low temperatures and transport losses domi-
nate at high temperatures, there is a minimum in the curve at about

nτE = 0.6 × 1020 m−3 s , for T̃ = 25 keV . (1.15)

This should be considered to be the threshold for a fusion reactor under the given
conditions.

By a rather different, more recent, approach of fusion conditions, ignition oc-
curs when the total amount of power losses is balanced by the total amount of
heating power. The latter consists of α-particle heating Pα and additional heat-
ing power PH, e.g. by radio-frequency waves or neutral beam injection. The latter
heating sources are only required to bring the plasma to the ignition point, when
α-particle heating may take over. Hence, at ignition we may put PH = 0 and the
power balance becomes

PB + PL = Pα = 1
4〈σv〉n2Eα , Eα ≈ 3.5 MeV . (1.16)
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Fig. 1.3. Conditions for net fusion energy production according to the Lawson
criterion (lower curve) and according to the view that power losses should be com-
pletely balanced by α-particle heating (upper curve). Adapted from Wesson [244].

Formally, this may be described by the same equation (1.14) taking now η ≈ 0.135
so that a 2.5 times higher threshold for fusion is obtained:

nτE = 1.5 × 1020 m−3 s , for T̃ = 30 keV . (1.17)

This relationship is represented by the upper curve of Fig. 1.3.
Roughly speaking then, products of density and energy confinement time nτE ∼

1020 m−3 s and temperatures T̃ ∼ 25 keV, or T ∼ 3 × 108 K, are required for con-
trolled fusion reactions. As a figure of merit for fusion experiments one frequently
constructs the product of these two quantities, which should approach

nτET̃ ∼ 3 × 1021 m−3 s keV (1.18)

for a fusion reactor. To get rid of the radioactive tritium component, one might con-
sider pure D-D reactions in a more distant future. This would require yet another
increase of the temperature by a factor of 10. Considering the kind of progress
obtained over the past 40 years, though (see Fig. 1.1.1 of Wesson [244]: a steady
increase of the product nτET with a factor of 100 every decade!), one may hope
that this difficulty eventually will turn out to be surmountable.

Returning to our question on the magnetic fields: no material containers can
hold plasmas with densities of 1020 m−3 and temperatures of 100–300 million K
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during times in the order of minutes, or at least seconds, without immediately ex-
tinguishing the ‘fire’. One way to solve this problem is to make use of the confining
properties of magnetic fields, which may be viewed from quite different angles:

(a) the charged particles of the plasma rapidly and tightly gyrate around the magnetic field
lines (they ‘stick’ to the field lines, see Section 2.2);

(b) fluid and magnetic field move together (‘the magnetic field is frozen into the plasma’,
see Section 2.4), so that engineering of the geometry of the magnetic field configuration
also establishes the geometry of the plasma;

(c) the thermal conductivity of plasmas is highly anisotropic with respect to the magnetic
field, κ⊥ � κ‖ (see Sections 2.3.1 and 3.3.2), so that heat is easily conducted along the
field lines and the magnetic surfaces they map out, but impeded across.

Consequently, what one needs foremost is a closed magnetic geometry facilitat-
ing stable, static plasma equilibrium with roughly bell-shaped pressure and density
profiles and nested magnetic surfaces. This is the subject of the next section.

1.2.3 Magnetic confinement and tokamaks

Controlled thermonuclear fusion research started in the 1950s in the weapons lab-
oratories after the ‘successful’ development of the hydrogen bomb: fusion energy
had been unleashed on our planet! The development of the peaceful, controlled,
counterpart appeared to be a matter of a few years, as may become clear by con-
sidering the simplicity of early pinch experiments. The history of the subject is
schematically illustrated in Fig. 1.4. In the upper part the two early attempts with
the simple schemes of θ - and z-pinch are shown. Here, θ and z refer to the direc-
tion of the plasma current in terms of a cylindrical r, θ, z coordinate system. Since
it is relatively straightforward to produce plasma by ionizing hydrogen gas in a
tube, a very conductive fluid is obtained in which a strong current may be induced
by discharging a capacitor bank over an external coil surrounding the gas tube. In a
z-pinch experiment, this current is induced in the z-direction and it creates a trans-
verse magnetic field Bθ , so that the resulting Lorentz force (j × B)r = − jz Bθ is
pointing radially inward. In this manner, the confining force as well as near ther-
monuclear temperatures (∼107 K) are easily produced. There is only one problem:
the curvature of the magnetic field Bθ causes the plasma to be extremely unsta-
ble, with growth rates in the order of µseconds. To avoid these instabilities, the
orthogonal counterpart, the θ -pinch experiment, suggested itself. Here, current is
induced in the θ -direction, it causes a radial decrease of the externally applied
magnetic field Bz , so that the net Lorentz force jθ 	Bz is again directed inward.
In the θ -pinch, thermonuclear temperatures are also obtained, and the plasma is
now macroscopically stable. However, pinching of the plasma column produces
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Tokamak:

delicate balance between equilibrium & stability

z - pinch:

very unstable
(remains so in a torus)

θ - pinch:

end-losses
(in torus: no equilibrium)

Bj

B

B

j

Fig. 1.4. Interaction of currents and magnetic fields: a schematic history of
plasma confinement experiments.

unbalanced longitudinal forces so that the plasma is squirted out of the ends, again
terminating plasma confinement on the µs time scale. In conclusion, in pinch ex-
periments the densities and temperatures needed for thermonuclear ignition are
easily produced but the confinement times fall short by a factor of a million to a
billion.

With these obstacles ahead, the nations involved with thermonuclear research
decided it to be opportune to declassify the subject. This fortunate decision was
landmarked by the Second International UN Conference on Peaceful Uses of
Atomic Energy in Geneva in 1958, where all scientific results obtained so far were
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Fig. 1.5. Schematic presentation of magnetic confinement in a tokamak.

presented. Prospects then gradually became much brighter with the emergence of
the tokamak alternative line (bottom part of Fig. 1.4 and Fig. 1.5) developed in
the 1960s in the Soviet Union, and internationally accepted in the 1970s as the
most promising scheme towards fusion. Crudely speaking, the tokamak configura-
tion cures the main problems of the z-pinch (its instability due to the curvature of
the transverse magnetic field) and of the θ -pinch (its end losses), both destroying
the configuration on the µs time scale, by combining them into a single scheme.
The vessel is now a torus rather than a straight tube and the magnetic field is heli-
cal, with a poloidal and a larger toroidal component. The latter component of the
magnetic field provides the crucial longitudinal ‘backbone’ for stability. Whereas
the toroidal geometry simply eliminates the end-loss problem of the θ -pinch, it
is not quite true that the kink instability problem of the z-pinch is eliminated as
well. Instead, the basic MHD problem of tokamak confinement turns out to be
a delicate balance between equilibrium considerations, favouring a large toroidal
current, and stability considerations, which favour a minimum current so as to
eliminate the driving force of the kink instabilities. Thus, tokamak performance
is an intricate optimization problem which makes it both interesting and impres-
sive. Concerning the latter: to have improved upon a technological parameter by a
factor of 108 in thirty years (from confinement times of microseconds in the six-
ties to minutes in the nineties) is a kind of progress which is only paralleled by
developments in computer technology.
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For more on the history of fusion research: see Braams and Stott [37].

1.3 Astrophysical plasmas

We have sketched the efforts in controlled thermonuclear confinement experi-
ments, where the prospect of abundant energy has driven scientists to ever deeper
exploration of the plasma state. At this point an entirely different line of re-
search should enter the presentation. This is the rapidly growing field of plasma-
astrophysics, which has much older credentials than laboratory plasma research.
We will introduce this topic by means of the example of the solar system, where
the usual gravitational picture completely masks the dynamics of the plasmas that
are present. To understand how this picture has changed in recent times, we intro-
duce some basic astrophysical notions and recall events in space research. We will
also use the opportunity to introduce numerical values of certain quantities that
may not be familiar to some readers.

1.3.1 Celestial mechanics

To set the stage, recall the traditional picture of the solar system: the Sun is the
central massive object (a thousand times more massive than Jupiter) which keeps
the nine planets orbiting around it by its gravitational attraction. (See Fig. 1.6 and
the numerical values summarized in Table B.7.)

The planets move according to Kepler’s laws (1610):

(a) The planetary orbits are ellipses lying in or close to the ecliptic (the orbital
plane of the Earth) with the Sun in one of the focal points. The inclination of the
orbit with respect to the ecliptic is modest (< 4◦) for most of the planets, whereas
the largest values occur for the innermost planet (Mercury: 7◦) and for the outer-
most one (Pluto: 17◦). (Recall that this planet was only discovered in 1930.) The el-
lipses are characterized by the eccentricity parameter e ≡ c/a = (1 − b2/a2)1/2 ,
where c is the distance of the focal points to the origin and a and b are the lengths
of the semi-axes of the ellipse. Again, the highest eccentricities occur for Mercury
(e = 0.206) and Pluto (e = 0.250), whereas they are small for the other plan-
ets (e < 0.1 ). Incidentally, it is to be noted that the ellipticity as measured by
the ratio of the semi-axes, b/a = √

1 − e2, is
√

0.96 ≈ 0.98 for Mercury and
0.97 for Pluto, i.e. just deviations of 2% and 3% from a circle, and much less
for the other planets. The original approximation of circular motion by the an-
cients appears not all that stupid. The big effect is not the deviation from a circle
though, but the eccentricity, i.e. the shift c of the near-circular orbit. This gives
rise to significant variations in the distance to the Sun, as measured by the ratio
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Fig. 1.6. Schematic representation of the size and inclination of the planetary
orbits: (a) terrestrial planets, (b) giant planets and Pluto. The planets (not to scale)
are drawn at a distance a from the Sun, where the vertical dashes indicate the
extrema a − c (perihelion) and a + c (aphelion) of the orbital motion (of course,
situated on opposite sides of the Sun).

(a − c)/(a + c) = (1 − e)/(1 + e) which is 0.66 for Mercury and 0.60 for Pluto,
as is evident from Fig. 1.6.

(b) The radius vector of the Sun to the planet sweeps out equal areas in equal times.
Hence, the orbital velocity is highest in the perihelion (the orbital point closest to
the Sun) and smallest in the aphelion (the point farthest from the Sun). This law of
areas is a consequence of conservation of angular momentum.

(c) The harmonic law: The cubes of the semi major axis a of the orbits of the
planets are proportional to the squares of the orbital period τ ,

a3/τ 2 = const ≈ GM�/4π2 = 1 (AU)3/ y2 = 3.38 × 1018 m3 s−2 . (1.19)

Here, G is the gravitational constant, M� is the mass of the Sun, 1 AU = 1.5 ×
1011 m is the distance from the Earth to the Sun (the astronomical unit), and 1 y =
3.16 × 107 s is, of course, the orbital period of the Earth.

 Exercise. Use Table B.7 to check this number for the different planetary orbits. �
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Kepler’s laws were then founded on the laws of mechanics, in particular New-
ton’s law of gravitational attraction (1666):

F = G
M1M2

r2
= −dV

dr
, (1.20)

where V = −G M1M2/r is the gravitational potential energy. This law implies
that the planets move as point particles in the gravitational field of the Sun, whereas
the whole solar system is kept together in dynamical equilibrium by gravity. All
this belongs to the subject of celestial mechanics which is at the root of classi-
cal mechanics, which in turn constitutes the basis of physics. Thus, progress in
understanding may schematically be depicted by the sequence Kepler (1609) →
Newton (1687) → Lagrange (1782), Laplace (1799) → Hamilton (1845). After
the work of these giants, the subject of classical mechanics (as, e.g., summarized
by Goldstein [91]) has long been considered a closed subject. However, the se-
quence continues with the more recent names of Kolmogorov, Arnold and Moser
(1964) associated with fundamental work on the stability of dynamical systems.
At the present time, there is a resurgence of the subject of Hamiltonian mechanics
through the development of the science of nonlinear dynamics.

So far, plasmas did not appear on the stage. Obviously, the gravitational at-
traction dominates everything. Gravitational and centrifugal acceleration balance
perfectly in the leading order picture where the celestial bodies are treated as mas-
sive point particles. Since this is so, next order effects should be quite important
(just like astronauts in an orbiting spacecraft may be accelerated by forces that are
totally negligible as compared to gravity). Hence, when the internal structure of
the stars (in this case, the Sun) and the planets is taken into account, the whole
picture changes dramatically.

1.3.2 Astrophysics

In the nineteenth and twentieth centuries, there is a gradual shift away from ex-
clusive interest in celestial mechanics towards the study of the structure and evo-
lution of stars and stellar systems: the subject of astrophysics is born. Here, a
basic postulate provides the guiding principle, viz. that the laws of physics are
valid throughout the Universe. In historical perspective, the revolutionary charac-
ter of this point of view can hardly be overestimated. Quintessence (according to
Webster’s Dictionary, ‘the fifth and highest essence in ancient and medieval phi-
losophy that permeates all nature and is the substance composing the heavenly
bodies’) is no longer essential, and ‘heavenly’ or ‘celestial’ are no longer descrip-
tive adjectives for astronomical objects. A particularly relevant example is pro-
vided by the work of Kirchhoff and Bunsen (1859) who interpreted the observed
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dark lines in the spectrum of solar light, discovered by Fraunhofer (1814), as due
to absorption by chemical elements in exactly the same way as spectra obtained
in the laboratory. Consequently, most of our knowledge of the stars comes from
spectroscopy, i.e. atomic physics applied to the photospheres of the stars where
the spectra are determined by the temperature T of the surface and the different
abundances of the chemical elements.

A quantitative measure for the relative brightness of a star is the apparent mag-
nitude m:

m ≡ m0 − 2.5 × 10log (l/ l0) . (1.21)

Here, l is the flux, i.e. the amount of electromagnetic radiation energy passing
per unit time through a unit area (taken at the position of our eye, or any other
observing apparatus on Earth), and the subscript 0 refers to a reference star. The
value of m0 for the reference star is fixed by convention. This definition has been
chosen to conform with the ancient classification based on what the human eye
can distinguish, viz. five steps in a brightness scale ranging from m = 0 for the
brightest star to m = 5 for the faintest one, corresponding to a decrease by a factor
of 1/100 in the flux.

Obviously, two stars of equal apparent magnitude may have a completely dif-
ferent value of the luminosity L , which is the total radiation energy output per unit
time, since the flux l depends on the distance d from the star according to

l = L/(4πd2) . (1.22)

Hence, a quantity of more intrinsic physical interest is the absolute magnitude M ,
which is based on the flux l̂ that would be produced at the position of the Earth
(ignoring atmospheric extinction) if the star were moved from its actual distance
d to a fictitious distance d̂ = 10 pc (parsec) from the Earth.2 In other words, the
absolute magnitude is defined as the apparent magnitude the star would have if
positioned at d̂, so that we obtain from Eqs. (1.21) and (1.22):

M ≡ m0 − 2.5 × 10log (l̂/ l0) = m − 2.5 × 10log (l̂/ l)

= m − 2.5 × 10log (d2/100) = m + 5 − 5 × 10log d , (1.23)

2 Note on distance scales: a star at a distance d = 1 pc produces a parallax of 1′′ = 4.85 × 10−6 rad, so
that 1 pc = (4.85 × 10−6)−1 AU = 2.06 × 105 AU = 3.26 light-years = 3.09 × 1016 m . The distance to the
next nearest star, Alpha Centauri, is 1.3 pc . The size of our Galaxy (the Milky Way) is 50 kpc = 1.6 ×
105 light-years = 1.3 × 108× the size of the solar system (which is taken to be the diameter of the orbit of
Pluto, i.e. 2 × 40 AU ).

Light also provides useful estimates for time scales: a photon would take 2 s to travel from the centre of
the Sun to the surface if the Sun were optically thin. (In reality, because of the innumerable absorptions and
re-emissions it takes about 107 years, as we have already noted in Section 1.2.1.) It then takes 8.3 min to reach
Earth, 5.6 hours to reach Pluto, and 4.2 years to reach Alpha Centauri.
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Fig. 1.7. Hertzsprung–Russell diagram: the Sun is an ordinary, main sequence,
star. Adapted from Zeilik and Smith [248].

where d is measured in pc . For the Sun, with d� = 1 AU = 1.5 × 108 km =
5 × 10−6 pc , we get a huge difference between the absolute and the apparent
magnitude: M� = m� + 31.5 .3 The reason is clear: the apparent magnitude is
based on night-time observation and, hence, totally out of range for the Sun.
On the other hand, for the absolute magnitude of the Sun the very ordinary
value M� = 4.7 is obtained: apart from its proximity, the Sun is just an ordinary
star.

A particularly effective way of representing the absolute magnitudes of a large
number of stars is the celebrated Hertzsprung–Russell diagram, where the absolute
magnitude M is plotted versus the effective surface temperature Teff, or the asso-
ciated spectral class indicated by the letters O, B, etc. (Fig. 1.7). A crude estimate
of the curve for the main sequence stars may be obtained by using the Stefan–
Boltzmann black-body radiation law for the luminosity,

L = 4π R2σ T 4
eff . (1.24)

Here, R is the radius of the star, σ = 5.67 × 10−8 W m−2 K−4 is the constant of
Stefan–Boltzmann, and Teff is the effective surface temperature of the star. For stars
of equal size, we obtain from the first line of Eq. (1.23) the following difference in

3 Note that we have used the same symbol M� already in Section 1.3.1 to indicate the solar mass. Every now
and then, we will not be able to avoid context-dependent notation.
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their absolute magnitudes:

	M = −2.5 × 	(10log l̂) = −2.5 × 	(10log L) = −10 × 	(10log Teff) .

(1.25)

This roughly checks with the overall slope of the Hertzsprung–Russell diagram.
For the sun, R� = 700 000 km and Teff,� = 5777 K (i.e., spectral class G) so

that L� = 3.89 × 1026 W. Incidentally, the flux l = L�/(4πd2) at the position
of the Earth is called the solar constant. Since d = 1 AU, its value turns out to be
l = 1.38 kW m−2: just the right value for human and other life. However, at this
point of our exposition, we have turned away from Earth-centred considerations to
the intrinsic properties of the stars. The central position of the point representing
the Sun in the Hertzsprung–Russell diagram is then just another way of expressing
that the Sun is but an ordinary main sequence star. Yet, as far as distance is
concerned, we should consider ourselves lucky to have a typical star close enough
to permit spatially resolved observations! We will have plenty of opportunities
to appreciate that this is crucial for our understanding of plasma dynamics in the
Universe as a whole.

Not only is the solar system kept together by gravity, but the individual celestial
bodies of the Sun and the planets are also kept together by gravity and, as a result,
they contract. Stars with masses like that of the Sun (Jupiter is just too small to
qualify as a star) contract so much that in the centre densities and temperatures
are reached that are high enough for thermonuclear burn by fusion reactions of
hydrogen, viz. Tc = 1.5 × 107 K, and ρc = 1.5 × 105 kg m−3. We have already
encountered these fusion reactions and their conditions in Eqs. (1.8) and (1.9).
Recall that, under these conditions, matter is ionized so that we encounter the
plasma state again in the core of the Sun and the other stars. It appears that we have
now closed the circle and that the announcement of the theme for this book will
simply be: laboratory fusion and astrophysical fusion reactions require the study
of plasma physics. However, this is not the case. Reality is much more interesting
(and subtle) than this.

1.3.3 Plasmas enter the stage

With the discovery of Bethe and von Weiszäcker in 1939 that thermonuclear fusion
reactions take place in the centre of the Sun and the other stars, we know the ulti-
mate source of the enormous amounts of power emitted in the form of visible and
ultraviolet light. However, there is quite some distance in space and time between
this source and the starlight it eventually produces. In the intermediate stages,
this gigantic thermonuclear energy source indirectly excites a wide variety of
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additional, plasma dynamical, phenomena. Could we ‘see’ that? If only the blind-
ing splendour of the solar disc were blocked for a few minutes we would be able to
tell. Fortunately, provision has been made for that: the relative sizes of the Moon
and the Sun, and their distances to the Earth, are precisely of the right magnitude
to permit occultation of the Sun every now and then to exhibit an extremely beau-
tiful phenomenon. At the moment of the eclipse, even the birds hold their breath,
and a human being lucky enough to be at the right spot at the right moment can
see a hot (millions of degrees) plasma with his own eyes: a diffuse light due to
scattering of sunlight by the coronal plasma and stretching out over several solar
diameters. Even the magnetic structures supporting it are visible to the (admittedly
prejudiced) physicist in the form of streamers of plasma tracing out magnetic field
lines and helmet structures associated with magnetic cusps (see Chapter 8). Hence,
at a solar eclipse, one catches a wonderful glimpse of a huge magnetized plasma
structure which engulfs the whole solar system.

This structure is the solar corona expanding into the solar wind, which forms
magnetospheres when encountering the magnetic fields of the planets and which
is a giant magnetosphere by itself, called the heliosphere, terminating only at dis-
tances beyond the solar system. The solar wind carries the wave-like signals of
its creation, but it also carries the intermittent radiation and high-energy particle
signatures of violent outbursts of magnetic energy releases by flares and coronal
mass ejections (CMEs) at the solar surface (see Chapter 8). This highly unsteady
plasma dynamical state creates the critical conditions for magnetic storms in the
magnetosphere4 and forms a threat for safety of personnel and proper function-
ing of equipment aboard spacecrafts. This aspect of solar wind dynamics is called
space weather. (Running ahead of our argument: its prediction involves Advanced
Magnetohydrodynamics, which is the subject of the companion Volume 2 of this
book.)

Receding now to the interior of the star, closer to the thermonuclear energy
source, we encounter the phenomena responsible for all this: radiation transport
and convection which, together with the differential rotation of the star, create the
conditions required for a dynamo. This dynamo produces magnetic fields that do
not stay inside the star but are expelled, together with the plasma, to form the ex-
tremely hot coronae and stellar winds that are the characteristics of X-ray emitting
stars. Incidentally, the creation of magnetic fields in the interior of stars and the
high temperatures of coronal plasmas are two plasma physical problems that are
far from being solved at present. While we do not pretend to solve them here,

4 The magnetosphere is always shorthand for the magnetosphere of the Earth, or our magnetosphere, like the
Galaxy always stands for the Milky Way, or our Galaxy.
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we do believe that for progress one needs to delve deeply into basic magnetohy-
drodynamics, which is the subject of this book. Hence, the connection between
laboratory and astrophysical plasmas is not the thermonuclear fusion reactions but
their indirect result far away: magnetized plasmas are present anywhere in the
Universe!

How do we know? High-resolution astronomical observations over the whole
range of the electromagnetic frequency spectrum by means of ‘telescopes’,
ground-based or from space vehicles, have produced irrefutable evidence for that.
Whereas Sputnik (1957) and the Apollo flight to the Moon (1969) have spoken to
the imagination of a large public, the less-known observations of the Sun and stars
by means of X-ray telescopes on board rockets and the risky (manned) Skylab
missions of 1973 and 1974 may have produced a more lasting revision of our
scientific picture of the cosmos. It revealed the tremendously dynamic magnetic
structure of the solar atmosphere and corona with myriads of closed magnetic
flux tubes, containing hot plasma, bordering open magnetic regions, so-called
coronal holes where the cooler plasma is associated with reduced X-ray emis-
sion. These early observations were finally superseded by the higher resolution
images obtained from the Japanese satellite Yohkoh and the NASA-ESA Solar
and Heliospheric Observatory SOHO, launched in 1992 and 1995, respectively.
In the meanwhile, the plasma physics picture of the solar system has been aug-
mented considerably by planetary missions like Voyager 2 (launched 1989) trav-
elling to the outer edges of the solar system and also measuring the magnetic
fields of the giant planets (see Table B.8), or the flight of Ulysses (launched 1990)
which was slung in an orbit over the magnetic poles of the Sun (i.e. out of the
ecliptic) by means of a swing-by of Jupiter, whereas Cluster II (launched in
2000) will provide many more details of the three-dimensional structures of the
magnetospheres. In the same period, the picture of the structure of the Galaxy
and the Universe, essentially including galactic and cosmic magnetic fields, has
also evolved explosively due to the ever improved resolution of the traditional
telescopes, the radio telescopes in large and very large arrays, and the numer-
ous space missions, culminating in the launch of the Hubble Space Telescope in
1990.

We summarize by making a few sweeping statements, obviously not meant to
present final scientific truths:

– By means of X-ray observations, the few exciting minutes of a solar eclipse have been
extended almost indefinitely to provide a picture of the corona as a high-temperature
plasma with extremely complex dynamical magnetic structures (Priest [190]).

– The interaction of the solar wind with the planetary magnetospheres is one of the most
interesting plasma laboratories in space, offering the possibility of studying spatially
resolved plasma dynamics.
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– Finally, since the Sun is an ordinary star, what has been learned there may be extrap-
olated to other stars, of course with due modifications (Schrijver and Zwaan [204]).
Going one step further, including neutron stars and pulsars (Mestel [154]), accretion
discs about compact objects, etc.: what has been learned from magnetic plasma struc-
tures in the solar system may be extrapolated, again with due modifications, to the
more exotic astrophysical objects that cannot be observed with spatial resolution but
that do provide intricate temporal signatures.

Thus, a secondary layer (considering gravity and nuclear fusion as the primary
layer) of phenomena has been revealed in the solar system that is present every-
where in the Universe. This brings us to our next subject.

1.3.4 The standard view of nature

Consider the standard view of nature, as developed in the twentieth century
and widely held to provide the correct scientific representation of the Universe
(Fig. 1.8). The four fundamental forces govern phenomena at immensely separate
length scales, at least at times beyond ‘The First Three Minutes’ (Steven Weinberg,
1978) after the big bang. At the risk of caricaturing the wonderful achievements of
elementary particle physics, on a scale of increasing dimensions, the weak and
strong nuclear forces in the end just produce the different kinds of nuclei and
electrons, which constitute the main building blocks of matter. In a sense, these
forces are exhausted beyond the length scale of 10−15 m. Since nuclei are posi-
tively charged and electrons negatively, the much longer range electric forces then
take over, giving rise to the next stage of the hierarchy, viz. that of ‘ordinary’ matter
consisting of atoms and molecules with sizes of the order of 10−9 m. Since these
particles are electrically neutral, all there appears to remain is the gravitational
force which requires the collective effect of huge amounts of matter over length
scales beyond 109 m in order to become sizeable. This gives rise to the different
astrophysical systems of stars, galaxies, clusters of galaxies, etc. Since the gravi-
tational force is a long-range force which is solely attractive (there is no screening
by repulsive negative mass particles), this force is only ‘exhausted’ at the scale of
the Universe itself.

It will be noticed that the ‘picture’ of Fig. 1.8 jumps the eighteen orders of mag-
nitude from atoms to stars (indicated by the dots) under the assumption that noth-
ing of fundamental interest happens there. One could remark that we just happen
to live on the least interesting level of the physical Universe, or one could dwell
on the disproportion of man between the infinities of the small and the large (Pas-
cal), or one could join the recent chorus of holistic criticism on the reductionism of
physics. So much appears to be correct in the latter viewpoint that the given picture
does not have any place for the complexities of solid state physics, fluid dynamics
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Fig. 1.8. The standard view of nature.

or biological systems, to name just a few. It should come as a big disappointment
that nature would hang together from elementary particles to cosmology without
really involving the intermediate stages.

For our subject, however, another misrepresentation is implicit in Fig. 1.8. We
have started our discussion in Section 1.1 by noting that more than 90% of matter
in the Universe is plasma so that the Universe does not consist of ordinary mat-
ter (in the usual sense) but most of it is plasma! It is true that plasma is usually
also almost electrically neutral, like atoms and molecules, but the important dif-
ference is that the ions and electrons are not tied together in atoms but move about
freely as fluids. The large scale result of this dynamics is the formation of magnetic
fields which in turn determine the plasma dynamics: a highly nonlinear situation.
These magnetic fields not only bridge the gap between microscopic and macro-
scopic physics, but they also reach far into the astrophysical realm at all scales.
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The subject of plasma-astrophysics is of basic importance for understanding phe-
nomena occurring everywhere in the Universe.

It will have been noted that, in our presentation, we have ignored the unification
of electric and magnetic forces brought about by Maxwell’s theory of electromag-
netism. There is a good reason for this since, in the domain of plasma dynamics,
electric and magnetic forces are associated with quite different effects operating
on immensely different length scales with the magnetic forces dominating on the
longer length scales. Consequently, most of plasma dynamics is well described by
exploiting the so-called pre-Maxwell equations, i.e. Maxwell’s equations without
the displacement term. We will see in later chapters that the dynamics of mag-
netic fields is so interwoven with the dynamics of the plasma itself that its proper
description takes precedence over the one where electric and magnetic fields are
treated on an equal footing.

The most important law for magnetic fields is ∇ · B = 0 , which implies that
there are no sources or sinks. This law is incompatible with spherical symmetry
so that the simplest basic geometries of magnetized plasmas are completely differ-
ent from the ones prevailing on the atomic and gravitational scales. In particular,
large scale tubular magnetic structures occur which move with the plasma so that
magnetic forces are transmitted with the fluid. One could hardly imagine a big-
ger contrast with central electrostatic and gravitational forces decaying in vacuum
with distance as r−2 ! Striking examples are solar flares, the X-ray emitting corona
of the Sun, and coronal mass ejections (plasma expelled from the main body of the
Sun against the gravitational pull), the interaction of the solar wind with the plane-
tary magnetic fields, waves and flows in neutron star magnetospheres, extragalactic
jets, spiral arm instabilities, etc.

In conclusion: the standard view of nature fails over a wide range of scales be-
cause it does not recognize the presence of magnetized plasmas all over the Uni-
verse. Magnetic fields are an important aspect of modern astrophysics. Hence, the
nonlinear interaction of plasma and complex magnetic structures presents itself as
an important common theme of laboratory and astrophysical plasma research.

1.4 Definitions of the plasma state

1.4.1 Microscopic definition of plasma

Turning now to the subject of plasmas proper, we need to refine the crude definition
given in Section 1.1. This involves a closer study of the microscopic properties
required for the plasma state. To that end, we follow the exposition given by F. F.
Chen in the first chapter of his book on Plasma Physics [53].

First, we need to relax the condition of complete ionization given in our crude
definition since plasma behaviour is already encountered when the ionization is
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only partial. A simpler definition of plasma would then be: a plasma is an ionized
gas. However, how much ionization is required? An estimate may be obtained
from the Saha equation which gives an expression for the amount of ionization of
a gas in thermal equilibrium:

ni

nn
=

(
2πmek

h2

)3/2 T 3/2

ni
e−Ui/kT ≈ 2.4 × 1021 T 3/2

ni
e−15.8×104/T . (1.26)

Here, ni and nn are the particle densities of ions and neutrals (in m−3), Ui is
the ionization energy (in J), T is the temperature (in K), and the other symbols
have their usual meaning. The numbers on the RHS are obtained by exploiting
Table B.1, (2πmek/h2)3/2 = 2.4 × 1021 K−3/2 m−3 , and inserting the ionization
energy of hydrogen, Ui = 13.6 eV. (Ionization energies are usually given in eV,
where 1 eV = 1.6 × 10−19 J, which corresponds with 1.16 × 104 K if one divides
by the Boltzmann factor k.)

For air at room temperature, where nn = 3 × 1025 m−3, T = 300 K, Ui =
14.5 eV (ionization potential for nitrogen), one finds a huge negative factor (−560)
in the exponent of Eq. (1.26) so that the final ratio of the densities of ions and
neutrals is extremely small: ni/nn ≈ 2 × 10−122 � 1. As expected, the degree of
ionization of air at room temperature is totally negligible: air is not a plasma. For
hydrogen in a tokamak machine with T = 108 K and n ≡ ne = ni = 1020 m−3,
one finds that the expression in the exponent Ui � kT so that exp(Ui/kT ) ≈ 1
and ni/nn ≈ 2.4 × 1013 � 1 : in such machines genuine plasmas are obtained.
However, for the core of the Sun with T = 1.6 × 107 K and n = 1032 m−3, one
finds that ni/nn ≈ 1.5. Surprisingly, although thermonuclear reactions take place,
ionization is not complete in the core of the Sun and plasma behaviour is not com-
pletely dominant! This is due to the extremely high densities there. On the other
hand, in the corona of the Sun, with typical values of T = 106 K (not thermonu-
clear, but anomalously high: a subject which will occupy us in later chapters) and
n = 1012 m−3, we have ni/nn = 2.4 × 1018: matter in the corona is an excellent
plasma!

Even though we now have a measure for the degree of ionization required for
plasmas, we still do not have a criterion for plasma behaviour. A much more pre-
cise definition, as given by Chen, reads: a plasma is a quasi-neutral gas of charged
and neutral particles which exhibits collective behaviour.

In an ordinary gas neutral molecules move about freely (there are no net elec-
tromagnetic forces) until a collision occurs. This is a short-range, binary, event
in which two particles hit each other. In a hard-sphere model of the molecules,
the cross-section for such a collision is just the cross-section of the particles.
In a plasma, on the other hand, the charged particles are subject to long-range,
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collective, Coulomb interactions with many distant encounters (so-called pitch
angle scattering). Although the electrostatic force between two charged particles
decays with the mutual distance (∼ 1/r2), the combined effect of all charged
particles may not even decay, since the interacting volume increases (∼ r3).
This is a typical collective effect, the result of the statistics of many particles, each
moving in the average electrostatic field created by all the other particles.

We now discuss this electrostatic collective aspect quantitatively. For collec-
tive plasma behaviour, again according to Chen [53], three conditions should be
satisfied.

(a) The long-range Coulomb interaction between charged particles should dom-
inate over the short-range binary collisions with neutrals. Indicating typical time
scales of collective oscillatory motion by τ (∼ 1/ω when ω is the angular fre-
quency of the oscillations), this implies that

τ � τn ≡ 1

nnσvth
≈ 1017

nn
√

T
, (1.27)

where τn is the mean time between collisions of charged plasma particles with
neutrals. The estimate on the RHS is obtained by writing τn ≈ λmfp/vth, where
λmfp is the mean free path and vth is the thermal speed of the particles. With λmfp =
(nnσ)−1, where the cross-section σ = πa2 ≈ 10−19 m2 is obtained by taking the
radius a ≈ 2 × 10−10 m of a neutral H atom, and vth ≈ √

kT/mp ≈ 100
√

T , we
obtain the expression (1.27) for τn . Since we are interested in plasma conditions,
we should convert this expression from neutral density nn to ion density ni by
means of the Saha equation (1.26). For solar coronal plasma with T = 106 K and
ni = 1012 m−3, so that nn = 4 × 10−7 m−3, this implies τ � τn ≈ 2 × 1020 s (!).
For tokamaks with T = 108 K and ni = 1020 m−3, the condition becomes τ �
τn ≈ 2.4 × 106 s . Clearly, the condition (1.27) represents very mild restrictions
on the time scales for plasma behaviour.

(b) The length scale of plasma dynamics should be much larger than the mini-
mum size over which the condition of quasi-neutrality holds. Production of over-
all charge imbalance creates huge electric fields which in turn produce huge
accelerations, so that such an imbalance is neutralized almost instantaneously and
the plasma maintains charge neutrality to a high degree of accuracy. However, lo-
cal charge imbalances may be produced by thermal fluctuations. To estimate their
size, one should compare the thermal energy kT of the particles with their elec-
trostatic energy e�. The latter can be estimated through Poisson’s law, dE/dx =
−d2�/dx2 = −(1/ε0) en , so that kT ≈ e� ≈ (1/ε0) e2nλ2

D . Here, the gradient
length has been equated to the Debye length, which is the typical size of a region
over which charge imbalance due to thermal fluctuations may occur. Hence, length
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scales for a quasi-neutral plasma should satisfy

λ � λD ≡
√

ε0kT

e2n
≈ 70

√
T

n
, (1.28)

where n ≡ ne ≈ Zni (with Z indicating the ion charge number). Inserting the
numbers for coronal plasma again, we find λD = 0.07 m . Considering typical
transverse length scales of coronal loops, λ ∼ 10 000 km = 107 m , this condition
is easily satisfied.

 Exercise. Exploit the tables of Appendix B to also find out what this condition means
for other cases, like tokamak plasmas. �
Note that the concept of Debye length alleviates our original statement about long-
range electrostatic forces considerably: sizeable regions with charge accumulation
do not form through thermal fluctuations alone. A free charge, which in vacuum
would have a potential � = q/r , in a plasma is surrounded by a cloud of parti-
cles of opposite charge, which effectively shields the Coulomb potential for dis-
tances much larger than the Debye length: �eff = (q/r) exp (−r/λD) (called
Debye shielding). This just implies that Z ni ≈ ne , i.e. quasi charge-neutrality
holds. It does not mean that electric fields do not arise in plasmas. Actually, quite
the opposite: electric fields arise almost automatically when plasmas move in a
magnetic field. However, charge imbalances are extremely small when measured
in terms of the total charge of the separate species:

|Zni − ne|
ne

� 1 . (1.29)

Hence Zni ≈ ne holds to a high degree of accuracy in plasmas.

(c) Finally, in order for statistical considerations to be valid, sufficiently many
particles should be present in a Debye sphere, i.e. a sphere of radius λD:

ND ≡ 4
3πλ3

D n ≈ 1.4 × 106

√
T 3

n
� 1 . (1.30)

For our example of a coronal plasma, this yields ND = 1.4 × 109 � 1 , which is
again easily satisfied. Note that both λD ∼ n−1/2 and ND ∼ n−1/2 so that very
high density plasmas are OK with respect to condition (1.28), but not with respect
to condition (1.30). For example, for the core of the Sun, λD = 3 × 10−11 m (!),
but ND ≈ 9 : not so good for the application of statistical mechanics.

In conclusion: collective plasma behaviour is encountered when the time scales
are sufficiently short with respect to collision times with neutrals, τ � τn , the
length scales are much larger than the Debye length, λ � λD , and there are many
particles in a Debye sphere, ND � 1 . These conditions can be translated in terms
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Fig. 1.9. Conditions for collective plasma behaviour, in terms of the density n ≡
ne ≈ Zni and temperature T ∼ Te ∼ Ti , are satisfied in the shaded area for time
scales τ < τn = 1 s and length scales λ > λD = 1 m , where ND � 1 is also
satisfied. The restrictions on the upper time limit of low density astrophysical
plasmas quickly approach the age of the Universe, whereas the restrictions on
the lower length limit for high density laboratory fusion experiments approach
microscopic dimensions.

of conditions on the density and the temperature, which are satisfied under a wide
variety of conditions, as shown in Fig. 1.9. This picture confirms our statement of
Section 1.1: plasma is a very normal state of matter in the Universe.

1.4.2 Macroscopic approach to plasma

So far, the most important physical variable in laboratory and astrophysical plas-
mas, viz. the magnetic field, has been conspicuously absent from our definition of

n
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the plasma state. The reason is that we have followed the traditional exposition of
basic plasma theory, which starts with the microscopic point of view and stresses
the collective phenomena involving electric fields. Whereas the length and time
scales appropriate for these phenomena may be discussed in terms of the local
values of the plasma density n and the temperature T , the magnetic field B brings
in entirely different, global, considerations. (Incidentally, here one may detect one
of the ways in which reductionism fails to recognize the emergence of new levels
in the description of nature.) We have already observed the central importance of
magnetic fields in confinement of fusion plasmas (Section 1.2) and in the dynam-
ics of an enormous variety of astrophysical objects (Section 1.3), where we have
stressed their basic non-locality. We now have to quantify these observations.

The macroscopic point of view does not set aside the microscopic conditions
derived in Section 1.4.1 but it incorporates them as follows. A macroscopic de-
scription requires (1) frequent enough collisions between electrons and ions to
establish fluid behaviour, (2) in addition to the microscopic conditions of length
and time scales involving the density and temperature, global conditions on length
and time scales involving the magnetic field. The latter quantities have to be large
in order to permit averaging over the microscopic dynamics. To quantify this step
requires the consideration of the cyclotron (or gyro) motion of the electrons and
ions, which will only be discussed in the next chapter. Anticipating that discussion,
the cyclotron radii Re,i and the inverse cyclotron frequencies �−1

e,i of the electrons
and ions will be shown to be inversely proportional to the magnetic field strength,
Re,i ∼ B−1 and �−1

e,i ∼ B−1, where the ion expressions provide the most limiting
conditions on macroscopic length and time scales. Consequently, ‘large enough’
means that macroscopic length and time scales should be much larger than Ri and
�−1

i , respectively. This is possible when the magnetic field is large enough for the
plasma volume under consideration to contain many ion gyro radii and when the
dynamic phenomena last many ion gyro periods.

Summarizing: for a valid macroscopic model of a particular magnetized plasma
dynamical configuration, size, duration, density and magnetic field strength should
be large enough to establish fluid behaviour and to average out the microscopic
phenomena (i.e. collective plasma oscillations and cyclotron motions of the elec-
trons and ions).

The distinguishing feature for macroscopic plasma dynamics is the interac-
tion of plasma motion and magnetic field geometry. This fluid aspect of plasmas
concerns the motion of the plasma as a whole, without considering the separate
electrons and ions, under the influence of magnetic fields. These fields are, in turn,
generated by the plasma motion itself: a highly nonlinear situation. The theoretical
tool to describe this global interplay of plasma and magnetic field is called MHD
≡ magnetohydrodynamics. The objective of this book is to demonstrate how this
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theory provides the common basis for the description of laboratory and astrophys-
ical plasma dynamics.

The (surprisingly many) different aspects of the given definition of a macro-
scopic plasma model will be discussed one by one in the following chapters. In
particular, Chapters 2 and 3 will provide the missing quantitative elements of
microscopic plasma physics needed for the foundation of macroscopic plasma
dynamics. The basic Chapter 2 may be skipped by readers who are already
familiar with basic plasma physics. The advanced Chapter 3 may be skipped as
well by readers who wish to start with magnetohydrodynamics proper as soon as
possible.

One question, answered in detail in the next chapters, must be addressed at least
provisionally here, viz.: why is the electric field not even mentioned in the above
discussion of macroscopic plasma dynamics? The reason is that the electric field
becomes, in fact, a secondary quantity in MHD. Large electrostatic fields due to
charge imbalances only occur over Debye length scales, which are averaged out,
and electromagnetic waves are absent in non-relativistic MHD since the displace-
ment current is negligible. The electric field is then determined from the primary
variables of the velocity v and the magnetic field B by means of ‘Ohm’s law’ for
a nearly perfectly conducting plasma: E + v × B ≈ 0 , i.e. the electric field in a
frame moving with the plasma vanishes.

1.5 Literature and exercises

Notes on literature

Some general references for the whole book are given under the different headings
below. The complete information on the references is given at the end of the book.

Introductory plasma physics:

– Boyd & Sanderson, Plasma Dynamics [35] is one of the older textbooks on plasma
physics that is still quite useful. It has been revised completely in The Physics of
Plasmas [36].

– Chen, Introduction to Plasma Physics and Controlled Fusion [53] is the most read-
able, and probably most widely used, basic textbook on plasma physics. An older
edition also contained material on controlled fusion, which will appear in a separate
second volume.

– Bittencourt, Fundamentals of Plasma Physics [31] is a basic theoretical course on
plasma physics with detailed calculations.

– Sturrock, Plasma Physics [221] is a basic text on plasma physics written for graduate
students from astrophysics, space science, physics, and engineering departments.

– Goldston & Rutherford, Introduction to Plasma Physics [92] is a basic text on
plasma physics based on teaching at Princeton University by two experts in tokamak
physics.
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– Nishikawa & Wakatani, Plasma Physics [168] is a text on basic plasma theory with
applications to magnetic as well as inertial confinement of fusion plasmas.

Topics in advanced plasma physics:

– Leontovich (ed.), Reviews of Plasma Physics, Vols. 1–5 [142] contain the unsurpassed
Russian expositions of the basics of plasma theory after the declassification of the
1958 Geneva Conference. The different chapters will be quoted by separate refer-
ences.

– Akhiezer, Akhiezer, Polovin, Sitenko & Stepanov, Plasma Electrodynamics [4] is an-
other classic from one of the Soviet plasma theory schools, systematically building up
plasma physics by kinetic and hydrodynamic methods and progressing to the diverse
linear and nonlinear manifestations of the plasma state.

– Dendy (ed.), Plasma Physics: an Introductory Course [65] contains the material
taught at the yearly Culham summerschools on plasma physics.

– Donné, Rogister, Koch & Soltwisch (eds.), Proc. Second Carolus Magnus Summer
School on Plasma Physics [68] contains the material taught at the mentioned sum-
merschool on plasma physics held every other year.

Magnetohydrodynamics:

– Freidberg, Ideal Magnetohydrodynamics [72] is a textbook on ideal MHD, based on
lectures at MIT for graduate students and researchers, which puts perfect conductivity
and the applications to fusion research centre stage.

– Lifschitz, Magnetohydrodynamics and Spectral Theory [146] is an advanced text
on MHD stressing the unity of physics and mathematics through spectral theory.
This kind of complex, yet faultless, calculation is a rare commodity in plasma
physics.

– Polovin & Demutskii, Fundamentals of Magnetohydrodynamics [187] is an intro-
duction of the various aspects of MHD, written in the lucid style of the great Russian
theoreticians.

– Biskamp, Nonlinear Magnetohydrodynamics [29] is a monograph on nonlinear MHD
processes like evolution of large amplitude instabilities, reconnection, turbulence,
disruptions, field reversals, and flares.

Tokamaks:

– Wesson, Tokamaks [244] is a veritable encyclopaedia of the plasma physics involved
in nuclear fusion research in tokamaks.

– White, Theory of Toroidally Confined Plasmas [245] contains the material of a grad-
uate course at Princeton University on fundamental plasma theory of tokamaks.

– Hazeltine & Meiss, Plasma Confinement [107] provides the advanced theory of mag-
netic plasma confinement with stress on derivations from first principles.

– Braams & Stott, Nuclear Fusion: Half a Century of Magnetic Confinement Fusion
Research [37] gives the history of nuclear fusion research up to the present, leading
up to the citation of Artsimovich ‘Fusion will be there when society needs it’.

The Sun:

– Priest, Solar Magnetohydrodynamics [190] is the classical introduction of magneto-
hydrodynamics of the Sun, in particular the solar corona.
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– Stix, The Sun [217] is a textbook on the physics of the Sun with due account of
innumerable observational facts.

– Foukal, Solar Astrophysics [69] aims at making the advances in understanding of the
Sun accessible to students and non-specialists by means of simple physical concepts
and observations.

Space physics:

– Hasegawa & Sato, Space Plasma Physics [106] is a monograph on the physics of
stationary plasmas, small amplitude waves, and the stationary magnetosphere.

– Kivelson & Russell (eds.), Introduction to Space Physics [127] is an introduction
of all aspects of space and solar plasmas for senior undergraduate and graduate stu-
dents, written by experts in the various fields. The different chapters will be quoted
by separate references.

– Baumjohann & Treumann, Basic Space Plasma Physics, and (same authors in reverse
order) Advanced Space Plasma Physics [19] are the basic material presented in a
space plasma physics course at the University of Munich, and the advanced nonlinear
aspects of the various waves and instabilities.

Plasma astrophysics:

– Battaner, Astrophysical Fluid Dynamics [18] is a systematic theoretical treatise of the
dynamics of classical, relativistic, photon and plasma fluids, progressing from stars
to the Universe at large.

– Choudhuri, The Physics of Fluids and Plasmas [55] is an introduction to fluid dy-
namics, plasma physics and stellar dynamics for graduate students of astrophysics.

– Mestel, Stellar Magnetism [154] is a monograph on MHD applied to the magnetism
of stars, including stellar dynamos, star formation and pulsar electrodynamics.

Exercises

The exercises are meant to increase understanding of the principles of plasma dy-
namics, where estimating orders of magnitude is an essential part. Frequent use
of the numerical tables of the appendices is recommended. Difficult problems are
marked with a star.

[ 1.1 ] Fusion reactions

We know two methods of energy production by nuclear processes, namely nuclear fission
and nuclear fusion. For both, the net energy released is described by the same formula.

– What is expressed by that formula? What is the major difference between fission
and fusion? What is actually explained by the mentioned formula for the most likely
reaction in future fusion reactors, D2 + T3 → He4 (3.5 MeV) + n (14.1 MeV) ?

[ 1.2 ] Fusion power

If we want a tokamak reactor to produce energy and sustain itself, we need balance between
thermonuclear power output and power losses. This leads to a condition on required particle
density n, energy confinement time τE, and temperature T̃ .
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– If the power output is given by PT = n2 f (T̃ ), where f is a known function of tem-
perature, and the power losses consist of Bremsstrahlung, PB = αn2T̃ 1/2 , and heat
transport, PL = 3nT̃ /τE, derive the criterion for fusion energy production. Assume
that all three power contributions can be converted in plasma heating with effi-
ciency η.

– A more recent approach states that for ignition of a fusion reactor, α-particle heating
of the plasma, Pα , should make up for the power losses. Express this criterion by a
similar equation above.

– For such a reactor, the product of the three mentioned quantities will have to be
nτET̃ ≈ 3 × 1021 m−3 s keV. Give some realistic values for n, τE and T̃ . Using
Table B.1, convert the temperature T̃ in keV to T in degrees K.

– Why do magnetic fields play such an important role in thermonuclear fusion?

[ 1.3 ] Astrophysical observations

When observing objects in the night sky, we detect a certain amount of light coming from
those objects. However, objects that appear dimmer do not really emit less light. They just
have a smaller apparent magnitude, defined by m ≡ m0 − 2.5 × 10log(l/ l0).

– Give the meaning of the different variables in this equation and explain how the de-
pendence on distance is incorporated.

– The absolute magnitude is the magnitude based on the amount of flux that would
be collected from the object if it were located at a distance of 10 parsecs from the
observer. From this, derive the formula for the absolute magnitude.

– Does the same relationship hold for observations with a spectrographic filter that
selects a specific frequency band?

[ 1.4 ] Solar plasmas

All the light we receive is the result of specific nuclear reactions which release energy. For
instance, nuclear reactions in the centre of the Sun are the ultimate cause of light escaping
at positions where the Sun becomes optically thin for this radiation.

– Which nuclear reactions take place in the centre of the Sun? What kind of radiation is
produced? Why doesn’t this extremely energetic light escape right away? Why is the
light we collect on Earth mostly in the visible range? Why is it the less energetic light
that escapes from the Sun? Explain what this says about the density profile of the
Sun.

– Normally we cannot see the solar atmosphere further outwards since we are blinded
by the escaping light. A beautiful exception occurs during a solar eclipse. Explain
why we can observe such a phenomenon at all on Earth.

– The coronal structures revealed during a solar eclipse show the footprints of a giant
engine that produces the solar activity. What is the mechanism of that engine and how
is that connected to the kind of structures observed?

[ 1.5 ] Plasma definitions and applications

Putting plasmas in a wide perspective, discuss the following aspects.
– What is a plasma? How is it different from ordinary gases and fluids?
– Name some applications of plasma physics.
– How can plasmas be confined?
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[ 1.6 ] Terminology

Explain the following terms and their connection with plasma or fusion physics:
– Coulomb interaction,
– Saha equation,
– quasi-neutrality, Debye length,
– θ -pinch, z-pinch, tokamak,
– Ohm’s law.

[ 1.7 ] Forces in nature

Explain the major forces present in nature, together with their relative strength and decay
distance and, thus, the scale at which they are dominant. Explain why gravity is such a
special force. What forces dominate the plasma regime?



2

Elements of plasma physics

2.1 Theoretical models

Plasma processes are described by quite different theoretical models. Which one
is to be chosen depends on the kind of phenomenon one is interested in. Broadly
speaking, three kinds of theoretical description are used:

(a) the theory of the motion of individual charged particles in given magnetic and electric
fields (Section 2.2);

(b) the kinetic theory of a collection of such particles, describing plasmas microscopically
by means of particle distribution functions fe,i (r, v, t) (Section 2.3);

(c) the fluid theory (magnetohydrodynamics), describing plasmas in terms of averaged
macroscopic functions of r and t (Section 2.4).

By way of introduction, within each of these descriptions, we will give a sim-
ple example which illustrates the plasma property that is relevant for our subject,
viz. plasma confinement by magnetic fields.

2.2 Single particle motion

2.2.1 Cyclotron motion

The motion of a charged, non-relativistic particle in an electric and magnetic field
is described by the well-known equation of motion

m
dv
dt

= q(E + v × B), (2.1)

where E(r, t) and B(r, t) are considered to be given (of course, in agreement with
Maxwell’s equations) and one has to solve for the particle velocity v(r, t). For the
moment, we do not specify the mass m and the charge q of the particles. They
will be fixed later to correspond to either electrons (m = me, q = −e) or ions

34
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with mass number A and charge number Z (i.e. multiples of the proton mass and
charge: m = mi = Am p, q = Ze).

Consider a charged particle in a constant magnetic field, taken in the z-direction,
in the absence of an electric field: B = Bez , E = 0. Performing two simple vector
operations on Eq. (2.1) provides some preliminary insight: (1) projecting on B
(exploiting the vector identity (A.1) of Appendix A) gives

m
dv‖
dt

= 0 , so that v‖ = const, (2.2)

and (2) projecting on v gives

d

dt
(1

2mv2) = 0 → 1
2 mv2 = const

(2.2)−→ 1
2 mv2

⊥ = const → v⊥ = const.

(2.3)
The expressions (2.2) and (2.3) already suggest the kind of orbits to be expected.

We now solve Eq. (2.1) systematically. With v = dr/dt = (ẋ, ẏ, ż) we obtain
two coupled differential equations for the motion in the perpendicular plane:

ẍ − (q B/m) ẏ = 0 ,

ÿ + (q B/m) ẋ = 0 . (2.4)

Defining the gyro- or cyclotron frequency,

� ≡ |q|B
m

, (2.5)

the solution to these equations represents a periodic circular motion about a point
x = xc, y = yc (the guiding centre):

x(t) = xc + (ẋ0/�) sin �t − (ẏ0/�) cos �t,

y(t) = yc + (ẏ0/�) sin �t + (ẋ0/�) cos �t . (2.6)

Since the coupled differential equations constitute a fourth order system, there are
four free constants. They are fixed by the choice of the initial positions x0, y0 and
the initial velocities ẋ0, ẏ0, so that xc = x0 + ẏ0/�, yc = y0 − ẋ0/�. Check the
property (2.3):

v⊥ =
√

ẋ2(t) + ẏ2(t) =
√

ẋ2
0 + ẏ2

0 = const. (2.7)

Also, √
[x(t) − xc]2 + [y(t) − yc]2 =

√
ẋ2

0 + ẏ2
0 /� = v⊥/� = const,
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Fig. 2.1. Gyration of electrons and ions in a magnetic field.

so that the gyro- or cyclotron radius1

R ≡ v⊥
�

= const . (2.8)

Hence, the complete orbit consists of gyration ⊥ B and inertial motion ‖ B:

x(t) = xc + R cos(�t − θ0),

y(t) = yc − R sin(�t − θ0),

z(t) = zc(t) = z0 + v‖t, (2.9)

where θ0 is the initial value of the polar angle in the perpendicular plane. This
helical motion already constitutes an important confining feature of a magnetic
field: charged particles stick to the field lines. In other words: the magnetic field B
determines the geometry of the dynamics of both kinds of particles and, hence, of
the plasma.

Electrons and ions gyrate in opposite directions (Fig. 2.1) with quite different
gyro-frequencies and gyro-radii because of the smallness of the mass ratio me/mi :

�e ≡ eB

me
� �i ≡ ZeB

mi
,

Re ≡ v⊥,e

�e
� Ri ≡ v⊥,i

�i
(assuming Te ∼ Ti ) . (2.10)

1 The expressions (2.5) and (2.8) are usually called the Larmor frequency and the Larmor radius. Those are
misnomers: the Larmor motion proper refers to the precession of a magnetic dipole in an applied magnetic
field, as in the classical theory of nuclear magnetic resonance. This precession frequency is an entirely different
physical effect, as evidenced by the fact that its frequency is half the value given by Eq. (2.5).
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Inserting a typical value for the magnetic field in tokamaks (see Table B.3),
viz. B = 3 T (= 30 kgauss), and inserting the values for e, me, and m p of
Table B.1, we find for the angular frequencies of protons and electrons

�e = 5.3 × 1011 rad s−1 (i.e., a frequency of 84 GHz) ,

�i = 2.9 × 108 rad s−1 (i.e., a frequency of 46 MHz). (2.11)

To estimate the gyro-radii, we consider particles with thermal speed2 so that v⊥ =
vth ≡ √

2kT/m . For electrons and protons at T̃ = 10 keV, i.e. Te = Ti = 1.16 ×
108 K, this implies

vth,e = 5.9 × 107 m s−1 ⇒ Re = 1.1 × 10−4 m ≈ 0.1 mm ,

vth,i = 1.4 × 106 m s−1 ⇒ Ri = 4.9 × 10−3 m ≈ 5 mm . (2.12)

This gives an impression of the time and length scales for gyro-motion in a toka-
mak. Clearly, these time scales are very small compared to the typical time scales
needed for thermonuclear fusion and the length scales are small compared to the
macroscopic dimensions of a tokamak machine. This permits averaging over the
gyro-motion in the macroscopic description of plasma dynamics.

� Exercise. Consult Table B.3 for the values of the gyration parameters of a solar plasma.
Also complete the empty column of Table B.4: it is important to familiarize yourself with
the different orders of magnitude! �

One significant feature of the gyro-frequency is its dependence on the value of
the magnetic field alone. Except for the fundamental constants of nature, no other
quantities appear in the expressions (2.10)(a). Hence, detection of oscillatory mo-
tion at the cyclotron frequencies provides an important means for the determination
of the value of the magnetic field in plasmas.

Since the equation of motion for the perpendicular motion is a fourth order dif-
ferential equation (two coupled second order equations), quite complicated drift
motions can occur if the electromagnetic fields B and E are not constant in time
or if they are inhomogeneous in space. One then introduces expansions exploiting
the smallness of the gyro-radius of the particles as compared to the length scale of
the field inhomogeneities. This is the subject of individual orbit theory. For many
applications, time and length scales of phenomena are large enough to permit aver-
aging over the rapid gyration of the particles so that only the motion of the guiding
centre needs to be considered. This is called the guiding centre approximation. We
return to this subject in Section 2.2.3.

2 The convention for the definition of the thermal speed vth differs for different authors: some have the factor 2,
like we do, others do not have it.
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2.2.2 Excursion: basic equations of electrodynamics and mechanics

We have treated the simple non-relativistic motion of a charged particle in a con-
stant, prescribed, magnetic field. Before we proceed to motion in more complex
fields, it is useful to recall some of the basic equations from electrodynamics and
particle mechanics.

In plasma theory, where we consider the dynamics of a collection of charged
particles in electromagnetic fields, the appropriate form of Maxwell’s equations in
mksA units is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ × E = −∂B
∂t

(Faraday),

∇ × B = µ0j + 1

c2

∂E
∂t

(‘Ampère’), c2 = (ε0µ0)
−1,

∇ · E = τ

ε0
(Poisson) ,

∇ · B = 0 (no magnetic monopoles) . (2.13)

We have ignored polarization and magnetization effects, i.e. ε = ε0 and µ = µ0

so that D = ε0E and H = (µ0)
−1B , since these effects are absorbed in the defi-

nitions of charge and current density:⎧⎨
⎩

τ = ∑
α qαnα

(α = e, i).
j = ∑

α qαnαuα (2.14)

Here, nα and uα are the particle density and the macroscopic velocity of parti-
cles of type α. This implies that the plasma is viewed as existing of point charges
moving in the electromagnetic fields, which they partially create themselves. Ob-
viously, adding an equation of motion of the form of Eq. (2.1) for every particle of
the plasma would constitute a complete dynamical problem, but it would be foolish
to proceed from that point of view since one would have to solve, say, 1020 equa-
tions of motion. In Section 2.3, we will see how this problem may be reformulated
by means of a statistical approach.

In Section 2.4, we will introduce the next level of description, viz. the macro-
scopic approach of plasmas. For the majority of macroscopic plasma phenomena,
the displacement current ε0∂E/∂t and Poisson’s equation are unimportant and may
be dropped from Eqs. (2.13). In that case, Faraday’s law expresses the dynamics
of the magnetic field, ‘Ampère’s’ law will become Ampère’s law again, express-
ing the relation between the current and the magnetic field, and ∇ · B = 0 is then
the usual restriction of the possible initial conditions for B. In this description in
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terms of the so-called pre-Maxwell’s equations, the magnetic field is a more basic
quantity than the electric field.

Of course, to get electromagnetic waves the displacement current and Poisson’s
equation are essential. Keeping these terms, for a vacuum (τ = 0, j = 0) we get
from the original set of Maxwell’s equations (2.13) two identical wave equations
for E and B:

∇2E − 1

c2

∂2E
∂t2

= 0 , ∇2B − 1

c2

∂2B
∂t2

= 0 , (2.15)

where c = (ε0µ0)
− 1

2 is the velocity of light in vacuum. Considering plane wave
solutions

E(r, t) = Ê ei(k·r−ωt) , B(r, t) = B̂ ei(k·r−ωt) , (2.16)

where Ê and B̂ are complex (the physical quantities correspond to the real parts
of E and B), we just obtain the familiar relation between angular frequency ω and
wave vector k :

ω2 = k2c2 . (2.17)

Inserting these relations back into Eqs. (2.13) we find

ωB̂ = k × Ê , ωÊ = −c2 k × B̂ ,
(2.18)

k · B̂ = 0 , k · Ê = 0 ,

so that |Ê| = c|B̂| and the vectors {Ê, B̂, k} form an orthogonal triad: electromag-
netic waves are transverse waves where E and B oscillate in a plane perpendicular
to the direction of propagation given by k.

For the sake of reference, we present the Lorentz transformation of two inertial
frames [117] moving with relative velocity v:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x′ = x + γ − 1

v2
v v · x − γ v t ,

t ′ = γ
(

t − 1

c2
v · x

)
, γ ≡ 1√

1 − v2/c2
. (2.19)

The electromagnetic fields transform according to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E′ = γ
(

E + v × B
)

− γ 2

(γ + 1) c2
v v · E ,

B′ = γ
(

B − 1

c2
v × E

)
− γ 2

(γ + 1) c2
v v · B . (2.20)
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Notice that the symmetry between E and B is lost here since we exploit mksA
units.

A consistent treatment of particles in electromagnetic waves would require the
replacement of the classical equation of motion (2.1) by the relativistic one:

dp
dt

= q(E + v × B) , (2.21)

where p is the relativistic momentum of the particle. The relativistic expressions
for the energy E (not to be confused here with the electric field E) and the mo-
mentum p of particles moving with the velocity v are given by:

E = γ mc2 ( ≈ mc2 + 1
2 mv2 for v � c ) ,

p = γ mv ( ≈ mv for v � c ) . (2.22)

Hence, E =
√

p2c2 + m2c4 , where E includes the rest mass energy mc2. For
photons, the rest mass m → 0 and v → c, so that the expressions (2.22) for E and
p become undetermined but their relation is still given by E = pc.

Quantum mechanical expressions for the energy and momentum of particles,
including photons, involve Planck’s constant h:

E = hν , p = h/λ ,

where ν and λ are the de Broglie frequency and wavelength of the wave functions
associated with the particles. It is convenient to include the direction of the mo-
mentum vector p in these relations. This is done by introducing the wave vector k,
where |k| ≡ 2π/λ , and defining the angular frequency ω ≡ 2πν and h̄ ≡ h/2π :

E = h̄ω , p = h̄k . (2.23)

These expressions are also valid for photons, for which frequency and wavelength
are related by

ν = c/λ , or ω = kc , (2.24)

according to the dispersion equation (2.17), so that we recover the relation E = pc
again.

In this book, quantum mechanical and relativistic effects will not play an impor-
tant role. It is of some interest though to extend the analysis of Section 2.2.1 to the
cyclotron motion of relativistic particles since high energy non-thermal electrons
frequently occur in plasmas (e.g., 60 keV electrons require a relativistic correction
v2/c2 ∼ 0.2). Consider again a charged particle moving in a constant magnetic
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field B , but now exploit Eq. (2.21) rather than Eq. (2.1):

dp
dt

= |q|
γ m

p × B . (2.25)

Performing the operations of projection onto B and p again, we find that p‖ =
const and |p| = const so that, according to Eq. (2.22), v = const and the relativistic
factor γ = const. Hence, particles turn out to gyrate around the magnetic field with
the modified gyro-frequency

� = |q|B
γ m

, (2.26)

whereas the corresponding gyro-radius becomes

R = p⊥
|q|B = v⊥

�
. (2.27)

The ratio p⊥/q (= RB), which depends on the particle properties only, is a mea-
sure of how little a particle can be deflected by a magnetic field. It is called the
magnetic rigidity of a particle. Energies of cosmic ray particles are often expressed
in terms of this quantity.

After this excursion, we return to classical plasmas in the double sense of non-
relativistic (i.e. neglect of v/c terms and displacement current in ‘Ampère’s’ equa-
tion) and non-quantum mechanical (i.e. neglect of the discreteness of the energy
expressed by Eq. (2.23)).

2.2.3 Drifts, adiabatic invariants

In Section 2.2.1, we considered the gyro-motion of charged particles in a constant
magnetic field B. Let us now add a constant electric field E to the problem. Pro-
jecting Eq. (2.1) on B then gives

m
dv‖
dt

= q E‖ , (2.28)

which represents a constant acceleration along the magnetic field. In hot plas-
mas, such accelerations may lead to a high energy tail of so-called runaway elec-
trons when the electric field exceeds a certain critical value which depends on the
electron–ion collision frequency.

For the present purpose, it is more relevant to consider the effect of a per-
pendicular electric field: E (= Eey) ⊥ B (= Bez). The transverse motion is then
described by the differential equations

ẍ − q B

m
ẏ = 0 ,

(2.29)
ÿ + q B

m
(ẋ − E/B) = 0 ,
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Fig. 2.2. Drift of ions and electrons in crossed electric and magnetic fields.

which just differ from the previous ones (2.4) by a transformation ẋ → ẋ − E/B.
Hence, the motion is virtually the same as before, except that it is superposed on a
constant drift in the x-direction. This drift, which is called the E × B drift, may be
written as

vd = E × B
B2

. (2.30)

Notice that it is independent of the charge so that electrons and ions both drift in
the same direction. The reason is the periodic increase and decrease of the perpen-
dicular velocity due to the acceleration and deceleration of the charge as it moves
in the electric field (Fig. 2.2). This results in a periodic change of the size of the
gyro-radius. Electrons are decelerated and ions are accelerated but, since the two
orbits have an opposite sense of circulation, the net effect is a drift of ions and
electrons in the same direction.

The E × B drift (2.30) permits a more general interpretation. Consider an in-
ertial frame moving with a velocity v in the direction of E × B (i.e., in the x-
direction). According to Eq. (2.20), since E, B, and v are mutually orthogonal, the
fields in the moving frame are given by the Lorentz transformation E′ = γ (E +
v × B) , B′ = γ (B − c−2v × E) . Choosing v = vd according to Eq. (2.30), we get
E + v × B = E + (E × B) × B/B2 = 0 , so that E′ = 0 : the particles move in
such a way that the electric field in the moving frame vanishes! This is in precise
agreement with the motion of a perfectly conducting plasma consisting of a huge
number of oppositely charged particles: E + v × B = 0 is one of the fundamental
equations for such a plasma (see Section 2.4.1). Note that the argument does not
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Fig. 2.3. (a) Mirror and (b) cusp magnetic confinement schemes.

require relativistic velocities: whereas B′ ≈ B for v � c, the electric field E′ in
the moving frame is certainly very different from E for v � c.

If we replace the electric force qE by some other force F, e.g. the gravitational
force mg , we find a similar expression for the resulting drift:

vd = F × B
q B2

. (2.31)

If the force F is charge-independent, like gravity, the drift itself becomes charge-
dependent so that electrons and ions drift in opposite directions (neglecting inter-
actions between the particles). This implies the flow of an electric current.

In inhomogeneous magnetic fields many more drifts occur, e.g. one due to the
gradient of B . This can again be understood, like the E × B drift, as caused by
the periodic variation of the size of the gyro-radius. This so-called B × ∇B drift is
again charge-dependent, so that it is associated with a current flow. Another drift
is due to the curvature of the magnetic field lines, resulting in a centrifugal force
for particles moving along the field lines. According to Eq. (2.31) this force gives
rise to an additional drift velocity.

An important application of orbit theory is the mirror effect: particles entering
the regions of higher magnetic field strength (created by so-called magnetic mir-
rors, see Fig. 2.3(a)) are reflected back into the region of smaller magnetic field
strength where the gyro-radius is larger and the perpendicular velocity smaller. A
proper treatment requires the consideration of the magnetic moment of the gyro-
motion, which may be shown to be an adiabatic invariant (see below). Like many
other confinement schemes considered in research on controlled thermonuclear
reactions, the magnetic mirror (also called magnetic bottle) has been investigated
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extensively and subsequently abandoned as a candidate for fusion reactors. How-
ever, it remains an extremely important concept in plasma dynamics since all mag-
netic confinement schemes involve highly inhomogeneous magnetic fields with
associated trapping of particles in between the maxima of the field. Also, the mag-
netic mirror concept plays a prominent role in space and plasma astrophysics. Ex-
amples are the Van Allen belts in the magnetosphere of the Earth and acceleration
mechanisms for cosmic rays.

A definite disadvantage of the mirror confinement scheme is the curvature of the
field lines, which is convex with respect to the confined plasma and, hence, sub-
ject to interchange instability. It was realized early in controlled fusion research
that this instability is eliminated in the cusp confinement scheme (Fig. 2.3(b))
where the magnetic field geometry consists of two mirrors connected with a cusped
structure which is produced by simply reversing the direction of the current in one
of the coils. The plasma is now stable up to very high values of β ≡ 2µ0 p/B2 (an
important parameter in plasma confinement, which we will encounter extensively
later on) since the field lines are concave with respect to the plasma. However, con-
finement of particles has even more severe limitations than in the mirror scheme.

Periodic motion in inhomogeneous magnetic fields calls for a more system-
atic treatment exploiting the just-mentioned adiabatic invariants. This is based
on the notion that there are distinct spatial scales in the problem, viz. one scale
associated with the gyro-motion and another, much larger, scale associated with
the field inhomogeneities. Action variables J ≡ ∮

P d Q (Goldstein [91]) are ex-
ploited, where P is the generalized momentum conjugate to a periodic coordi-
nate Q. For non-relativistic particles in an electromagnetic field the generalized
momentum is defined by P ≡ mv + qA (Jackson [117]), where A is the vector
potential corresponding to the magnetic field B = ∇ × A .

We now consider the gyro-motion in local cylindrical coordinates r, θ, z about
the magnetic field, with B = B ez and A = 1

2 Br eθ , where the particle moves on an
orbit r = R = v⊥/� in the direction of decreasing angle θ (as the ion in Fig. 2.1).
In the first adiabatic invariant, the transverse momentum corresponding to the
gyro-motion enters:

J1 ≡
∮

P⊥ · dl =
∮

(mv⊥ − 1
2q B R)R dθ = πmv2

⊥
�

. (2.32)

This invariant may be expressed in terms of the magnetic moment µ ≡ π R2 I of
the gyro-motion, where I = (2π)−1q� is the current due to the circulating charge.
Inserting the expressions (2.5) and (2.8) for � and R gives the required result:

µ ≡ π R2 I = 1
2q R2� =

1
2 mv2

⊥
B

⇒ J1 = 2πm

q
µ . (2.33)
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Fig. 2.4. (a) Magnetic mirror geometry and (b) loss cone in velocity space.

According to convention, the corresponding vector of the magnetic moment, µ,
is defined as pointing opposite to B. The first adiabatic invariant may also be
expressed in terms of the magnetic flux R enclosed by the gyro-orbit: R =
π R2 B = (2πm/q2) µ , so that J1 = qR . The adiabatic invariance implies that
J1 is constant when the external parameters only vary slowly. Consequently, for
rapid gyro-motion in a slowly varying magnetic field, the magnetic moment µ and
the contained magnetic flux R are also constant.

The use of such adiabatic invariants can be demonstrated with the motion in a
mirror field (Fig. 2.4). Because µ = const, if the particle moves into the mirror, v⊥
must increase since B increases. Because of energy conservation, this can happen
only if v‖ decreases. As a result, particles are reflected by the magnetic mirror.
(Hence, its name.) Clearly, for particles with a very small value of v⊥/v‖, the
mirror does not work since these particles are lost along the axis. This loss is
determined by the mirror ratio Bm/B0, where the subscript m refers to the mirror
throat, where B has a maximum, and the subscript 0 refers to the mid-plane, where
B has a minimum. One can express the pitch angle of the loss cone in velocity
space (Fig. 2.4(b)) in terms of this mirror ratio by exploiting the constancy of µ ,

v2
⊥,0/B0 = v2

⊥,m/Bm, (2.34)

and energy conservation for particles with velocities at the transition from trapped
to untrapped (v‖,m = 0),

v2
‖,0 + v2

⊥,0 = v2
⊥,m , (2.35)

so that (
1 + v2

‖,0/v
2
⊥,0

)
B0 = Bm .
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The pitch angle is defined by ϑ ≡ arctan (v⊥/v‖) . Hence, particles with large
enough parallel velocity v‖, such that

ϑ < ϑm ≡ arctan

√
B0

Bm − B0
, (2.36)

are lost.
The particles outside the loss cone are trapped. They bounce back and forth

between the mirrors. With this motion a second adiabatic invariant is associated,
viz. the longitudinal invariant

J2 ≡
∮

P‖ dl ≈
∮

mvz dz =
∮

mv2
z dt = πmv̂2

z

ωb
, (2.37)

where the motion along the symmetry axis of the configuration (the z-direction)
has been assumed to be a harmonic oscillation with velocity vz = v̂z cos ωbt ,
where ωb is the bounce frequency.

A third adiabatic invariant is associated with the slow drift of the guiding
centres of the particles across the field lines. This drift is caused by curvature
and gradients of the magnetic field, with the associated variation of the size of
the gyro-radius. For example, electrons gyrating about magnetic field lines of the
Earth’s dipole drift eastward and ions drift westward, creating a huge ring current
system around the Earth. The guiding centres drift across the magnetic field lines
while they stay on the ‘magnetic surface’ (called drift shell) mapped out by those
field lines. Accordingly, the third adiabatic invariant is characterized by the value
of the magnetic flux d enclosed by the surface to which the drift is confined. This
flux may be calculated by exploiting another cylindrical coordinate system r, φ, z
with the magnetic field in the r, z-plane and φ the ignorable azimuthal coordinate
in the direction of the drift (see Fig. 2.5). For the example of the Earth’s dipole
field, it is easiest to evaluate the flux at the equatorial plane. From B = ∇ × A,
we obtain Bz = (1/r)∂(r Aφ)/∂r , so that the flux enclosed between the drift shell
and a reference shell through r = r0, z = 0, where we chose Aφ(r0, 0) = 0, may
be written as

d = 2π

∫ r

r0

Bzr dr = 2πr Aφ(r, 0) .

Hence, the expression for the third adiabatic invariant becomes

J3 ≡
∮

Pφ rdφ =
∮

(mvd + q Aφ) rdφ ≈ 2πq r Aφ = q d . (2.38)

Here, the term with the drift velocity has been neglected since it is much smaller
than the contribution of the vector potential Aφ (see Hasegawa and Sato [106],
Chapter 1).
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Fig. 2.5. Adiabatic invariants for particles in the magnetosphere.

Summarizing the use of adiabatic invariants describing the motion of charged
particles in an inhomogeneous magnetic field, e.g. that of the Earth, associated
with the Van Allen belts (Fig. 2.5):

(a) electrons and ions execute a fast gyration in opposite directions about the magnetic
field lines conserving the first adiabatic invariant J1, i.e. the magnetic moment of the
guiding centres;

(b) they bounce back and forth between the mirrors on the northern and southern hemi-
spheres on a slower time scale, conserving J2;

(c) they drift on a slower time scale yet in opposite longitudinal directions conserving the
third adiabatic invariant J3, i.e. the magnetic flux inside the drift shell.

Obviously, the three adiabatic invariants are conserved in decreasing order of
robustness. The fluctuating interaction of the solar wind with the magnetosphere
will not invalidate the assumptions underlying the adiabatic invariance of J1, since
this invariant concerns very fast motion, but it may easily invalidate the invariance
of the third adiabatic invariant J3.

Thus, a very effective description of charged particle motion in inhomogeneous
magnetic fields has been sketched. The precise formulation of the conditions of
validity and proofs of adiabatic invariance would be another matter. This would
lead from the early seminal work by Northrop [169] and by Kruskal to modern
developments in Hamiltonian mechanics (see, e.g., Goldston and Rutherford [92],
Chapter 4, and Balescu [14], Chapter 1).

2.3 Kinetic plasma theory

The motion of a single (non-relativistic) charged particle in electric and magnetic
fields is described by the equation of motion (2.1). Single particle orbit theory is
only valid when the density of charged particles is so low that the interactions
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between the particles can be ignored. However, a plasma consists of a very large
number of interacting particles and, hence, it is appropriate to use a statistical
approach for its analysis. It is the task of kinetic plasma theory to derive equa-
tions describing the collective behaviour of the many charged particles that con-
stitute a plasma by applying the methods of statistical mechanics. One should be
aware of the formidable amount of theoretical analysis involved in even a par-
tial performance of this task. (See, e.g. the basic papers by Trubnikov [231] and
Braginskii [41] in the first volume of the excellent series ‘Reviews of Plasma
Physics’ for early contributions, and the more recent comprehensive treatise by
Balescu [14].) Here, we exploit one of the end results of this program, viz. the
Boltzmann equation, which may be derived by heuristic arguments as long as no
specific expression for the collision term is needed. Single particle orbit theory
(Section 2.2) ignores collective effects, and the fluid description of plasmas (Sec-
tion 2.4) averages out microscopic fluctuations. Kinetic theory includes these im-
portant aspects of plasma dynamics and it is, therefore, more comprehensive than
both orbit theory and the fluid description of plasmas, but it is also much more
complicated.

First, we just give an introduction to some of the basic kinetic concepts
(Section 2.3.1). A more detailed exposition is relegated to Chapter 3, which may
be consulted for details on the derivations of the equations. Next, we consider
a simple example of collective behaviour (Section 2.3.2), viz. electron plasma
oscillations, associated with a fundamental plasma parameter, the plasma fre-
quency. Section 2.3.3 deals with the damping of these oscillations through kinetic
effects.

2.3.1 Boltzmann equation and moment reduction

Consider a plasma consisting of electrons and one kind of ion. In the statistical de-
scription, the information on the individuality of the particles is lost but the relevant
physical information on the plasma as a whole is retained and expressed in terms
of time-dependent distribution functions fα(r, v, t) for the electrons and ions (α
= e, i). These are defined as the density of the representative points of particles
of type α in a six-dimensional phase space formed by the three position coordi-
nates (x, y, z) and the three velocity coordinates (vx , vy, vz) (see, e.g., Bittencourt
[31]). The probable number of particles of type α in the six-dimensional volume
element d3r d3v centred at (r, v) is then given by fα(r, v, t) d3r d3v. The total
number of particles, Nα ≡ ∫∫

fαd3r d3v , will be assumed constant. Clearly, to
describe more general plasmas like thermonuclear ones, where fusion reactions
create and annihilate particles, more than two distribution functions are needed
and the respective total number of particles will not be constant.
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The motion of the swarm of representative points in phase space is described by
the total time derivative of the distribution function fα(r, v, t):

d fα
dt

≡ ∂ fα
∂t

+ ∂ fα
∂r

· dr
dt

+ ∂ fα
∂v

· dv
dt

= ∂ fα
∂t

+ v · ∂ fα
∂r

+ qα

mα

(E + v × B) · ∂ fα
∂v

, (2.39)

where the expression (2.1) for the acceleration dv/dt of the particles has been
inserted in the second line. The notation of inner products involving derivatives
with respect to the vectors r and v just indicates that the sum over the products
of the three vector components is to be taken: v · ∂/∂r ≡ vx ∂/∂x + vy ∂/∂y +
vz ∂/∂z , and similarly for the term with ∂/∂v . Also note a subtle, but important,
difference in notation: d/dt for the total time derivative and d/dt for ordinary time
derivatives. In the absence of binary interactions between particles, the density of
representative points in phase space remains constant in time so that d fα/dt = 0
(Liouville’s theorem, Goldstein [91]).

Of course, the interesting part of kinetic theory comes with the introduction of
interactions or, rather, collisions between the particles. The variation in time of
the distribution functions of both electrons and ions is then found from a kinetic
equation, known as the Boltzmann equation:

∂ fα
∂t

+ v · ∂ fα
∂r

+ qα

mα

(E + v × B) · ∂ fα
∂v

= Cα ≡
(

∂ fα
∂t

)
coll

. (2.40)

Now, E(r, t) and B(r, t) consist of the contributions of the external fields and of
the averaged internal fields originating from the long-range inter-particle interac-
tions. The symbolic expression on the RHS of Eq. (2.40) represents the rate of
change of the distribution function due to the short-range inter-particle interac-
tions, which are somewhat arbitrarily called collisions. In a plasma, these may
be considered as the cumulative effect of many small-angle velocity changes ef-
fectively resulting in large-angle scattering, described by a Fokker–Planck type
collision operator. It is the first objective of kinetic theory to justify the distinction
between long-range interactions and binary collisions, to determine the ranges of
its validity, and to derive suitable expressions for the collision term. One such ex-
pression, discussed in Section 3.2, is the Landau collision integral (1936) [135]. On
the other hand, neglect of the collisions leads to the Vlasov equation (1938) [239]:

∂ fα
∂t

+ v · ∂ fα
∂r

+ qα

mα

(E + v × B) · ∂ fα
∂v

= 0 , (2.41)

where it is to be realized that the particles still interact through the long-range
interactions represented by the averaged internal parts of the E and B fields.
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A closed system of equations is now obtained by combining either the
Boltzmann equation (2.40) or the Vlasov equation (2.41), determining the dis-
tribution functions fα(r, v, t) , with Maxwell’s equations (2.13), determining the
electric and magnetic fields E(r, t) and B(r, t) , and the expressions (2.14) for the
charge and current density source terms τ(r, t) and j(r, t) . The latter are related
to the particle densities and the average velocities:

nα(r, t) ≡
∫

fα(r, v, t) d3v , τ (r, t) ≡
∑

qαnα , (2.42)

uα(r, t) ≡ 1

nα(r, t)

∫
v fα(r, v, t) d3v , j(r, t) ≡

∑
qαnαuα . (2.43)

This completes the microscopic equations.
A systematic procedure to obtain macroscopic equations, not involving details

of velocity space any more, is to expand in a finite number of moments of the Boltz-
mann equation (2.40), obtained by first multiplying the expressions with powers
of v and then integrating over velocity space:∫

d3v · · · ,

∫
d3v v · · · ,

∫
d3v v2 · · ·

∣∣∣∣
truncate

. (2.44)

This, in turn, involves the moments of the distribution function itself, like the ze-
roth moment associated with the particle density nα(r, t) and the first moment
associated with the average velocity 〈v〉α ≡ uα(r, t), just defined. In order for this
expansion to be practical, it needs to be truncated at a very limited number of terms,
like the five (one scalar + one vector + one scalar) indicated in Eq. (2.44). The jus-
tification of this truncation is part of transport theory, to be discussed below and
more extensively in Chapter 3. In general, macroscopic variables 〈g〉α(r, t) will
appear as the average of some phase space function g(r, v, t) over velocity space:

〈g〉α(r, t) ≡ 1

nα(r, t)

∫
g(r, v, t) fα(r, v, t) d3v . (2.45)

This definition obviously requires that the distribution functions fα fall off rapidly
enough for v → ∞ to yield a finite answer.

The different moments of the collision term in the RHS of the Boltzmann equa-
tion should also be determined. Without specifying the particular form of the
collision operator, important conclusions can be drawn from general physical prin-
ciples. To that end, the collision term on the RHS of Eq. (2.40) is decomposed in
contributions Cαβ due to collisions of particles α (e.g. electrons) with particles β

(i.e. electrons as well as ions):

Cα =
∑
β

Cαβ . (2.46)
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In the absence of fusion reactions, the total number of particles α at a certain
position does not change by collisions with particles β, so that∫

Cαβ d3v = 0 . (2.47)

Similarly, momentum and energy conservation lead to corresponding expressions.
Details of these and other manipulations are worked out in Chapter 3. Here, we
only present the derivation of the lowest moment equation (describing mass con-
servation) to give an impression of the procedure.

The zeroth moment of Eq. (2.40), obtained by integrating over velocity space,
yields the following terms:∫

∂ fα
∂t

d3v = ∂nα

∂t
(definition (2.42)) ,∫

v · ∂ fα
∂r

d3v = ∇ · (nαuα) (definition (2.43)) ,∫
qα

mα

(E + v × B) · ∂ fα
∂v

d3v = 0 (integrating by parts) ,∫
Cα d3v = 0 (summing Eq. (2.47)) .

Adding these expressions gives the continuity equation for particles of species α:

∂nα

∂t
+ ∇ · (nαuα) = 0 . (2.48)

In the same vein, the first moment of Eq. (2.40), obtained by multiplying with mαv
and integrating over the velocities, yields the momentum equation:

∂

∂t
(nαmαuα) + ∇ ·

(
nαmα〈vv〉α

)
− qαnα(E + uα × B) =

∫
Cαβ mαv d3v .

(2.49)
Finally, the scalar second moment of Eq. (2.40), obtained by multiplying with
1
2mαv2 and integrating over velocity space, yields the energy equation:

∂

∂t

(
nα

1
2mα〈v2〉α

)
+ ∇ ·

(
nα

1
2 mα〈v2v〉α

)
− qαnαE · uα =

∫
Cαβ

1
2 mαv2 d3v .

(2.50)
See Section 3.2.2 for the explicit steps in the derivation of these equations.

Clearly, this sequence can be continued indefinitely, but Eqs. (2.48)–(2.50) can
be turned into a closed set by making additional assumptions. In broad outlines,
the procedure is as follows:
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(a) Split the particle velocity v into an average part uα and a random part ṽα defined
as

ṽα ≡ v − uα , where 〈ṽα〉 = 0 . (2.51)

This permits the definition of thermal quantities:

Tα(r, t) ≡ mα

3k
〈ṽ2

α〉 (temperature), (2.52)

Pα(r, t) ≡ nαmα 〈ṽα ṽα〉 = pαI + πα,

pα ≡ nαkTα (stress tensor), (2.53)

hα(r, t) ≡ 1
2 nαmα 〈ṽ2

αṽα〉 (heat flow), (2.54)

Rα(r, t) ≡ mα

∫
Cαβ ṽα d3v (momentum transfer), (2.55)

Qα(r, t) ≡ 1
2 mα

∫
Cαβ ṽ2

α d3v (heat transfer). (2.56)

Here, I is the unit tensor, so that πα represents the off-diagonal terms of the
pressure tensor P. A particular example, consistent with these definitions, is the
Maxwell distribution for thermal equilibrium:

f 0
α (r, v, t) = nα

(
mα

2πkTα

)3/2

exp

(
−mαṽ2

α

2kTα

)
. (2.57)

For this distribution, the LHS of the Boltzmann equation (2.40) vanishes so that
the collision term on the RHS should vanish as well, i.e. when the two distribu-
tions have equal average velocities (ue = ui ) and temperatures (Te = Ti ). Plasma
kinetic theory is concerned with deviations from this thermal equilibrium and the
way in which collisions cause relaxation to thermal equilibrium in the course of
time (Braginskii [41]).

(b) The equations of continuity, momentum, and heat balance then take the form:

∂nα

∂t
+ ∇ · (nαuα) = 0 , (2.58)

nαmα

(∂uα

∂t
+ uα · ∇uα

)
+ ∇ · Pα − nαqα(E + uα × B) = Rα , (2.59)

3

2
nαk

(∂Tα

∂t
+ uα · ∇Tα

)
+ Pα : ∇uα + ∇ · hα = Qα . (2.60)

In Eq. (2.59), the divergence of the stress tensor may be decomposed into an
isotropic part, involving the scalar pressure pα, and an anisotropic part, involving
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the off-diagonal pressure tensor πα :

∇ · Pα = ∇ pα + ∇ · πα . (2.61)

The double dot in Eq. (2.60) indicates that a double sum over the Cartesian com-
ponents is to be taken, P : ∇u ≡ ∑

i
∑

j Pi j∂ui/∂x j , so that decomposition into
diagonal and off-diagonal contributions gives

Pα : ∇uα = pα∇ · uα + πα : ∇uα . (2.62)

The logical next step is to transform the temperature evolution equation (2.60) into
a pressure evolution equation by exploiting Eqs. (2.53) and (2.58):

∂pα

∂t
+ uα · ∇ pα + γ pα∇ · uα + (γ − 1)(πα : ∇uα + ∇ · hα) = (γ − 1)Qα .

(2.63)
Here, we have introduced the ratio of specific heats, γ ≡ C p/Cv = 5/3, to demon-
strate the connection with gas dynamics. The equations (2.58) for nα , (2.59) with
(2.61) for uα , and (2.63) for pα now appear rather macroscopic, but they hide the
unsolved kinetic dependence in the variables πα and hα , which involve higher
order moments, and the variables Rα and Qα , which involve the unspecified
collision operator.

(c) The truncated set of moment equations is closed by exploiting the trans-
port coefficients derived by transport theory (Braginskii [41], Balescu [14]). This
theory concerns deviations from local thermodynamic equilibrium, expressed by
Eq. (2.57), where the distribution functions are developed in powers of a small
parameter measuring that deviation. This results in relationships, involving trans-
port coefficients, between the thermal quantities defined in Eqs. (2.52)–(2.56) and
the gradients of the macroscopic quantities. It is the second objective of kinetic
theory (the first one being the derivation of the kinetic equation with a collision
operator) to provide these coefficients: another formidable task. Just exploiting the
final outcome, i.e. the explicit expressions of the transport coefficients, the closing
relationships schematically take the form:

πα ∼ µα∇uα (viscosity),

hα ∼ −κα∇(kTα) (heat conductivity),

Rα ≈ −qαnαη j ,
∑

Qα ≈ η |j|2 (resistivity). (2.64)

Here, we have just indicated the form of the expressions, omitting many terms, sup-
pressing the anisotropic tensor structure of the transport coefficients, and leaving
their dependencies on the densities, temperatures, and magnetic field unspecified.
(See Section 3.3.2 for the explicit expressions.)
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With respect to the anisotropy of the transport coefficients, an example is the
huge difference between the electron heat conductivities parallel and perpendicu-
lar to the magnetic field: κe

⊥/κe
‖ ∼ (�eτe)

−2 � 1 , where �e is the electron gyro-
frequency and τe is the electron collision time. This anisotropy is crucial for the
possibility of magnetic confinement in fusion machines. On the other hand, the per-
pendicular resistivity only differs by a factor 2 from the classical value of the
parallel resistivity, the so-called Spitzer resistivity:

η‖ ≈ me

2e2neτe
= e2√me Z ln �

6ε2
0(2πkT )3/2

≈ 1.63 × 10−9 Z ln �

T̃ 3/2
, η⊥ ≈ 2η‖, (2.65)

where ln � (∼ 20) is the Coulomb logarithm. (A crude isotropic resistivity model
that is frequently exploited actually assumes η = 2η‖ = η⊥; see Section 3.3.3.)
These two loose remarks suffice to illustrate the intricacies of the subject of clas-
sical transport. All of this will be discussed more fully in Chapter 3. Here, we
will not further dwell on this but just remark that in the derivation of the macro-
scopic equations most of the transport is neglected, i.e. assumed to operate on time
scales which are much longer than those of interest for macroscopic dynamics. The
moment equations (2.58)–(2.60), together with Maxwell’s equations (2.13), then
transform into the closed set of two-fluid and one-fluid plasma equations. This
subject will be continued in Section 2.4.

We will now present a highly simplified application of the two-fluid description
(Section 2.3.2). In that application, most of the complicated terms discussed do not
occur. Nevertheless, it illustrates an important basic physical mechanism at work,
viz. collective electrostatic oscillations. Next, we return to the kinetic description
in terms of distribution functions and show how velocity space effects lead to the
surprising kinetic phenomenon called Landau damping (Section 2.3.3).

2.3.2 Collective phenomena: plasma oscillations

We have encountered the concepts of quasi-neutrality and Debye length in Sec-
tion 1.4. We extend these electric field concepts in two steps. First, we study per-
turbations of quasi-neutrality in a cold plasma by plasma oscillations, also called
Langmuir waves (1929) after the name of the author who also introduced the term
‘plasma’ in 1923. Next, we study the thermal effects on these oscillations in terms
of the Debye length.

Consider the highly simplified case of a cold plasma in the absence of a mag-
netic field (B = 0). This implies that all thermal effects are neglected (Pα , hα , Rα,
and Qα vanish), so that all complicated terms in the equations of motion (2.59)
disappear and the energy equations (2.60) may be dropped. We then just need to
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exploit the continuity equations (2.58),

∂nα

∂t
+ ∇ · (nαuα) = 0 (α = e, i) , (2.66)

and the simplified momentum equations (2.59),

mα

(∂uα

∂t
+ uα · ∇uα

)
= qα E (α = e, i) . (2.67)

The electric field can be determined self-consistently from Poisson’s equa-
tion (2.13)(c), where the charge density is obtained from Eq. (2.14)(a):

∇ · E = τ

ε0
= e

ε0
(Zni − ne) . (2.68)

These equations constitute a complete set for the variables ne,i (r, v, t),
ue,i (r, v, t), and E(r, t) describing the problem of electrostatic oscillations.

We have already encountered one of the most fundamental properties of plas-
mas, viz. that plasmas maintain approximate charge neutrality. Indeed, charge
imbalances on a macroscopic scale L would create huge electric fields (E ∼
τ L/ε0) which would neutralize these imbalances extremely fast by accelerating
the electrons, so that the plasma maintains charge neutrality to a high degree of
accuracy.

Considered on a finer time and length scale, however, charge imbalances do
occur in the form of oscillations which are very typical for plasmas. For these
oscillations, the heavy ions (mi � me) may be considered as a fixed (ui = 0) neu-
tralizing background in which only the light electrons move (ue �= 0). Perturbing a
small region inside the plasma by displacing the electrons there, charge neutrality
will be disturbed (ne �= Zni ). The electron variables then determine the problem:

ne ≈ n0 + n1(r, t) ,
(2.69)

ue ≈ u1(r, t) ,

whereas the ion variables simplify to

ni ≈ n0/Z = const , ui ≈ 0 . (2.70)

Hence, the two ion equations (2.66) and (2.67) for α = i may be dropped.3 The
subscripts 0 and 1 refer to the constant background and the perturbations, respec-
tively. The density perturbation |n1(r, t)| � n0 occurs in a small region of the
plasma and is zero elsewhere so that linearization is appropriate, i.e. terms involv-
ing products of perturbations are neglected since they are small compared to linear

3 Heavy immobile ions imply taking the limits mi → ∞, ui → 0 such that the LHS of Eq. (2.67) becomes
undetermined. Such procedures always require justification in terms of a small parameter, in this case the mass
ratio me/mi � 1. The ion dynamics would enter as a higher order correction in terms of this parameter.
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terms. The electric field E1 that is created is then proportional to n1. This small
electric field creates a small electron flow velocity u1 , which is also proportional
to n1.

The linearized electron density equation (2.66), the momentum equation (2.67)
(both with α = e), and the Poisson equation (2.68) then yield a complete set of
equations:

∂n1

∂t
+ n0∇ · u1 = 0 ,

me
∂u1

∂t
= −eE1 ,

∇ · E1 = τ1

ε0
= − e

ε0
n1 . (2.71)

These equations may be reduced to a single wave equation for n1:

∂2n1

∂t2
= −n0∇ · ∂u1

∂t
= n0e

me
∇ · E1 = − n0e2

ε0me
n1 . (2.72)

The solutions n1(r, t) = n̂1(r) exp(−iωt) represent electron density oscillations,
called plasma oscillations, with a characteristic frequency, called the electron
plasma frequency:

ω = ±ωpe , ωpe ≡
√

n0e2

ε0me
. (2.73)

This frequency is one of the fundamental parameters of a plasma. Since it depends
only on the plasma density, detection of plasma oscillations provides a diagnostic
for the determination of the plasma density.

The plasma frequency is usually very high because me is very small. In tokamak
plasmas, e.g., a typical density n0 = 1020 m−3 gives

ωpe = 5.7 × 1011 rad s−1 (i.e. 91 GHz) .

Comparing this frequency with the gyro-frequencies of Section 2.2, we find that
the electron plasma frequency is of the same order of magnitude as the electron
cyclotron frequency for tokamaks with very strong magnetic fields (B ∼ 3 T).

� Exercise. In the solar corona, the density is much lower, so that the electron plasma
frequency is also much lower than for tokamaks. The representative numbers in Table B.3
have been chosen somewhat artificially such that the ratio ωpe/�e is the same for tokamaks
and coronal loops. What is the plasma frequency for the latter if n0 = 1014 m−3 is taken?
How does this change the ratio ωpe/�e? Also, complete the empty entries of Table B.4. �

Note that the spatial form of the amplitude n̂1(r) of the plasma oscillations is
not determined in cold plasma theory. This becomes different for ‘warm’ plasmas,
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where deviations from charge neutrality due to thermal fluctuations occur in small
regions of a size of the order of the Debye length

λD ≡
√

ε0kBTe

n0e2
= vth,e√

2 ωpe
. (2.74)

We here indicate the Boltzmann constant with a subscript, kB, to distinguish it
from the wave number k of the waves that now enters the analysis. Inserting num-
bers again for thermonuclear plasmas, with T̃ = 10 keV, vth,e = 5.9 × 107 m s−1,
ωpe = 5.7 × 1011 rad s−1 gives

λD = 7.4 × 10−5 m ≈ 0.07 mm ,

i.e. of the order of the electron gyro-radius Re.

� Exercise. What is the Debye length in the solar corona for T̃ = 100 eV and n0 =
1014 m−3? For what value of the coronal magnetic field does this become of the order
of the electron gyro-radius? �

Because of these thermal fluctuations, the frequency of the plasma oscillations
becomes dependent on the wavelength. This part of the thermal contributions may
be computed by means of the two-fluid equations (2.58)–(2.63) for an unmagne-
tized plasma (B = 0), assuming an isotropic pressure and neglecting heat transport
and collisions:

∂nα

∂t
+ ∇ · (nαuα) = 0 , (2.75)

nαmα

(∂uα

∂t
+ uα · ∇uα

)
+ ∇ pα = nαqαE , (2.76)

∂pα

∂t
+ uα · ∇ pα + γ pα∇ · uα = 0 . (2.77)

Again assuming immobile ions and linearizing the equations (2.75)–(2.77) for the
electrons, we now get a modified eigenvalue problem where the pressure p0 =
n0kBT0, i.e. the temperature, of the background plasma enters:

∂n1

∂t
+ n0∇ · u1 = 0 , (2.78)

n0me
∂u1

∂t
+ ∇ p1 = −en0E1 , (2.79)

∂p1

∂t
+ γ p0∇ · u1 = 0 , (2.80)

∇ · E1 = − e

ε0
n1 . (2.81)
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Assuming plane waves in the x-direction, and ignoring spatial dependences in the
y- and z-directions,

n1(x, t) = n̂1ei(kx−ωt) (2.82)

(and similar expressions for u1, p1, E1), the gradients ∇ → ikex and the time
derivatives ∂/∂t → −iω, so that Eqs. (2.78)–(2.82) become an algebraic system
of equations for the amplitudes n̂1, û1, p̂1, and Ê1. The determinant provides the
dispersion equation:

ω2 = ω2
pe(1 + γ k2λ2

D) . (2.83)

Here, since the oscillations are one-dimensional, we should exploit the value γ = 3
(see Chen [53], Chapter 4). Note that the old result (2.73) is recovered for long
wavelengths, where k2λ2

D � 1, but there is a large effect now on the oscilla-
tions for wavelengths of the order of or smaller than the Debye length. How-
ever, this effect is not quite correctly described since the fluid description actually
breaks down because of a peculiar kinetic effect that will be discussed in the next
section.

2.3.3 Landau damping

A more refined analysis of longitudinal plasma oscillations for ‘warm’ plasmas
should take velocity space effects into account, exploiting the Vlasov, or collision-
less Boltzmann, equation (2.41) for the perturbations f1(r, v, t) of the electron
distribution function. Taking again plane wave solutions ∼ exp i(k · r − ωt), one
immediately runs into a mathematical problem:

∂ f1

∂t
+ v · ∂ f1

∂r
= −i(ω − k · v) f1 = e

me
E1 · ∂ f0

∂v
, (2.84)

so that inversion of the operator ∂/∂t + v · ∂/∂r, to express f1 in terms of E1, leads
to singularities when ω − k · v = 0 . Incorporated in a proper treatment of the ini-
tial value problem, these singularities were shown by Landau (1946) [136] to give
rise to damping of the plasma oscillations. This Landau damping is a surprising
phenomenon since it occurs in a purely collisionless medium, i.e. there is no dissi-
pation! Much later, experiments by Malmberg and Wharton [150] first verified the
phenomenon of Landau damping (1966), and then also demonstrated that, in fact,
the information contained in the initial signal is not irreversibly lost but that it may
be recovered by means of plasma wave echos (1968).
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A complementary approach to the electrostatic plasma oscillations by means of
a normal mode analysis was given by Van Kampen (1955) [237, 238]. He showed
that the singularities ω − k · v = 0 lead to a continuous spectrum of singular,
δ-function type, modes (the Van Kampen modes), which constitute a complete
set of ‘improper’ eigenmodes for this system. Damping occurs because a package
of those modes rapidly loses its spatial phase coherence (phase mixing). The oc-
currence of a continuous spectrum is a very intriguing aspect of the analysis of
plasma oscillations, which is also encountered in the fluid description of macro-
scopic waves (as we will see in Chapter 6).

Let us analyse the problem in some more detail for one space dimension x and
one velocity space dimension v (≡ vx ). Since Landau damping is due to velocity
space effects we have to redo the problem of Section 2.3.2 in terms of distribution
functions, leading to the so-called Vlasov–Poisson problem:

∂ f1

∂t
+ v

∂ f1

∂x
= e

me

∂ f0

∂v
E1 ,

∂ E1

∂x
= − e

ε0
n1 = − e

ε0

∫ ∞

−∞
f1 dv . (2.85)

Inserting plane wave solutions

f1(x, v, t) = f̂1(v) ei(kx−ωt) , E1(x, t) = Ê1 ei(kx−ωt) , (2.86)

in these equations, i.e. making the replacements ∂/∂x → ik, ∂/∂t → −iω , they
transform into

−i(ω − kv) f̂1 = e

me

∂ f0

∂v
Ê1 ,

ik Ê1 = − e

ε0

∫ ∞

−∞
f̂1 dv . (2.87)

Just expressing f̂1 in terms of Ê1 by means of the first equation (assuming ω �=
kv!), and inserting f̂1 into the equation for Ê1, we obtain

[
1 − e2

ε0mek2

∫ ∞

−∞
1

v − ω/k

∂ f0

∂v
dv

]
Ê1 = 0 . (2.88)

Hence, the expression inside the square brackets should vanish, providing the
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v

f0

vph

Fig. 2.6. Maxwell velocity distribution and a phase speed vph = ω/k of plasma
oscillations in the thermal region.

dispersion equation, i.e. the relation between ω and k, we are looking for:

DV(k, ω) ≡ 1 − ω2
pe

k2n0

∫ ∞

−∞
1

v − ω/k

∂ f0

∂v
dv = 0 . (2.89)

Here, we have inserted the plasma frequency ωpe defined in Eq. (2.73).
For definiteness, we now have to specify the distribution function f0 of the

background. It is logical to choose the one-dimensional form of the Maxwell
equilibrium distribution introduced in Eq. (2.57):

f0(v) = n0√
πvth

e−v2/v2
th , vth ≡

√
2kBTe

me
. (2.90)

Since we wish to concentrate on velocity space effects, we assume spatial ho-
mogeneity of the background equilibrium so that the density n0 and the thermal
speed vth (i.e. the electron temperature Te ) are constant. These apparently inno-
cent assumptions imply that a whole ‘zoo’ of kinetic and macroscopic instabilities
is eliminated at once.

Obviously, the assumption ω �= kv cannot be justified if the frequency ω of
the plane waves is real since the integration in Eq. (2.89) is then right across the
singularity. This singularity occurs for particles with speeds that are resonant with
the phase velocity of the waves: v = vph ≡ ω/k (vertical line in Fig. 2.6). An
apparent way out, proposed by Vlasov [239], is to exploit the principal value of
the integral for real ω, defined as:

P
∫ ∞

−∞
dv · · · ≡ lim

δ→0

[ ∫ vph−δ

−∞
dv · · · +

∫ ∞

vph+δ

dv · · ·
]

. (2.91)

One can crudely estimate this integral for long wavelengths (k → 0), when vph �
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vth, so that the Maxwell distribution f0 becomes quite small at the singular point:

P
∫ ∞

−∞
1

v − ω/k

∂ f0

∂v
dv = − 2n0√

πv3
th

P
∫ ∞

−∞
v

v − vph
e−v2/v2

th dv

≈ n0

v2
ph

(
1 + 3

2

v2
th

v2
ph

)
. (2.92)

This gives the following approximate dispersion equation:

ω2 ≈ ω2
pe + 3

2
k2v2

th = ω2
pe(1 + 3k2λ2

D) , (2.93)

i.e. one obtains the thermal correction of the frequency (2.73) of the plasma oscil-
lations in terms of the product of the wave vector of the oscillations and the Debye
length. This correction turns out to agree with Eq. (2.83) obtained from the fluid
approximation.

However, this procedure is much too cavalier, as pointed out by Landau [136] in
his severe criticism of the work of Vlasov [239]4: there is no justification of the use
of the principal value integral, and a more careful analysis of the singularity reveals
that there is an imaginary contribution (the Landau damping) to the frequency of
the waves. The more careful analysis is somewhat beyond the level of this chapter,
but too fundamental to be skipped altogether. Therefore, we put it in small print
here.

� Landau’s solution of the initial value problem. We return to the basic equations (2.85)
of the Vlasov–Poisson problem. Instead of the Ansatz (2.86) of plane wave solutions,
we now keep the exp(ikx) spatial dependence but treat the time dependence through the
Laplace transform:

f̃1(v; ω) ≡
∫ ∞

0
f1(v; t)eiωt dt , Ẽ1(ω) ≡

∫ ∞

0
E1(t)e

iωt dt . (2.94)

(We exploit the variable ω instead of the standard Laplace variable p ≡ −iω so that conver-
gence in the right half p-plane is replaced by convergence in the upper half ω-plane.) The
Laplace transform of the time derivative ∂ f1/∂t in Eq. (2.85) produces a similar expression
−iω f̃1 as before,∫ ∞

0

∂ f1

∂t
eiωt dt =

[
f1eiωt

]t→∞
t=0

− iω
∫ ∞

0
f1eiωt dt = −g(v) − iω f̃1(v, ω) , (2.95)

but with an additional contribution of the initial value of the perturbation f1 of the

4 The cited two references of Vlasov both contain the important contribution of the collisionless Boltzmann
equation (with the justification of the neglect of collisions for many plasma phenomena), but, unfortunately,
also the incorrect wave analysis of the plasma oscillations.
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distribution function:

g(v) ≡ f1(v, t = 0) . (2.96)

The contribution for t → ∞ vanishes since we assume that Im ω > 0.
In effect, the Laplace transform of Eqs. (2.85) is virtually the same as Eqs. (2.87), except

for the additional term −g(v). We again express f̃1 in terms of Ẽ1,

f̃1(v, ω) = i

ω − kv

[
e

me

∂ f0

∂v
Ẽ1(ω) + g(v)

]
, (2.97)

and insert f̃1 into the equation for Ẽ1:

Ẽ1(ω) = e

ε0k2

∫
1

v − ω/k
g dv

1 − ω2
pe

k2n0

∫
1

v − ω/k

∂ f0

∂v
dv

≡ e

ε0k2

N (ω)

D(ω)
. (2.98)

Maybe not too surprising, the denominator appears to be identical to the expression DV
of the dispersion equation (2.89): the zeros of D(ω), i.e. the solutions of the dispersion
equation D(ω) = 0, become poles of the complex function Ẽ1(ω). However, in contrast to
Vlasov’s approach, we now have a procedure to make sense of the singularities v = ω/k
in the velocity integrals, viz. by completing the solution of the initial value problem by
means of the inverse Laplace transform:

E1(t) = 1

2π

∫ iνC +∞

iνC −∞
Ẽ1(ω)e−iωt dt , and similarly for f1(v, t) (Im ω = νC > 0) .

(2.99)
Formally, the problem is now solved since these integrals avoid the singularities altogether
by staying away from them on the path Cω in the upper half of the ω-plane, indicated in
Fig. 2.7(a).

To describe the collective plasma oscillations, the expressions (2.99) need to be evalu-
ated with respect to their asymptotic time dependence for t → ∞. To that end, it is expedi-
ent to deform the contour Cω into the contour C ′

ω in the lower half of the ω-plane. For the
latter contour, the contribution of the straight pieces may be neglected (Im ω � 0) whereas
the residue of the uppermost pole (indicated by ω0) will survive the longest:

Ẽ1(ω) ≈ A(ω − ω0)
−1 ⇒ E1(t) ≈ − A

2π

∮
1

ω − ω0
e−iωt dω = −iAe−iω0t .

(2.100)
Of course, the explicit value of ω0 is to be computed yet. This requires knowledge of the
complex function Ẽ1(ω) for Im ω ≤ 0, whereas it was only defined for Im ω > 0. The
canonical way to obtain that knowledge is by means of analytic continuation of the func-
tions N (ω) and D(ω). If one assumes that g(v) is an entire function (i.e. an analytic func-
tion which is regular for all finite values of v; see e.g. Nehari [162], Chapter 3), then the
Cauchy contour integral along the closed path Cv (= Cv1 + Cv2) will just pick up the
residue at v = ω/k when Im ω > 0 (Fig. 2.7(b1)). Whereas this implies that one could
relate the value of the integral along the real axis Cv1 (plus the residue) to the value of
the integral along the semi-circular path Cv2 with R → ∞, this does not provide us with
the usual simplification of the algebra, since the latter integral does not vanish. However,
it does show what to do when Im ω ≤ 0 (when the singularity crosses the real axis): one
should deform the contour Cv1 to remain on the same side of the singularity, as indicated in
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ω /k
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v
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Fig. 2.7. Techniques used by Landau in his solution of the initial value problem:
(a) deforming the contour Cω in the complex ω-plane of the inverse Laplace trans-
form to a contour C ′

ω above the solutions of the dispersion equation; (b) analytic
continuation of the velocity integrals, considered as functions of ω, by means of
a Cauchy contour integral in the complex v-plane along a path Cv (= Cv1 + Cv2)
enclosing the singularity v = ω/k from values Im ω > 0 (b1) to Im ω = 0 (b2)
and Im ω < 0 (b3).

Figs. 2.7(b2) and 2.7(b3). Then, the appropriate analytic continuation of N (ω) is obtained
by integrating along the real v-axis and adding no residue, half a residue, or the full residue
depending on the value of Im ω:

∫
Cv1

1

v − ω/k
g(v) dv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

−∞
1

v − ω/k
g(v) dv (Im ω > 0)

P
∫ ∞

−∞
1

v − ω/k
g(v) dv + i π g(ω/k) (Im ω = 0)

∫ ∞

−∞
1

v − ω/k
g(v) dv + i 2π g(ω/k) (Im ω < 0).

(2.101)

The integral in D(ω) may be analytically continued in a similar way using the fact that, for
the Maxwell distribution (2.90), ∂ f0/∂v is also an entire function.
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The three expressions (2.101) may be conveniently combined in a single one, viz. the
middle expression (2.101)(b), which may be considered as valid for all values of ω if the
principal value integral is interpreted as the average of the two integrals along paths just
above (Ca) and just below (Cb) the singularity:

P
∫

dv · · · ≡ 1
2

∫
Ca

dv · · · + 1
2

∫
Cb

dv · · · . (2.102)

For Im ω = 0, the addition of two semi-circles above and below the singularity does not
change anything since those contributions cancel. However, for Im ω > 0, the singularity
contributes −i π g(ω/k) from the path Ca , cancelling the second term of Eq. (2.101)(b)
so that the expression (2.101)(a) is obtained. For Im ω < 0, the singularity contributes
+i π g(ω/k) from the path Cb, doubling the second term so that the expression (2.101)(c)
is obtained.

Hence, the correct dispersion equation, valid for all values of ω, may be written as

D(k, ω) ≡ 1 − ω2
pe

k2n0

[
P

∫ ∞

−∞
1

v − ω/k

∂ f0

∂v
dv + i π

∂ f0

∂v

∣∣∣∣
ω/k

]

= 1 + (kλD)−2
[

1 + 1√
π

ζ P
∫ ∞

−∞
1

v̄ − ζ
e−v̄2

d v̄ + i
√

π ζe−ζ 2
]

= 0 ,

(2.103)

where the Maxwell equilibrium distribution (2.90) with v̄ ≡ v/vth and ζ ≡ ω/(kvth) have
been inserted in the second line. Clearly, the interpretation of the integrals in Eq. (2.98)
(where we purposely omitted the integration path since that was yet to be determined) is
completely different from the one given by Vlasov in Eqs. (2.89) and (2.91): there is an
imaginary part so that one does not obtain oscillations with a real frequency.

All ambiguity about the mathematical physics of the plasma oscillations has now been
resolved. The rest is technical (though intricate) details about the evaluation of the velocity
integrals for complex values of ω. That part of the problem is usually collected in the prop-
erties of the plasma dispersion function, which is a well-known tabulated complex function
described in many textbooks on waves in plasmas (see, e.g., Stix [218] or Swanson [223]):

Z(ζ ) ≡ 1√
π

∫ ∞

−∞
1

v̄ − ζ
e−v̄2

d v̄ (Im ζ > 0) , (2.104)

where the analytic continuation for Im ζ ≤ 0 is obtained as above. In terms of Z(ζ ), the
dispersion equation becomes

D(k, ω) ≡ 1 + (kλD)−2
[
1 + ζ Z(ζ )

]
= 0 , ζ ≡ ω

kvth
≡ ω/ωpe√

2 kλD
. (2.105)

The power series of the plasma dispersion function Z(ζ ) for |ζ | < 1 reads

Z(ζ ) = i
√

πe−ζ 2 − 2ζ + 4

3
ζ 3 − 8

15
ζ 5 · · · . (2.106)

A more useful expression for physical applications is the asymptotic expansion for |ζ | �
1:

Z(ζ ) ≈ − 1

ζ
− 1

2ζ 3
− 3

4ζ 5
· · · + is

√
πe−ζ 2

, s =
{

0 ( Im ζ > 0)
1 (|Im ζ | < |Re ζ |−1 � 1)
2 ( Im ζ < 0),

(2.107)
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where the middle expression can be applied to a finite region about the real axis. (As
usual in asymptotic expansions, the boundaries indicated in brackets do not imply that
the expansion is valid up to that boundary but, rather, that the expression is no longer
valid there because of the Stokes phenomenon; see Bender and Orszag [23], Chapter 3.)
Iterating on the real and imaginary parts of the solution ζ of the dispersion equation for long
wavelengths (kλD � 1) yields the expression (2.108) below for the complex frequency of
the plasma oscillations. �

In conclusion: Landau’s study of the initial value problem of electrostatic
plasma oscillations shows that there is an important contribution of the singular-
ities v = vph ≡ ω/k where the particles are in resonance with the phase velocity
of the waves. For a Maxwell distribution, the solution of the dispersion equation
(2.105) for long wavelengths (kλD � 1) is given by

ω ≈ ωpe

{
1 + 3

2
k2λ2

D − i
√

π
8 (kλD)−3 exp

[
− 1

2(kλD)−2 − 3

2

]}
, (2.108)

where the imaginary part represents damping of the waves. For long wavelengths,
this damping is exponentially small. For short wavelengths (kλD ∼ 1), the damp-
ing becomes very strong so that wave motion with wavelengths smaller than the
Debye length becomes impossible.

2.4 Fluid description

Kinetic theory involves details of the distribution functions that evolve on very
short length and time scales, like the Debye length λD and the plasma frequency
ωpe. Since the subject of this book is the macroscopic dynamics of magnetized
plasmas, we now have to face the main difficulty, viz. how to bridge the enormous
difference between these scales and the macroscopic ones. The development of
the fluid picture of plasmas involves three major steps, illustrated in Fig. 2.8 and
elaborated in the next chapter:

(a) Collisionality A first step has been taken in Section 2.3.1 with the formulation
of the lowest moments (2.58)–(2.60) of the Boltzmann equation and the transport
closure relations indicated in Eqs. (2.64). In this manner, a system of two-fluid
equations is obtained describing the plasma dynamics in terms of the ten vari-
ables ne,i , ue,i , Te,i . To justify such a fluid description, the electrons and ions must
undergo frequent collisions to establish the separate electron and ion fluids. Trans-
port theory provides the quantitative criterion for the time scale τH on which the
hydrodynamic description is valid, compared to the collisional relaxation times τe

and τi of the electrons and ions:

τH � τi

[
� τe

]
. (2.109)
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Fig. 2.8. Different theoretical plasma models and their connections.

The explicit expressions for τe and τi may be found in Section 3.2.4 (Eqs. (3.50)
and (3.51), which demonstrate the faster relaxation of the electrons due to the
smallness of the mass ratio: τe/τi ∼ (me/mi )

1/2 � 1). Once more: transport
theory is an enormous field of research by itself, the needed results of which have
been collected in Chapter 3. Here, we just indicate the main line of thought leading
to the fluid description. In particular, from the explicit expressions for τe and τi ,
frequent collisions imply that the plasma densities ne,i should be high enough for
given values of the temperatures Te,i .

(b) Macroscopic scales The plasma dynamics described by the two-fluid equa-
tions still involves the small length and time scales of the fundamental phenomena
we have encountered, viz. the plasma frequency ωpe, the cyclotron frequencies
�e,i , the Debye length λD, and the cyclotron radii Re,i (and also a quantity not yet
encountered, viz. the electron skin depth δe ≡ c/ωpe; see Eq. (3.100)). Therefore,
the essential second step towards the magnetohydrodynamics (MHD) description
of plasmas is to consider large length and time scales:

λMHD ∼ a � Ri , τMHD ∼ a/vA � �−1
i . (2.110)

Here, the magnetic field crucially enters: the larger the magnetic field strength, the
more easily these conditions are satisfied. On these scales, the plasma is considered
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as a single conducting fluid without distinguishing its individual species: the MHD
equations describe the behaviour of the plasma as a whole. Therefore, the dimen-
sion of the plasma appears in the estimate of the length scale and the Alfvén ve-
locity vA (a new fundamental plasma quantity, to be introduced in Section 2.4.2)
appears in the time scale. The derivation of the MHD equations from the two-
fluid equations will be sketched in Section 2.4.1, and presented in full detail in
Section 3.4.

(c) Ideal fluids A third step is to consider the plasma dynamics on time scales
faster than the slow dissipation connected with the decay of the macroscopic vari-
ables, in particular the resistive decay of the magnetic field:

τMHD � τR ∼ a2/η . (2.111)

Here, the actual value of the resistivity given by Eq. (2.65) is so small that the
condition may be satisfied even for the relatively small sizes of fusion machines,
and very easily for the huge sizes of astrophysical plasmas. (Actually, too easily:
a major problem is to find dissipation mechanisms fast enough to explain the on-
set of frequently observed disruptions, like stellar flares.) This condition leads to
the model of ideal MHD: the most robust macroscopic description of magnetized
plasmas. An ideal two-fluid counterpart may also be formulated since the condi-
tion (2.111) is certainly satisfied on the two-fluid time scale when it is satisfied on
the MHD time scale (τH � τMHD).

2.4.1 From the two-fluid to the MHD description of plasmas

To derive the MHD equations, we continue the exposition of Section 2.3.1. Again,
the derivation will omit most of the intermediate steps, which may be found in
Chapter 3. We now specify the plasma to consist of electrons, qe = −e , and one
kind of ion, with qi = Ze. Eqs. (2.58)–(2.60) then give the double set of two-fluid
moment equations, which is closed by the specification of the transport coeffi-
cients, like in Eqs. (2.64). Since macroscopic dynamics on the MHD time scale
is generally much faster than changes due to dissipative transport, as indicated in
Eq. (2.111), we neglect most of the dissipative terms:

πe,i → 0, he,i → 0 (neglect of viscosity and heat flow). (2.112)

However, we still keep the small terms due to momentum transfer and generated
heat associated with resistivity, for reasons explained below, so that

Re = −Ri ≈ eneη j, (2.113)

Qe + Qi = −(ue − ui ) · Re ≈ η|j|2 (scalar resistivity). (2.114)
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From Eqs. (2.58), (2.59) and (2.63), we then get the following set of resistive two-
fluid equations (with α = e for the electrons and α = i for the ions):

∂nα

∂t
+ ∇ · (nαuα) = 0 , (2.115)

nαmα

(∂uα

∂t
+ uα · ∇uα

)
+ ∇ pα − nαqα(E + uα × B) = Rα , (2.116)

∂pα

∂t
+ uα · ∇ pα + γ pα∇ · uα = (γ − 1)Qα . (2.117)

This set is completed by adding Maxwell’s equations (2.13).
Next, we combine the two-fluid equations such that a set of nearly equivalent

one-fluid equations is obtained. This is done by defining macroscopic one-fluid
variables that are linear combinations of the two-fluid variables:

ρ ≡ neme + ni mi (total mass density), (2.118)

τ ≡ −e (ne − Zni ) (charge density), (2.119)

v ≡ (nemeue + ni mi ui )/ρ (centre of mass velocity), (2.120)

j ≡ −e (neue − Zni ui ) (current density), (2.121)

p ≡ pe + pi (pressure). (2.122)

(Notice the new meaning of v, which can now be used without confusion with the
particle velocities since distribution functions will not be used any more in this
chapter.) This implies that no information of the mass and momentum equations is
lost since the one-fluid variables ρ, τ , v, j are just linear combinations of the two-
fluid variables ne, ni , ue, ui . The essential assumption of one-fluid dynamics is that
the temperature equilibration time between electrons and ions is short compared to
other characteristic times, so that Te = Ti . (This assumption presents a significant
simplification of the model, but one has to keep in mind that some plasmas in
nature (e.g. the solar wind) are not adequately described this way.) This implies
that the information on the separate electron and ion temperatures is annihilated so
that there is one variable fewer in one-fluid theory and, hence, one equation fewer
to be solved.

The one-fluid evolution equations are then obtained by operating on the two-
fluid equations (2.115)–(2.117) by adding pairs, multiplied with mass and charge
factors:

me (2.115)e + mi (2.115)i ⇒ ∂ρ/∂t , −e (2.115)e + Ze (2.115)i ⇒ ∂τ/∂t ,

(2.116)e + (2.116)i ⇒ ∂v/∂t , − e

me
(2.116)e + Ze

mi
(2.116)i ⇒ ∂j/∂t ,

(2.117)e + (2.117)i ⇒ ∂p/∂t .
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In principle, this results in a set of one-fluid equations in terms of the variables ρ,
τ , v, j, and p alone. However, to remove all two-fluid variables from the equations
one needs to exploit the inverses of the relations (2.118)–(2.121). These simplify
significantly (see Eqs. (3.132) of Section 3.4.1) if one exploits the approximation

|ne − Zni | � ne (quasi charge-neutrality), (2.123)

which is extremely well satisfied already at the microscopic level, as we have seen
in Sections 1.4.1 and 2.3.2. The resulting one-fluid equations still contain the small
length and time scale phenomena of the two-fluid equations (see Eqs. (3.135)–
(3.139) of Section 3.4.1). Those are removed by the use of two additional approx-
imations:

|ui − ue| � v (small relative velocity of ions and electrons), (2.124)

which implies that the electron skin depth should be small, δe � (me/mi )
1/2, and

v � c (non-relativistic speeds). (2.125)

As a result, the evolution expressions for the variables τ and j disappear.
Combining the one-fluid moment equations thus obtained with the pre-Maxwell

equations (i.e., according to Section 2.2.2, dropping the displacement current and
Poisson’s equation), results in the resistive MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 (continuity), (2.126)

ρ

(
∂v
∂t

+ v · ∇v
)

+ ∇ p − j × B = 0 (momentum), (2.127)

∂p

∂t
+ v · ∇ p + γ p∇ · v = (γ − 1)η|j|2 (internal energy), (2.128)

∂B
∂t

+ ∇ × E = 0 (Faraday), (2.129)

where

j = µ−1
0 ∇ × B (Ampère), (2.130)

E′ ≡ E + v × B = η j (Ohm), (2.131)

and

∇ · B = 0 (no magnetic monopoles) (2.132)

is just an initial condition on Faraday’s law.
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We will have plenty of opportunity to come to appreciate the power of this set of
equations for the description of macroscopic plasma dynamics. For now, it suffices
to make a few remarks.

(a) The momentum equation (2.127) represents balance between acceleration, on
the one hand, and pressure gradient and Lorentz force (per unit volume), on the
other. Additional forces, like the gravitational force Fgrav = ρg , may be put on
the RHS of this equation. In laboratory plasmas, that force is completely negligible
compared to the pressure gradient and the Lorentz force. Note that the Lorentz
force is directed perpendicular to the magnetic field, so that acceleration along
magnetic field lines must be produced by pressure gradients or gravity.

(b) The electric current density j and the electric field E have become secondary
quantities in MHD, to be derived from Ampère’s law and Ohm’s law. Substituting
them in Faraday’s law (2.129) yields the induction equation:

∂B
∂t

= ∇ × (v × B) − µ−1
0 ∇ × (η∇ × B) . (2.133)

This equation couples the dynamics of the magnetic field to that of the plasma
through the velocity term. When v was known, the induction equation could be
used to determine B, where ∇ · B = 0 should be imposed as an initial condition.

(c) The algebraic relation (2.131) between the electric field E and the electric cur-
rent density j is the generalization of Ohm’s law for moving conducting media.
According to this law, j is proportional to the electric field E′ in a frame moving
with the plasma. Many laboratory and astrophysical plasmas are nearly perfectly
conducting, so that

E′ ≡ E + v × B = 0 (perfect conductivity: ideal MHD) (2.134)

almost everywhere. (Also recall from Section 2.2.3 that single particles drift in
such a way that E′ = 0 .) Therefore, the resistive form (2.131) of Ohm’s law is
only needed in regions of high current concentration, which are usually extremely
thin. However, such current sheets do occur and play an important role in models
for the disruptive phenomena mentioned above. That is why we have kept the
term ηj in Ohm’s law. For the same reason, we have kept the term (γ − 1)η|j|2,
representing heating due to Ohmic dissipation, in the energy equation (2.128). This
term is usually very small compared to the terms on the left hand side.

(d) The slow time scale for resistive diffusion of the magnetic field, introduced in
Eq. (2.111), can be estimated from the induction equation (2.133):

τR ∼ µ0l2
0

η
, (2.135)
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where l0 ∼ a is the length scale of gradients. In terms of a representative plasma
speed v0 and length scale l0, the ratio of the magnitudes of the convective and
diffusive terms on the RHS of the induction equation (2.133) is a dimensionless
number,

Rm ≡ µ0l0v0

η
, (2.136)

called the magnetic Reynolds number, in analogy with the Reynolds number
R ≡ v0l0/ν (where ν ≡ µ/ρ is the kinematic viscosity), measuring the relative
importance of inertial and viscous effects in ordinary hydrodynamics. The mag-
netic Reynolds number is a measure of the strength of the coupling between
the flow and the magnetic field. Since η is extremely small for most plasmas
of interest (e.g. tokamaks and the solar corona), Rm � 1 so that this coupling
is very strong and resistive decay is negligible on the time scales specified in
Eqs. (2.111).

The neglect of resistivity, and the substitution of j and E , finally leads to the
ideal MHD equations in their most compact form:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (2.137)

ρ

(
∂v
∂t

+ v · ∇v
)

+ ∇ p − µ−1
0 (∇ × B) × B = 0 , (2.138)

∂p

∂t
+ v · ∇ p + γ p∇ · v = 0 , (2.139)

∂B
∂t

− ∇ × (v × B) = 0 , ∇ · B = 0 . (2.140)

These coupled nonlinear partial differential equations govern the evolution of the
density, the velocity, the pressure and the magnetic field. Their properties and so-
lutions will occupy us for most of the remainder of this book.

2.4.2 Alfvén waves

Let us consider wave propagation in a homogeneous plasma occupying all space,
with a constant magnetic field in the z-direction:

ρ0 = const , v0 = 0 , p0 = const , B0 = B0 ez ⇒ j0 = 0 . (2.141)
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We perturb this plasma with small deviations ρ1, v1, p1, B1 from the background
state. This permits us to linearize the equations (2.137)–(2.140):

∂ρ1

∂t
= −ρ0∇ · v1 , (2.142)

ρ0
∂v1

∂t
= −∇ p1 + µ−1

0 (∇ × B1) × B0 , (2.143)

∂p1

∂t
= −γ p0∇ · v1 , (2.144)

∂B1

∂t
= ∇ × (v1 × B0) , (2.145)

producing a complete set of equations for the unknowns ρ1, v1, p1, and B1 .
Note that the density perturbation ρ1 only appears in Eq. (2.142) so that it need

not be determined to solve the other equations. Moreover, in order to concentrate
on the magnetic effects, let us neglect the equilibrium pressure ( p0 = 0 or, in
terms of the parameter β introduced in Section 2.2.3, β = 0 ) so that Eq. (2.144)
implies that p1 = 0 as well. We then obtain from the remaining Eqs. (2.143) and
(2.145) a wave equation for the velocity v1 :

ρ0
∂2v1

∂t2
= µ−1

0

(
∇ × ∂B1

∂t

)
× B0 = µ−1

0 B0 ×
(

∇ ×
(
∇ × (B0 × v1)

))
.

(2.146)

Inserting plane wave solutions of the form

v1(r, t) = v̂ ei(k·r−ωt) , (2.147)

i.e. replacing ∂/∂t → −iω and ∇ → i k , Eq. (2.146) transforms into an algebraic
eigenvalue equation

−ρ0ω
2 v̂ = −µ−1

0 B2
0 ez ×

(
k ×

(
k × (ez × v̂)

))
. (2.148)

Because the expression on the RHS is a vector ⊥ ez (i.e. ⊥ B0), the immediate
result is that the parallel velocity vanishes: v̂‖ ≡ ez · v̂ = 0 . This leaves two com-
ponents for v̂⊥, which turn out to oscillate independently, each with its own char-
acteristic frequency. The flow fields of the two modes differ with respect to their
direction relative to the plane through k and B0 . To distinguish them, it is conve-
nient to fix the direction of the wave vector k to lie in the x-z plane, as indicated in
Fig. 2.9: k = (k⊥, 0, k‖) . Obviously, this can be done without loss of generality.
Focusing on the most significant branch, viz. the one with a flow velocity per-
pendicular to both k and B0 (i.e. v̂ ∼ k × B0 ), and manipulating with the vector
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Fig. 2.9. Alfvén wave.

products (using Eq. (A.2) of Appendix A), the eigenvalue problem becomes

(ω2 − k2
‖v

2
A) v̂y = 0 , (2.149)

where

vA ≡ B0√
µ0ρ0

(2.150)

is the celebrated Alfvén velocity. Hence, one obtains the two Alfvén waves, discov-
ered by Alfvén in 1942 [5], with frequency

ω = ±ωA , where ωA ≡ k‖vA = k · B/
√

µ0ρ0 , (2.151)

and phase velocity vA, corresponding to waves that run along the magnetic field to
the right (+) or to the left (−).

� Magneto-sonic waves. For ω = 0 , an extra solution is obtained, viz. the remnant of
the slow magneto-sonic mode, with v̂‖ �= 0. Another branch, ω2 v̂x = (k2

⊥ + k2
‖)v

2
A v̂x ,

represents degenerate fast magneto-sonic waves which, accidentally, also propagate with
the Alfvén speed. These waves are not well described here since the pressure has been
neglected. They will be discussed more extensively later (in Chapter 5). �

The Alfvén waves are caused by tension of the magnetic field lines, which tends
to restore the initial shape (as schematically indicated in Fig. 2.9). Another impor-
tant aspect of the macroscopic MHD waves is that their frequency depends on the
value of the wave vector k, i.e. on the wavelength, in contrast to the microscopic
plasma oscillations with the plasma frequency (2.73), which is independent of
the wavelength. This points to an extremely significant property of Alfvén waves,
and of MHD perturbations in general: the slowest of them have the longest wave-
lengths and, hence, they sample the magnetic field in the large, i.e. they ‘feel’ the
global magnetic geometry. Of course, infinite homogeneous plasmas do not have
a particularly interesting magnetic geometry. However, when the magnetic field
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is bent into the relevant shape for plasma confinement, e.g. a torus, this property
survives: Alfvén waves carry the information of the overall magnetic geometry.

Inserting numbers for a typical tokamak experiment, viz. n = 1020 m−3 , B =
3 T , so that ρ = nmi = 1.7 × 10−7 kg m−3 , we obtain a phase velocity

vA ≈ 6 × 106 m s−1

(rather fast, but still non-relativistic: only 2% of the velocity of light). For long
wavelengths, e.g. λ‖ = 20 m (≈ 2π R for a torus with major radius R ≈ 3 m), so
that k‖ ≡ 2π/λ‖ ≈ 0.3 m−1, this gives an Alfvén frequency of

ωA = k‖vA ≈ 1.8 × 106 s−1 .

Hence, with wavelengths of the order of the size of the confinement experiment,
we are now on the µsec time scale: τ = 2π R/vA = 2π/ωA ≈ 3 µsec.

� Exercise. Consult Table B.5 for corresponding values of a solar plasma. What is the
Alfvén transit time for a solar coronal loop of length L = 100 000 km , n = 1014 m−3 ,
B = 0.003 T ? How does this compare to the ‘times of interest’ indicated in this table?
The latter refer to time scales needed for fusion in tokamaks or typical life times of coro-
nal loops. How do tokamaks compare with coronal loops as far as the number of Alfvén
transit times during that time span is concerned? Also complete the empty column of
Table B.6. �

On the Alfvén transit time scale, the overall magnetic confinement geometry be-
comes ‘known’ to the plasma, which then will exhibit the dynamics corresponding
to the intrinsic stability or instability of the configuration. These possibilities nec-
essarily involve inhomogeneous plasmas with curved magnetic fields. This brings
us to our next topic.

2.4.3 Equilibrium and stability

The basic theoretical approach to plasma confinement for a given magnetic geom-
etry typically consists of, first, fixing an equilibrium state, next, determining the
different kinds of waves produced by perturbing this state, and, finally, finding out
whether amongst those perturbations there are instabilities that would lead to de-
struction of the configuration. We have just encountered an example of the second
topic, viz. Alfvén waves. We will now treat simple examples of the first and last
topic.

Consider an inhomogeneous plasma in static equilibrium, i.e. the fluid is at
rest (v = 0) and all time derivatives in the MHD equations (2.137)–(2.140) van-
ish. In contrast to ordinary hydrodynamics, even this highly idealized situation is
non-trivial because of the possibility of balancing pressure gradients by the Lorentz
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force:

∇ p = j × B . (2.152)

This is the basis of all magnetic confinement systems for controlled thermonu-
clear fusion experiments. (In laser fusion, or inertial confinement experiments, the
inertial forces replace the magnetic ones.) The current, of course, has to satisfy
Ampère’s law

j = µ−1
0 ∇ × B , (2.153)

and the magnetic field should satisfy

∇ · B = 0 . (2.154)

The latter equation is no longer an initial condition now, but it remains a restriction
on the kind of vectors that qualify as magnetic fields. These are the equations which
the variables p, j, and B have to satisfy in order to produce a static equilibrium
state.

(a) Equilibrium of a z-pinch As an example of a simple equilibrium, consider a
cylindrical plasma column with a strong electric current. This current creates a
magnetic field, resulting in a force j × B directed radially inward: the pinch effect.
On the basis of this effect, two interesting plasma confinement configurations can
be distinguished, viz. the θ - and the z-pinch illustrated in Fig. 1.4. Here, the labels
θ and z refer to the direction of the current in the cylindrical coordinate repre-
sentation of the plasma column. As we have seen in Section 1.2.3, both types of
configurations have been considered in the early days of nuclear fusion research,
both without success, at least in their pure form, but the concepts remain important
because they represent the basic forces in plasma confinement.

For the z-pinch in cylinder geometry (current in the z-direction, magnetic field
in the θ -direction, gradients in the r -direction; see Fig. 2.10) the equilibrium equa-
tions (2.152)–(2.154) reduce to

dp

dr
= − jz Bθ , and jz = 1

µ0r

d

dr
(r Bθ ) . (2.155)

This gives the following relationship between the pressure profile p(r) and the
magnetic field profile Bθ (r) :

dp

dr
= − Bθ

µ0r

d

dr
(r Bθ ) . (2.156)

This is the only restriction on these profiles as far as the equilibrium is concerned.
We are free to choose e.g., for simplicity, a constant current profile jz = const.
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Fig. 2.10. Radial distributions of current density, magnetic field and pressure in
a z-pinch.

This choice determines the other profiles:

Bθ = 1
2µ0r jz , and p = pc(1 − r2/a2) , pc ≡ 1

4µ0a2 j2
z , (2.157)

where a is the radius of the plasma cylinder.
The plasma cylinder may be surrounded by a vacuum with a magnetic field B̂ ,

satisfying ∇ × B̂ = 0 , ∇ · B̂ = 0 , so that ĵz = 0 and B̂θ (r) = Bθ (a) a/r there.
Obviously, this radially decaying magnetic field is produced by the total current
Iz flowing within the plasma interval 0 ≤ r ≤ a. Finally, the configuration may be
closed off by putting a perfectly conducting wall at some radius r = b . The central
pressure pc is related to the total current Iz :

Iz = πa2 jz , so that pc = µ0 I 2
z

4π2a2
. (2.158)

Inserting typical numbers for the early laboratory pinch plasmas, viz. n =
1022 m−3 (i.e. two orders higher than present-day tokamaks), T = 108 K, a =
0.1 m, we find

pc = nkT = 1.38 × 107 N m−2 (= 136 atm !) ,

Iz = 2πa(pc/µ0)
1/2 = 2.1 × 106 A ,

Bθ = µ0 Iz/(2πa) = 4.2 T (= 42 kgauss) .

Although these currents and fields are quite large and exert huge pressures, they
were already well within reach of the technology of the 1950s: a thermonuclear
reactor by just passing a current through a linear plasma column?

(b) Kink instabilities In Section 2.4.2, we found the frequency of Alfvén waves for
a homogeneous plasma with straight magnetic field lines. However, for the z-pinch
equilibrium, the field lines are curved. Consequently, the analysis of the dispersion
equation is significantly more complicated. We will not enter that analysis here
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Fig. 2.11. External kink instability of a z-pinch.

since it will be the subject of Chapter 9, but just indicate a result that is relevant
to the present discussion. Amongst the normal mode solutions ∼ exp[i(mθ + kz −
ωt)] of the cylindrical configuration there are some ‘Alfvén’ waves, with low mode
number m (typically m = 1), that have a complex frequency (ω2 < 0 ) so that they
are exponentially growing. These modes are called kink instabilities because of
the associated helical deformation of the plasma column. For wavelengths k−1

z �
a, the expression for their growth rate demonstrates the cause of the instability,
viz. the curved magnetic field component Bθ (a) at the plasma edge:

ω2 ≈ − B2
θ (a)

2µ0ρ0a2 . (2.159)

As illustrated by Fig. 2.9, the magnetic force F = j1 × B0 in the RHS of
Eq. (2.143) is opposite to v1 in the case of genuine Alfvén waves. Hence, this
force is restoring, i.e. stabilizing (the effect counteracts its cause). However, in the
case of a z-pinch equilibrium there is an extra term j0 × B1, due to the plasma
current, which points in the same direction as v1 so that it is destabilizing (the
effect enhances its cause). That term involves the detailed distribution of the mag-
netic field Bθ in the plasma (r ≤ a) and the surrounding vacuum (r > a) shown in
Fig. 2.10. For the latter reason, these modes are called external kink instabilities.

The mechanism of the external kink instability can easily be illustrated from the
similar situation of a current carrying wire. Here, a helical deformation of the wire
tends to be magnified due to the compression of the field lines on the inside and
expansion on the outside bends of the deformation. The net result is an unbalanced
increase of the magnetic pressure B2/(2µ0) on the inside as compared to the out-
side bends (see Fig. 2.11). This is fatal for the z-pinch since time scales for the
instability are of the same order of magnitude as the time scale of Alfvén waves,
viz. microseconds, whereas at least seconds are needed for thermonuclear ignition.
That answers the question posed above: no simple fusion reactor is obtained this
way: no free rides in science and technology!

For thermonuclear confinement, this is the first reason that something more
clever had to be done than just a straight z-pinch. Here, the long history of
thermonuclear research starts: the next step was the linear θ -pinch, which was
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equally disastrous because of the open ends. Success gradually came when these
two concepts were combined in the tokamak (illustrated in Fig. 1.4).

How is a violent instability like the external kink mode remedied in a toka-
mak? For a change, this turned out to be quite simple. The cylinder is replaced
by a torus and, since kink modes are long wavelength instabilities, the parameters
may be chosen such that the range of unstable wavelengths simply does not fit in
the torus. This leads to the famous Kruskal–Shafranov condition for external kink
mode stability, which puts a limit on the total plasma current:

Iz(a) <
2πa2 Bz

µ0 R0
. (2.160)

Notice that this requires a contribution of the θ -pinch concept: a stabilizing ‘back-
bone’ of longitudinal magnetic field Bz is necessary. As is evident from this ex-
pression, a z-pinch (Bz = 0) does not have a stable range of the current.

The Kruskal–Shafranov condition can also be written in terms of the ‘safety
factor’ q(a) . This concept is easily understood by considering a double periodic
cylinder (periodic in θ with period 2π and in z with period 2π R0) as a mathe-
matical model for a torus with an inverse aspect ratio ε ≡ a/R0. The physical
justification of such a model is that it provides a first approximation to a genuine,
but slender (ε � 1 ), torus which neglects the toroidal curvature but accounts for
the more important toroidal periodicity. The cylindrical helical magnetic field B =
Bθ (r)eθ + Bz(r)ez then provides a model of nested magnetic surfaces (cylinders
of radius r ≤ a and length 2π R0) with field lines having a pitch that is constant
on each surface, but varies from surface to surface. This may be visualized by
unrolling one of the cylinders (Fig. 2.12). The parameter q(r) is defined as the
inverse of the pitch of the field lines with a normalization chosen such that q = 1

0

B

2 π r

2 π R0

q . 2 π R0

a b

Fig. 2.12. ‘Safety factor’ in periodic cylinder model of a toroidal plasma:
(a) field line with q < 1; (b) rational field line with q = 3/2.
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corresponds to a topology where the field lines close upon themselves after one
revolution the short way and one revolution the long way around the torus:

q(r) ≡ r Bz(r)

R0 Bθ (r)
= 2πr2 Bz(r)

µ0 R0 Iz(r)
. (2.161)

Hence, the Kruskal–Shafranov limit can be expressed as q(a) > 1. This acciden-
tal agreement with an integer value is rather unfortunate since it has led to many
erroneous statements in the literature about this limit being connected with ratio-
nal field lines ‘biting’ in their own tail. Actually, this has nothing to do with the
external kink mode mechanism, which is driven by the total plasma current Iz(a)

creating a curved magnetic field Bθ (a) on the outside of the plasma column. In
fact, in more general configurations, like a genuine torus with non-circular cross-
section, the external kink mode is no longer associated with integer values of q(a).

Curing the remaining instabilities (the internal ones, not perturbing the vacuum
magnetic field) was not so simple. Here, rational values of the safety factor do play
an important role since most internal instabilities are localized about rational field
lines and surfaces where q = −m/n, when m and n indicate the mode numbers in
the periodic directions (see Fig. 2.12(b)). This has led to a long period of steady
experimental trial and error, eventually leading to confinement on the second and
even minute time scales in the last part of the twentieth century.

2.5 In conclusion

In this chapter, we have introduced the three main theoretical approaches of plas-
mas, viz. the theory of single particle motion in prescribed electric and magnetic
fields, the kinetic theory of collections of many such particles (with roughly equal
numbers of the opposite charges), and the theory of magnetohydrodynamics per-
taining to the global macroscopic aspects of the dynamics of plasmas in complex
magnetic field geometries. We have also considered a sample of the many different
dynamical phenomena associated with these theoretical models. Three effects were
encountered which give plasmas the coherence that is necessary for thermonuclear
confinement of laboratory plasmas and which is also characteristic for magnetized
plasmas encountered in nature.

(a) Within the single particle picture, we found that particles of either charge stick to the
magnetic field lines by their gyro-motion restraining the perpendicular motion.

(b) Because of the large electric fields that occur when electrons and ions are separated,
deviations from charge neutrality can occur only in very small regions (of the size
of a Debye length). Over larger regions, ions and electrons stay together to maintain
approximate charge neutrality.
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(c) In the fluid picture, it was found that currents in the plasma create their own magnetic
field, pinching the plasma, and that Alfvén waves act as a restoring agent on magnetic
field distortions. However, we also encountered the first effect destroying the coherence
of plasmas, viz. the global external kink instability.

In the next chapter, we delve more deeply in the kinetic theory aspects (loosely
considering two-fluid theory also under this heading, although it is strictly a fluid
theory, because of the microscopic scales involved). The exposition of MHD is
continued in Chapter 4.

2.6 Literature and exercises

Notes on literature

The list below is a very limited choice from the numerous books and articles on the
topics introduced in this chapter, which are discussed in all textbooks on plasma
physics.

Basic texts on classical mechanics and electrodynamics:

– Goldstein, Classical Mechanics [91].
– Jackson, Classical Electrodynamics [117].

Single particle motion:

– Chen, Introduction to Plasma Physics [53], Chapter 2 on single particle motions
(elementary).

– Sturrock, Plasma Physics [221], Chapters 3–5 on orbit theory and adiabatic invariants
(intermediate).

– Northrop, The Adiabatic Motion of Charged Particles [169]: a whole monograph on
adiabatic motion of charged particles (advanced).

– Balescu, Transport Processes in Plasmas [14], Chapter 1 on modern developments
in Hamiltonian mechanics of charged particles (advanced).

Kinetic theory and Landau damping:

– Bittencourt, Fundamentals of Plasma Physics [31], Chapters 5–8 on kinetic theory
and the derivation of macroscopic equations, Chapter 18 on waves in hot plasmas
with Landau damping (elementary).

– Goldston & Rutherford, Introduction to Plasma Physics [92], Chapters 22–24 on
kinetic theory and Landau damping (elementary).

– Hasegawa & Sato, Space Plasma Physics [106], Chapter 1 on the physics of sta-
tionary plasmas with condensed material on motion of charged particles, adiabatic
invariants, kinetic theory, and MHD equations (intermediate).

Fluid theory and MHD:

– Freidberg, Ideal Magnetohydrodynamics [72], Chapter 2 on the derivation of the
MHD equations from the Boltzmann equation (intermediate).
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– Roberts, An Introduction to Magnetohydrodynamics [194], Chapter 1 on the MHD
equations as a part of continuum mechanics (intermediate).

– Alfvén’s 1942 paper on the ‘Existence of electromagnetic-hydrodynamic waves’ [5]
is just one column in Nature, with one paragraph on the discovery of Alfvén waves,
that earned him the Nobel prize. The last paragraph, with an application to sunspot
migration, is an unfortunate example (the waves he discovered propagate along the
magnetic field, not across) at a time when solar coronal dynamics was still largely
unknown.

Exercises

[ 2.1 ] Cyclotron motion

We start from the equation of motion for an electron or ion in an electromagnetic field,
with B in the z-direction and E in the (y, z)-plane.

– Write down the component for the motion parallel to the magnetic field. What hap-
pens to electrons when collisions are negligible?

– Now, choose E perpendicular to B and solve the full equation of motion. What is
different compared to a situation with E = 0? Is there an extra velocity component
and, if so, in which direction? Is there a difference between electrons and ions?

– Assume particles with thermal perpendicular speed, vth = (2kT/m)1/2, at room tem-
perature! Calculate the gyro-frequencies and radii for electrons and protons for
B = 1 T. Which particles have the largest gyro-radius? How do they encircle the
field lines?

– For a background density typical of tokamaks, n = 1020m−3, calculate the plasma
frequency and the Debye length. Compare this to the gyro-radius. What do you
conclude?

[ 2.2 ] Drift velocities

Assume we have a cyclotron device with a magnetic field strength of 1 T in the z-direction.
The radius of the device is 2 metres.

– On both sides we put a plate, with a potential difference of +300 V between the right
and left one. Calculate the drift velocities for electrons and protons.

– We remove the plates but take gravity into account. Unfortunately, the apparatus is
old and the magnetic field lines are not vertical any more but slightly tilted, 2◦ to be
specific. What are the drift velocities now? In what direction are they pointing?

[ 2.3 ] Momentum equation

Derive the momentum equation from the Boltzmann equation. (If you want to check your
answer, the complete derivation is given in Section 3.2.2.)

[ 2.4 ] Plasma oscillations

We displace electrons with respect to ions in a cold, unmagnetized, plasma and study the
resulting oscillations from the two-fluid equations and Poisson’s law.

– Give an argument why the ion equations will not play a significant role.
– Since we are left with the electron equations now, linearize them and Poisson’s law

to construct the wave equation for the perturbed density. Assuming harmonic time
dependence, find the frequency of the oscillations. What does it depend on?

– Try to design a device that can measure the background density profile of a plasma.
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[ 2.5 ] Landau damping

What is Landau damping? What are the implications for possible wave motions in a
plasma?

[ 2.6 ] Alfvén waves

We start from the ideal MHD equations (2.137)–(2.140). Assuming a static homogeneous
plasma with a constant magnetic field in the z-direction, perturb all quantities and linearize.

– Consider a low β plasma. What does that mean for the pressure perturbations?
– Find the wave equation for the velocity. Insert plane wave solutions and construct the

eigenvalue equation. What can you say at once about the velocity?
– Choose the k vector in the x-z plane and the velocity in the y-direction. Give the

solutions to the new eigenvalue problem. How many are there?
– What does the Alfvén velocity depend on? Could that be useful for plasma diagnos-

tics?

[ 2.7 ] MHD time scales

Estimate the longest time scale τ2F of the different high frequency waves described by
the two-fluid model. Also estimate the slow diffusion time scale τR of the resistive MHD
model. Use a characteristic length scale l0 for the gradients. Show that the window τ2F �
τMHD � τR easily accommodates Alfvén wave dynamics. Insert numbers for the different
plasmas of Table B.5.

[ 2.8 ] Equilibrium of a plasma cylinder

Consider a cylindrical plasma column in static equilibrium, with a diameter of 2 metres
and carrying a current of 106 A in the z-direction.

– Write down the equations for the pressure, the current density and the magnetic field
in cylindrical coordinates. Determine the number of free profiles and parameters.

– Assuming a constant current density profile, determine the pressure profile and calcu-
late the pressure at the centre of this cylinder. How does it compare with atmospheric
pressures?

[ 2.9 ] Kink instabilities

How is the violent kink instability mechanism of the z-pinch eliminated in a tokamak?
Assuming a ‘straight tokamak’ model of a finite-length periodic cylinder, determine the
limit on the total current from the order of magnitude estimate q = 1 for the ‘safety
factor’.
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‘Derivation’ of the macroscopic equations�

3.1 Two approaches�

There are basically two ways of introducing the equations of magnetohydrody-
namics:

(a) pose them as reasonable postulates for a hypothetical medium called ‘plasma’;
(b) derive them by appropriate averaging of kinetic equations.

Our approach, starting with Chapter 4, is mainly along the lines of the first
method, pioneered by Grad [98, 32] in a series of lecture notes, using physical ar-
guments and mathematical criteria to justify the results. In this chapter, the main
steps of the second method will be discussed and shown to be somewhat unsatis-
factory since they involve a number of approximations that are often difficult to
justify. The reason for going through this analysis anyway is that it provides un-
derstanding of the domain of validity of the MHD description and that it indicates
what kind of modifications are in order when this description fails.

Mathematically inclined readers may skip this digression, where most results
from kinetic theory are not derived but simply stated, and continue reading with
Chapter 4. Also, the serious student of magnetohydrodynamics is advised to turn
to a detailed study of the present chapter only after a first reading of Chapters 4–
11 on basic MHD since the level of this chapter is essentially that of the advanced
theory, but it has been placed here because this is where it logically belongs.

We give a ‘derivation’ of the MHD equations by averaging the kinetic equations
for plasmas. The quotation marks are meant to remind the reader of the embarrass-
ing assumptions that have to be made when starting from kinetic equations and
then averaging them to obtain the transport coefficients and the macroscopic equa-
tions (like in the classics by Chapman and Cowling [52] and Braginskii [41]). The
point is not so much that transport theory is in a poor state (an excellent mono-
graph by Balescu [14] exists), but the justification of local classical transport in the

83
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face of the observed dissipative processes. Nature just appears to mock classical
transport. For example, the very existence of the solar cycle, a magnetohydrody-
namic phenomenon with a period of about 22 years, requires a turbulent resistivity
which is a factor of about 1010 larger than the classical Spitzer value! Clearly, such
order of magnitude ‘anomalies’ cannot be maintained indefinitely in a scientific
enterprise.

3.2 Kinetic equations�

3.2.1 Boltzmann equation�

Recall our introductory exposition in Section 2.3. The plasma is considered as a
collection of charged particles moving in an electromagnetic field E, B. Different
species of particles, specifically ions and electrons, are distinguished by a subscript
α. The electrons and ions are described by time-dependent distribution functions
in six-dimensional phase space:

fα = fα(r, v, t) (α = e, i) . (3.1)

The probable number of particles of species α in the six-dimensional volume el-
ement d3r d3v centred at r, v will then be fα(r, v, t) d3r d3v . The variation in
time of these distribution functions is determined by a Boltzmann equation for
each particle species:

d fα
dt

≡ ∂ fα
∂t

+ v · ∂ fα
∂r

+ qα

mα

(E + v × B) · ∂ fα
∂v

= Cα . (3.2)

Here, E and B consist of contributions of the external fields and of the averaged
internal fields originating from the long-range inter-particle interactions. The RHS
of Eq. (3.2) gives the rate of change of the distribution function due to short-range
binary particle interactions called collisions. Neglect of these collisions leads to
the Vlasov equation, also called the collisionless Boltzmann equation1:

∂ fα
∂t

+ v · ∂ fα
∂r

+ qα

mα

(E + v × B) · ∂ fα
∂v

= 0 . (3.3)

A closed system of equations is obtained by adding Maxwell’s equations to deter-
mine E(r, t) and B(r, t).

At this point, some remarks are in order.

(a) In this chapter, we assume that the plasma consists of electrons and one kind
of ion so that we just have the two distribution functions fe and fi to worry about
(more than enough!). The temperature is assumed to be high enough to have com-
plete ionization, so that ionization, recombination and charge exchange processes

1 Therefore, punned the ‘Boltzmannless’ Boltzmann equation by Rosenbluth.
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no longer occur. We also assume that fusion reactions do not yet occur. There will
be conservation of the total number of each of the two kinds of charged parti-
cles separately. These assumptions can be relaxed, but at the cost of enormously
complicating the analysis by the appearance of even more unknown distribution
functions. However, even with a large fraction of neutral particles present, one still
can show dominance of magnetohydrodynamic processes. Our main interest here
is to exhibit those.

(b) Following standard terminology in plasma physics, the basic kinetic equation
(3.2) has been called the ‘Boltzmann’ equation but it should be stressed that the
expression Cα for the rate of change of the distribution function by collisions is
completely different from the one derived by Boltzmann himself. He was con-
cerned with collisions of neutral particles, generally resulting in large-angle scat-
tering, described by an integral of the product of distribution functions evaluated
for the different relative velocities of the colliding particles. Whereas neutral par-
ticles only collide when they hit each other, charged particles interact through the
long-range Coulomb force. In high-temperature plasmas, most of those scattering
events are small-angle deflections. By judiciously exploiting this feature, Landau
[135] (1936) was able to convert the Boltzmann collision integral into an expres-
sion valid for charged particles: Eq. (3.13) below. The proper way of handling the
statistics of many small-angle deflections is by means of a Fokker–Planck equa-
tion. This was done by Rosenbluth et al. [196] (see also Trubnikov [231]), resulting
in an expression that is equivalent to the Landau form (Eq. (3.16) below): another
example of Landau’s great intuition.

(c) A fundamental assumption for the validity of the Landau collision integral (as
well as the Boltzmann integral) is the dependence on the so-called one-particle
distribution functions fα(r, v, t) alone. These functions express the probability of
finding particles of type α at a certain time at the phase space position r, v. How-
ever, binary collisions essentially depend on the two-particle distribution function,
i.e. on the probability of finding one particle at r1, v1, simultaneous with another
particle at r2, v2, where r1 ≈ r2. The evolution of the one-, two-, and more-particle
distribution functions leads to the BBGKY hierarchy of equations (see, e.g., [238],
[114], [14]). To truncate this infinite set and to reduce the expressions to only in-
volve the one-particle distribution function requires the formulation of a kinetic
regime for weakly coupled plasmas, where the potential energy of the particles
is very small compared to their mean kinetic energy [14]. For the validity of this
regime, the plasma must be not too hot and not too dense (essentially the shaded
region of Fig. 1.9). In conclusion: the three conditions (1.27), (1.28), and (1.30)
of Section 1.4 for collective plasma behaviour should be satisfied to justify a de-
scription of plasmas by means of the Boltzmann equation (3.2) with a Landau-type
collision integral (3.13).
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In order to determine the charges and currents that occur in Maxwell’s equa-
tions we take moments of the distribution functions. The zeroth moment gives the
number of particles of species α per unit volume:

nα(r, t) ≡
∫

fα(r, v, t) d3v (particle density). (3.4)

Exploiting the definition (2.45) for averages, the first moment yields the average
velocity:

uα(r, t) = 〈v〉α ≡ 1

nα(r, t)

∫
v fα(r, v, t) d3v (average velocity). (3.5)

The charge and current density then follow by multiplying with qα and summing
over particle species:

τ(r, t) =
∑
α

qαnα(r, t) (charge density), (3.6)

j(r, t) =
∑
α

qαnα(r, t) uα(r, t) (current density). (3.7)

Since all charges and currents in the plasma are supposed to be free, polarization
and magnetization effects are negligible so that Maxwell’s equations only involve
E and B. In the rationalized mks system of units we then have:

∇ × E = −∂B
∂t

, (3.8)

∇ × B = µ0j + 1

c2

∂E
∂t

, (3.9)

∇ · E = τ

ε0
, (3.10)

∇ · B = 0 , (3.11)

where c = (ε0µ0)
−1/2. In the Vlasov theory of plasmas, Eqs. (3.3)–(3.11) consti-

tute a complete set of equations for the variables fα(r, v, t), E(r, t), and B(r, t).
With collisions, an explicit expression for the collision term on the RHS of

Eq. (3.2) is needed. We decompose this term into contributions Cαβ due to col-
lisions of particles of species α with particles of species β :

Cα =
∑
β

Cαβ , where Cαβ = Cαβ( fα, fβ) . (3.12)

We only consider two kinds of particles, viz. electrons (e) and ions (i), so that
the indices α and β just run over the two values e and i (giving collision terms
Cee, Cei for the electron Boltzmann equation, and Cie, Cii for the ion Boltzmann
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equation). The dependence on fα and fβ in brackets indicates that the collision
operator is a quadratic form where fβ is integrated over velocity space.

We now give the explicit form of the collision operator in terms of the
Landau collision integral (1936) [135]. We suppress the dependence on r and
t in fα(r, v, t) since only operations on the velocity variable occur. The effect on
the distribution function fα(v) of binary collisions with particles of type β is then
expressed by the following integral over velocity space:

Cαβ =
q2
αq2

β

8πε2
0

ln �αβ

∫
1

mα

∂

∂v
·
[
G(v − v′)·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v) fβ(v′)

]
d3v′ ,

(3.13)

where the prime indicates the integration variable. The integrand involves a dou-
ble contraction (defined by a · T · b ≡ ∑

i
∑

j ai Ti j b j for Cartesian components)
with the Landau tensor function of the relative velocity

G(v − v′) ≡ 1

|v − v′|
[
I − (v − v′)(v − v′)

|v − v′|2
]

. (3.14)

It satisfies the useful equality (v − v′) · G(v − v′) = 0 . The Coulomb logarithm
ln �αβ represents the screening of the Coulomb potential in a plasma for volumes
outside a Debye sphere. Since the logarithm strongly suppresses the numerical
dependence on the physical quantities, so that ln �ee ∼ ln �ei ∼ ln �i i , one may
as well drop the subscripts and exploit the simple expression (see Bittencourt [31])
for a plasma with singly charged ions (Z = 1) and equal temperatures (Te = Ti ):

ln � = ln (9ND) = ln
12π(ε0kT )3/2

e3ne
1/2

≈ ln

(
4.9 × 1017 T̃ 3/2

ne
1/2

)
. (3.15)

The value of ln � just ranges from 10 to 30 for plasmas of laboratory and astro-
physical interest. For example, for T̃e = T̃i = 1 keV and n = 1020 m−3, one gets
ln � ≈ 17.7.

By some elementary algebra, the Landau collision integral (3.13) may be trans-
formed into the following form:

Cαβ =
q2

αq2
β

4πε2
0

ln �αβ

m2
α

{
− ∂

∂v
·
[
∂hβ(v)

∂v
fα(v)

]
+ 1

2
∂2

∂v∂v
:

[
∂2gβ(v)

∂v∂v
fα(v)

]}
,

(3.16)

where the Rosenbluth potentials gβ and hβ [196], [231] are defined as integrals of
the distribution function fβ :

gβ ≡
∫

|v − v′| fβ(v′) d3v′ , hβ(v) ≡
(

1 + mα

mβ

) ∫
fβ(v′)

|v − v′| d3v′ . (3.17)
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The two terms of the Fokker–Planck expression (3.16) represent dynamical friction
and diffusion in velocity space, respectively [92].

Apart from its beauty, the symmetric form of the Landau collision operator also
guarantees the satisfaction of the conservation properties (3.18)–(3.22) below, that
are essential for the derivation of macroscopic equations. The generalization by
Balescu [13] and Lenard [141] to include the collective effects of plasma oscilla-
tions leads to a similar form where the tensor G contains an additional summation
over the wave vector k associated with the collective modes.

3.2.2 Moments of the Boltzmann equation�

The fact that the distribution function is a function of seven independent variables
presents formidable complications in the analysis. Since we wish to study plasmas
in complex magnetic geometries, we clearly have to get rid of some of the inde-
pendent variables in order to make progress. The most logical approach is to re-
move the velocity as an independent variable by taking moments of the Boltzmann
equation. This approach will run into the problem of producing an infinite chain of
equations which somehow has to be truncated in order to make sense. At that point
assumptions need to be made that imply restrictions on the domain of validity of
the theory.

The different moments of the Boltzmann equation are obtained by multiplying
the Boltzmann equation (3.2) with powers of v and integrating over velocity space.
In the derivations below, integration by parts will produce surface integrals over a
surface at |v| = ∞. It is assumed that the distribution functions fα(v) → 0 suf-
ficiently rapidly as |v| → ∞, in particular that lim|v|→∞ [g(v) fα(v)] = 0 for all
functions g(v) that appear, so that these surface integrals do not contribute.

For the time being, we do not need to go into the specific form of the collision
term (3.12). It suffices to list a few general properties following from conservation
principles. Since the total number of particles of species α at a certain position is
not changed by collisions with particles of species β (only their velocities change),
we have ∫

Cαβ d3v = 0 (including β = α) . (3.18)

Also, momentum and energy are conserved for collisions between like particles:∫
mαv Cαα d3v = 0 , (3.19)∫

1
2mαv2Cαα d3v = 0 , (3.20)
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whereas for collisions between unlike particles (β 
= α) the following relations
hold: ∫

mαv Cαβ d3v +
∫

mβv Cβα d3v = 0 , (3.21)∫
1
2 mαv2Cαβ d3v +

∫
1
2mβv2Cβα d3v = 0 . (3.22)

Obviously, the Landau form (3.13) of the collision operator should satisfy these
properties and it does (prove!). For a Maxwellian distribution function, as given
by Eq. (2.57), the separate terms of Eqs. (3.21) and (3.22) also vanish. We will
return to this fundamental fact in Section 3.2.3.

We now derive the zeroth moment of the Boltzmann equation (3.2) by just inte-
grating over velocity space. As we have already seen in Section 2.3.1, this results
in the continuity equation for particles of species α :

∂nα

∂t
+ ∇ · (nαuα) = 0 (mass conservation). (3.23)

This is the most robust macroscopic equation since its derivation does not require
any restrictive assumptions on transport coefficients. In brackets we have indicated
the conservation law that is expressed by this equation.

The first moment of the Boltzmann equation (3.2) is obtained by multiplying
Eq. (3.2) by v and integrating over velocity space. This results in the following
terms: ∫

∂ fα
∂t

v d3v = ∂

∂t
(nαuα) ,

∫
v · ∂ fα

∂r
v d3v = ∇ ·

∫
vv fα d3v = ∇ ·

(
nα〈vv〉α

)
,

∫
qα

mα

(E + v × B) · ∂ fα
∂v

v d3v = −qαnα

mα

(E + uα × B) ,

∫
Cαv d3v =

∫
Cαβ v d3v (β 
= α) .

Adding them, we obtain the momentum equation for particles of species α :

∂

∂t
(nαmαuα) + ∇ ·

(
nαmα〈vv〉α

)
− nαqα(E + uα × B) =

∫
Cαβ mαv d3v

(momentum conservation).

(3.24)

Here, new averaged quantities like nα〈vv〉α and the collision term appear that re-
quire further evaluation.
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The final relevant equation is obtained from one of the second moment equa-
tions, viz. the scalar one obtained by multiplying Eq. (3.2) with v2. The following
terms result: ∫

∂ fα
∂t

v2 d3v = ∂

∂t

(
nα〈v2〉α

)
,

∫
v · ∂ fα

∂r
v2 d3v = ∇ ·

(
nα〈v2v〉α

)
,

∫
qα

mα

(E + v × B) · ∂ fα
∂v

v2 d3v = −2
nαqα

mα

E · uα ,

∫
Cαv2 d3v =

∫
Cαβ v2 d3v (β 
= α) .

Multiplying these terms by 1
2 mα and adding them gives the energy equation:

∂

∂t

(
nα

1
2mα〈v2〉α

)
+ ∇ ·

(
nα

1
2mα〈v2v〉α

)
− nαqαE · uα =

∫
Cαβ

1
2mαv2 d3v

(energy conservation).

(3.25)

Again, averages and a collision term appear that require further reduction to really
give a self-consistent macroscopic equation.

This chain of moment equations can be continued indefinitely. As a matter of
fact, each moment introduces a new unknown whose temporal evolution is de-
scribed by the next order moment of the Boltzmann equation. For example, the
zeroth order moment (3.23) is an evolution equation for the particle density nα

and it introduces the average velocity uα as a new unknown; the first order mo-
ment (3.24) then yields an evolution equation for this uα but it contains the un-
known 〈vv〉α , etc. This infinite procedure will have to be truncated at some point to
get a closed set of equations. The ‘art’ of obtaining macroscopic equations resides
in an appropriate closure of the chain at a very limited number of moments. In the
usual fluid theories this number is just five: the (scalar) continuity equation (3.23),
the (vector) momentum equation (3.24), and the (scalar) energy equation (3.25).

3.2.3 Thermal fluctuations and transport�

The derived moment equations (3.23)–(3.25) are the only ones needed here. In
order to turn them into a closed set, a number of assumptions have to be made. Be-
fore we do this it is useful to transform the momentum and energy equation into a
form that has a more macroscopic appearance. To that end, as already discussed in
Section 2.3.1, we separate the effects of thermal fluctuations from the macroscopic
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background, by defining the random velocity ṽα of the particles with respect to the
average velocity uα:

ṽα ≡ v − uα , where 〈ṽα〉 = 0 . (3.26)

The random velocity part of the scalar 〈v2〉α in the energy equation (3.25) then
gives rise to a quantity measuring the mean kinetic energy of the particles in a
frame moving with the velocity uα , which is the temperature Tα :

Tα(r, t) ≡ mα

3k
〈ṽ2

α〉 . (3.27)

Likewise, the random velocity part of the term 〈vv〉α in the momentum equation
(3.24) gives rise to the stress tensor Pα defined as

Pα ≡ nαmα〈ṽα ṽα〉 = pαI + πα , (3.28)

where the isotropic part is directly related to the temperature,

pα(r, t) ≡ 1
3Tr (Pα) = 1

3nαmα〈ṽ2
α〉 = nαkTα , (3.29)

and the traceless tensor πα(r, t) is the contribution due to the anisotropy of the
distribution function:

πα(r, t) ≡ nαmα〈ṽα ṽα − 1
3 ṽ2

αI〉 . (3.30)

Finally, the random velocity part of the vector 〈v2v〉α in the energy equation (3.25)
gives rise to a quantity

hα(r, t) ≡ 1
2 nαmα 〈ṽ2

αṽα〉 , (3.31)

which is the heat flow by random motion of the particles of species α.
The collision terms may also be simplified by transforming to a frame moving

with the velocity uα . From Eq. (3.18) it follows that only the random part con-
tributes to the RHS of the momentum equation (3.24):∫

Cαβ mαv d3v = Rα ≡
∫

Cαβ mα ṽα d3v (β 
= α) , (3.32)

which is the friction force, i.e., the mean momentum transfer from particles β to
particles α. Similarly, the RHS of the energy equation (3.25) may be written as∫

Cαβ
1
2 mαv2 d3v =

∫
Cαβ

(
mαuα · ṽα + 1

2mαṽ2
α

)
d3v = uα · Rα + Qα ,

(3.33)
where

Qα ≡
∫

Cαβ
1
2mαṽ2

α d3v (β 
= α) (3.34)
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is the heat transferred to the system of particles α due to collisions with the unlike
particles β.

Whereas the mass conservation equation (3.23) already has the required macro-
scopic form, the momentum and energy conservation equations (3.24) and (3.25)
still need further transformation. Substituting the definitions (3.27)–(3.34), they
become

∂

∂t
(nαmαuα) + ∇ · (nαmαuαuα) + ∇ · Pα − nαqα(E + uα × B) = Rα,

(3.35)

and
∂

∂t

(
1
2 nαmαuα

2
)

+ ∂

∂t

(3

2
nαkTα

)
+ ∇ ·

(
1
2nαmαuα

2uα + 3

2
nαkTαuα

+ uα · Pα + hα

)
− nαqαE · uα = uα · Rα + Qα . (3.36)

The momentum equation (3.35) may be simplified by using the continuity equation
(3.23) to remove contributions ∂nα/∂t , whereas the energy equation (3.36) may be
simplified by removing the bulk kinetic energy part by means of Eqs. (3.23) and
(3.35). The three lowest moments of the Boltzmann equation then take the compact
form(

∂

∂t
+ uα · ∇

)
nα + nα∇ · uα = 0 (mass), (3.37)

nαmα

(
∂

∂t
+ uα · ∇

)
uα + ∇(nαkTα) − nαqα(E + uα × B)

= −∇ · πα + Rα (momentum), (3.38)

3

2
nα

(
∂

∂t
+ uα · ∇

)
kTα + nαkTα∇ · uα

= −πα : ∇uα − ∇ · hα + Qα (heat), (3.39)

which we already encountered in Section 2.3.1. They constitute the equations of
continuity, motion and heat balance for particles of species α. It will not have
escaped the attentive reader that apparent progress has been made by just hiding
the problems in simple looking variables that are abbreviations of intricate kinetic
processes. Clearly, we need substantial additional information concerning the vari-
ables πα , hα , Rα and Qα to be able to express them in terms of the macroscopic
variables nα , uα , Tα and the electromagnetic fields E, and B, to really close the
set of macroscopic equations (3.37)–(3.39) so that they become genuine hydrody-
namic equations. Such information comes from transport theory.

An important equilibrium distribution function in kinetic theory, conforming to
the temperature definition (3.27), is the Maxwell distribution already introduced in
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Eq. (2.57), which we here repeat for convenience:

f 0
α (r, v, t) = nα

(
mα

2πkTα

)3/2

exp

(
−mαṽ2

α

2kTα

)
, ṽ2

α ≡ |v − uα|2 . (3.40)

This function represents local thermal equilibrium: it just depends on the local
values of the macroscopic variables nα(r, t), uα(r, t), Tα(r, t) which are sup-
posed to evolve according to the hydrodynamics equations, that are still to be
derived by the appropriate closure of Eqs. (3.37)–(3.39). Substitution of f 0

α in
the definitions (3.30) and (3.31) for the anisotropic pressure tensor and the heat
flow gives πα[ f 0

α ] = 0 and hα[ f 0
α ] = 0 . Moreover, due to the equality below

Eq. (3.14), the Landau collision integral vanishes for like-particle collisions of
Maxwellian particles: Cαα( f 0

α , f 0
α ) = 0 . If the average velocities and the temper-

atures were equal, i.e. uα = uβ (no electric current!) and Tα = Tβ , the collision in-
tegral for unlike-particle collisions would vanish as well, Cαβ( f 0

α , f 0
β ) = 0 , so that

also the momentum transfer and the heat transfer would vanish: Rα[ f 0
α , f 0

β ] = 0

and Qα[ f 0
α , f 0

β ] = 0 . Under these circumstances, the two sets of hydrodynamical
variables evolve according to the equations (3.37)–(3.39) with vanishing RHSs,
whereas initial charge neutrality and the equality of average velocities and temper-
atures would even remove the separate identities of the electron and ion fluids. If
this state were established on a collision time scale, thermonuclear fusion would
be impossible and most interesting plasma-astrophysical phenomena would not
occur. However, the global boundary conditions on the hydrodynamical variables
constantly drive the system away from this state of equilibrium and collisions es-
tablish a state of quasi-equilibrium with non-vanishing dissipative quantities πα ,
hα , Rα , and Qα that are due to the systematic deviations from Maxwellian dis-
tributions f 0

α and f 0
β . Transport theory is concerned with the analysis of these

deviations from the state of local thermodynamic equilibrium.
The fundamentals of classical transport theory are clearly explained in the semi-

nal paper by Braginskii [41]. Here, we follow the theoretical framework expanded
by Balescu [14] since it is more general and incorporates later developments in
transport theory. While it is impossible to do justice to the diversity and beauty of
this field, we just collect the results needed for our present purpose, in particular the
relaxation processes (Section 3.2.4) and the transport coefficients (Section 3.3.2).
For full details the reader is referred to the quoted references.

To analyse the consequences of deviations from local thermodynamic
equilibrium, the distribution functions are developed in powers of some small pa-
rameter (to be specified in Section 3.2.4) measuring these deviations (called the
Chapman–Enskog procedure [52]):

fα ≈ f 0
α + f 1

α , where | f 1
α | � f 0

α . (3.41)
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It is expedient to extract a factor f 0
α from f 1

α ,

fα(v; r, t) ≈ f 0
α (v; r, t) [ 1 + χα(v; r, t) ] , (3.42)

so that the deviations from the local Maxwellians are now given by the functions
χα . These functions can be normalized such that nα , uα , and Tα not only mea-
sure the average with respect to the Maxwellian f 0

α but also with respect to the
full distribution function fα . In the representation of Balescu, χα is systematically
expanded in irreducible tensorial Hermite polynomials H (···)··· (wα) in the dimen-
sionless fluctuating velocity variable wα ≡ (2kTα/mα)−1/2 ṽα:

χα(wα; r, t) =
∞∑

n=1

[
h̄(2n+2)

α H (2n+2) + h̄(2n+1)
α · H(2n+1) + h̄(2n)

α : H(2n) + · · ·
]
,

(3.43)
where the three indicated terms represent the scalar, vector and traceless second
rank tensor contributions, respectively. The expansion coefficients are the un-
known dimensionless Hermitian moments h̄(···)

α··· (r, t). The lowest order ones corre-
spond to the anisotropic pressure, πα ≡ 21/2 nαkTα h̄(2)

α , and the heat flow, hα ≡
(5/2)1/2 nαmα(kTα)3/2 h̄(3)

α . The program of transport theory now consists of sub-
stituting (3.43) in the Boltzmann equation (3.2) and solving for the Hermitian mo-
ments. This results in closure of the hydrodynamic equations.

The expansion (3.43) may be truncated at different levels, where the number
of moments kept will determine the accuracy. For example, the thirteen moment
(13M) approximation just keeps the five plasmadynamical moments nα , uα, Tα,
the three components of the heat flow vector hα , and the five independent com-
ponents of the anisotropic pressure tensor πα . The 21M approximation adds the
three components of the fifth order Hermitian moment h̄(5)

α and the five compo-
nents of the fourth order Hermitian moment h̄(4)

α , etc. In this manner, a general
framework of transport theory is constructed that may be, and has been, used to
extend the classical transport theory to incorporate the effects of particle orbits in
toroidal geometry (called the neo-classical transport theory, initiated by Galeev
and Sagdeev [77]) and, currently, also turbulent effects (leading to anomalous
transport). Balescu [14] demonstrates that the classical transport coefficients in
the 21M approximation agree to within 1% with the ones obtained much earlier by
Braginskii [41] by a very different representation, but it deviates in some important
aspects of the interpretation (see Section 3.3.2).

3.2.4 Collisions and closure�

So far, the Hermitian moment expansion is just a formal representation. To actu-
ally calculate the moments, the specific properties of the collision operator need
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to be exploited. At this point, the nice symmetry of the Landau collision operator
with respect to electrons and ions should be taken for granted and, instead, the
consequences of the smallness of the mass ratio,

me/mi � 1 , (3.44)

should be utilized. This condition implies that typical ion velocities are much
smaller than typical electron velocities, so that the ion distribution fi (v) is a much
narrower function than the electron distribution fe(v). Consequently, e.g. in the
electron–ion collision integral Cei ( fe, fi ), there is only interaction over a limited
range of velocities, so that the Landau tensor G(v − v′) can be expanded in pow-
ers of |v′ − ue|/|v − ue|, giving significant contributions only for the lowest order
terms. Systematically exploiting such asymmetries between electron and ions, the
expressions for the linearized collision integrals may be grouped as follows.

(a) The electron ion collision integral splits in two contributions, where we only in-
dicate the most important term representing pitch angle scattering of the electrons
on the heavy, virtually immobile, ions in thermal equilibrium:

Cei ( fe, fi ) ≈ Cei ( f 1
e , f 0

i ) + Cei ( f 0
e , f 1

i ) ≈ νei (we)Le( f 1
e ) + · · · . (3.45)

The electron–ion collision frequency,

νei ≡ 3
√

π

4w3
e

τ−1
e , (3.46)

involves the relaxation time τe, defined below in Eq. (3.50), and the operator

Le ≡ 1
2

∂

∂we
·
(
w2

e I − wewe

)
· ∂

∂we
(3.47)

is due to the mentioned expansion of the Landau tensor.
Like-particle collisions require a different expansion. The dominant contribu-

tion of the resulting electron–electron collision integral reads:

Cee( fe, fe) ≈ Cee( f 1
e , f 0

e ) + Cee( f 0
e , f 1

e ) ≈ νee(we)Le( f 1
e ) + · · · . (3.48)

The electron–electron collision frequency,

νee ≡ 3
√

π

4w3
e

H(we) (Zτe)
−1 , (3.49)

involves the same relaxation time τe as the electron–ion collision frequency, but it
also depends on the Chandrasekhar function H(we), which is a smoothly increas-
ing function from H(0) = 0 to H(∞) = 1. Hence, νee is of the same order as νei ,
but always numerically smaller. Since Ce = Cee + Cei , the expressions (3.45) and
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(3.48) should be added so that the two collision processes, represented by the fre-
quencies νei and νee, both contribute to the relaxation to an electron fluid on the
time scale

τe ≡ 6π
√

2πε2
0

m1/2
e (kTe)

3/2

ln �Z2e4ni
≈ 1.09 × 1016

ln �

T̃ 3/2
e

Zne
. (3.50)

On this time scale, the electron fluid is established, i.e. the collection of electrons
relaxes to its state of near local thermodynamic equilibrium. Recall that ln � ≈
17.7 for laboratory plasmas with T̃e = 1 keV and n = 1020 m−3, so that a typical
value of τe ≈ 6.1 × 10−6 s is obtained for those plasmas.

(b) In the case of ions, Ci = Cii + Cie, but the two collision processes do not oper-
ate on the same time scale. The effect of scattering of ions on electrons, represented
by Cie, is negligible (i.e. an order (me/mi )

1/2 smaller) on the ion relaxation time
scale. Hence, the dominant process is represented by the ion–ion collision integral
only:

Cii ( fi , fi ) ≈ Cii ( f 1
i , f 0

i ) + Cii ( f 0
i , f 1

i ) ≈ νi i (wi )Li ( f 1
i ) + · · · , (3.51)

where the operator Li is defined as in Eq. (3.47) with we replaced by wi . The
ion–ion collision frequency,

νi i ≡ 3
√

π

4w3
i

H(wi ) τ−1
i , (3.52)

involves the ion relaxation time τi and the Chandrasekhar function H(wi ). Due to
the ion–ion collisions, relaxation to an ion fluid proceeds on the time scale

τi ≡ 6π
√

2πε2
0

m1/2
i (kTi )

3/2

ln �Z4e4ni
≈ 4.66 × 1017

ln �

A1/2T̃ 3/2
i

Z 3ne
. (3.53)

On this time scale, the ion fluid is established, i.e. the collection of ions relaxes to
its own state of near local thermodynamic equilibrium. For a laboratory hydrogen
plasma with T̃i = 1 keV and n = 1020 m−3, a typical value of τi ≈ 2.6 × 10−4 s is
obtained. If Ti ∼ Te, due to the smallness of the mass ratio, τe/τi ∼ (me/mi )

1/2 �
1, so that the ions relax much slower than the electrons.

(c) Finally, the most important part of the ion–electron collision integral is due to
a non-vanishing contribution from the two Maxwellians f 0

i and f 0
e :

Cie( f 0
i , f 0

e ) ≈ τ−1
eq

(
1
2 Z

∂

∂wi
· wi f 0

i + 1
4

me

mi

∂

∂we
· ∂

∂we
f 0
e

)
+ · · · . (3.54)
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This process proceeds on the temperature equilibration time scale, which is the
longest relaxation time scale:

τeq ≡ mi

2me
τe . (3.55)

On this time scale a fluid with equal electron and ion temperatures is established.
Again, for the mentioned laboratory plasma, a typical value of τeq ≈ 5.6 × 10−3 s
is obtained.

Next, having obtained the collisional expressions, the two linearized Boltzmann
equations for f 1

e and f 1
i are solved to produce the closure relations. Exploiting the

Hermitian expansion (3.43), these relations take the form of evolution equations
for the non-plasmadynamical moments h̄(···)

α··· (r, t) connecting them to the hydrody-
namical sources, i.e. the gradients of ne,i , ue,i , Te,i and the fields E and B. The lat-
ter are obtained from the hydrodynamical equations (3.37)–(3.39), neglecting the
RHSs, and Maxwell’s equations (3.6)–(3.11). At this point, a crucial distinction
is to be made between the relaxation time scales τe,i of the non-plasmadynamical
moments and the hydrodynamical evolution time scale τH of the hydrodynamical
variables. In order for this split to make sense at all, we should have τe,i � τH.
Hence, the small parameter that was implicit in the approximations (3.42) for χe

and χi can now be specified:

εe ≡ τe/τH � 1 , εi ≡ τi/τH � 1 . (3.56)

Usually, τe � τi , so that the second restriction is the most severe one. This implies
that ion relaxation should proceed faster than hydrodynamic evolution, whereas
temperature equilibration might proceed on the hydrodynamical time scale, τeq ∼
τH.

Balescu demonstrates that, under these circumstances, the initial value problem
for the non-plasmadynamical moments h̄(···)

α··· (r, t) has a very simple solution. Due
to the frequent collisions, the system forgets about the initial data after a few re-
laxation times so that the ∂/∂t terms may be neglected. In effect, the system tends
towards a state where the non-plasmadynamical moments are linearly related to
the hydrodynamical variables: closure! The resulting relations are just four (two
for the electrons and the ions times two for the vectors and the tensors) uncoupled
sets of algebraic equations relating the thermodynamic fluxes to the sources. They
are explicitly listed in Section 3.3.2 for the simplified case of singly charged ions
(Z = 1) and large magnetic field,

�eτe  1 , �iτi  1 , (3.57)

in the 21M approximation. The latter conditions are not required for the trans-
port coefficients derived by Balescu, but they greatly simplify the expressions.
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Moreover, they are easily satisfied for cases of interest: �eτe ≈ 3.2 × 106, �iτi ≈
7.5 × 104 for tokamak plasmas with T̃i = 1 keV, and �eτe ≈ 1.0 × 108, �iτi ≈
2.4 × 105 for coronal loop plasmas with T̃i = 0.1 keV (exploiting the values of
Table B.3).

Unfortunately, the numerical values just given also reveal the tremendous re-
strictions imposed by the conditions (3.56), in particular for laboratory fusion plas-
mas (see Freidberg [72]). Exploiting the Alfvén wave crossing time τA ≡ vA/L
along the plasma as a measure for τH, these conditions become

εe ≡ τevA

L
� 1 , εi ≡ τivA

L
� 1 . (3.58)

Inserting the numerical values of Table B.5, and even lowering the temperature
for tokamaks to T̃ = 1 keV, we get εe = 2 and εi = 87; not small at all! On the
other hand, for astrophysical plasmas, the occurrence of L in the denominator
completely saves the day: εe = 1.3 × 10−5 and εi = 5.3 × 10−3 for coronal loops
with T̃ = 0.1 keV. Of course, the choice of large L is not an available option in
fusion research since the size of plasma confinement devices is determined by
economical considerations, not by theoretical convenience.

Some comments are in order. (1) MHD fusion theory is not concerned about
Alfvén wave propagation on the µsec time scale, but with the much slower resid-
ual instabilities (left after considerable experimental effort to eliminate the fastest
ones) growing on the msec time scale. The description of these phenomena brings
in small geometrical factors increasing the effective value of τH . (2) Neo-classical
transport theory, incorporating the effects of particle trapping in toroidal magnetic
fields [77], brings in similar geometrical factors that reduce the effective value of
the relaxation times τe and τi . (3) Usually, nature produces turbulent transport
processes that completely swamp the classical ones so that the concern is not so
much satisfaction of the conditions (3.56), but finding regimes where anomalous
transport is sufficiently reduced to make fusion possible. (4) Of course, the op-
tion always remains open to exploit one of the hybrid models, e.g. with a fluid
description for the electrons but a kinetic description for the ions.

With this caveat, we just proceed on the basis of classical transport theory, ob-
serving that asymptotic results from a rigid theoretical framework frequently re-
main valid far outside the strict domain of validity.

3.3 Two-fluid equations�

3.3.1 Electron–ion plasma�

We now collect the two-fluid equations for a plasma consisting of electrons,
qe = −e , and one kind of ion with charge number Z , qi = Ze . From the moment
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equations (3.37)–(3.39) a double set of equations for the electrons and ions is ob-
tained, where the explicit expressions for the RHS quantities πe,i , he,i , Re,i , and
Qe,i in terms of the macroscopic variables are listed in Section 3.3.2. The latter
two pairs of quantities are not independent because of the momentum and energy
conservation properties (3.21) and (3.22) of unlike-particle collisions. From mo-
mentum conservation one derives

Re = −Ri , (3.59)

whereas energy conservation, by the use of Eq. (3.33), yields

Qe = −(ue − ui ) · Re − Qi . (3.60)

Consequently, the set of dissipative two-fluid equations becomes(
∂

∂t
+ ue · ∇

)
ne + ne∇ · ue = 0 ,(

∂

∂t
+ ui · ∇

)
ni + ni∇ · ui = 0 , (3.61)

neme

(
∂

∂t
+ ue · ∇

)
ue + ∇ pe + ene(E + ue × B) = −∇ · πe + Re ,

ni mi

(
∂

∂t
+ ui · ∇

)
ui + ∇ pi − Zeni (E + ui × B) = −∇ · πi − Re ,

(3.62)
3

2
ne

(
∂

∂t
+ ue · ∇

)
kTe + pe∇ · ue = −πe : ∇ue − ∇ · he − (ue − ui ) · Re − Qi ,

3

2
ni

(
∂

∂t
+ ui · ∇

)
kTi + pi∇ · ui = −πi : ∇ui − ∇ · hi + Qi ,

(3.63)

where

pe = nekTe , pi = ni kTi . (3.64)

Of course, this set only becomes complete when augmented with Maxwell’s equa-
tions (3.8)–(3.11) with the charge and current density,

τ ≡ −e (ne − Zni ) , j ≡ −e (neue − Zni ui ) , (3.65)

acting as sources.

3.3.2 The classical transport coefficients�

Since the transport closure relations involve vector and tensor expressions with
highly anisotropic coefficients (due to the presence of the magnetic field), it is
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convenient to introduce a notation that highlights these anisotropies. First, associ-
ated with any vector V, we define three auxiliary vectors

V‖ ≡ bb · V , V∧ ≡ b × V , V⊥ ≡ (b × V) × b , (3.66)

where b ≡ B/B is the unit vector in the direction of the magnetic field. Hence,
V ≡ V‖ + V⊥, and V∧ is a vector of length V⊥ but orthogonal to both V and B.
In a projection with respect to a triad of orthogonal unit vectors e1, e2, b, we have
V = (V1, V2, V‖)T, so that the auxiliary vectors are represented by

V‖ = (0, 0, V‖)T , V∧ = (−V2, V1, 0)T , V⊥ = (V1, V2, 0)T . (3.67)

Next, we consider a typical expression ϑ · V, where ϑ is a second rank tensor of
transport coefficients. Symmetry with respect to rotations about the magnetic field
implies that ϑ can only have three independent elements, which we denote by ϑ‖,
ϑ∧and ϑ⊥:

ϑ =

⎛
⎜⎜⎝

ϑ⊥ −ϑ∧ 0

ϑ∧ ϑ⊥ 0

0 0 ϑ‖

⎞
⎟⎟⎠ ⇒ ϑ−1 =

⎛
⎜⎜⎝

ϑ⊥/D ϑ∧/D 0

− ϑ∧/D ϑ⊥/D 0

0 0 1/ϑ‖

⎞
⎟⎟⎠ ,

(3.68)

where D ≡ ϑ2
⊥ + ϑ2∧. (The expression for the inverse tensor ϑ−1 will be needed

below.) One then easily checks that multiplication of the left matrix (3.68) with the
vector V is equivalent to the sum over the three auxiliary vectors (3.66) multiplied
with the three transport coefficients:

ϑ · V =
∑
λ

ϑλVλ (λ = ‖ , ∧ , ⊥) . (3.69)

Thus, the tensor expressions are conveniently compressed by this notation.
We now list the electron vector transport coefficients under (a) and the elec-

tron tensor coefficients under (d). Recall that these coefficients are established on
the time scale τe. The ion vector and tensor coefficients, established on the time
scale τi , are listed under (b) and (d). The expression for the heat transfer from the
electrons to the ions, established on the time scale τeq, is given under (c).

(a) Electron electrical and thermal coefficients The expressions for the electron
electrical and thermal transport coefficients are the most interesting ones since they
exhibit the characteristic Onsager symmetry of the transport matrix, relating ther-
modynamics fluxes and forces in non-equilibrium thermodynamics. In Balescu’s
treatment, the current density j and the electron heat flow he are considered
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as the fluxes that are driven by the modified electric field, Ê ≡ E + ui × B +
(ene)

−1∇(nekTe), and the negative gradient of the electron temperature, −∇(kTe):

j = σ · Ê − α · ∇(kTe) , (3.70)

he = kTe α · Ê − κe · ∇(kTe) . (3.71)

The explicit expressions for the electrical conductivity σλ, the thermo-electric cou-
pling αλ and the electron thermal conductivity κeλ for Z = 1 read:

σ‖ ≈ 1.95 σ̂ ,

σ∧ ≈ 1.0 σ̂ (�eτe)
−1 ,

σ⊥ ≈ 1.0 σ̂ (�eτe)
−2 ,

α‖ ≈ −1.39 α̂ ,

α∧ ≈ −6.60 α̂(�eτe)
−3 ,

α⊥ ≈ 1.5 α̂(�eτe)
−2 ,

κe‖ ≈ 4.15 κ̂e ,

κe∧ ≈ 2.5 κ̂e(�eτe)
−1 ,

κe⊥ ≈ 4.66 κ̂e(�eτe)
−2 ,

(3.72)

where the dimensional factors are given by

σ̂ ≡ e2neτe

me
, α̂ ≡ eneτe

me
, κ̂e ≡ nekTeτe

me
. (3.73)

The inverse of the conductivity tensor is the resistivity tensor η ≡ σ−1. Its coeffi-
cients are obtained by means of the right matrix (3.68):

η‖ = 1

σ‖
≈ 0.51 σ̂−1 , η∧ ≈ − 1

σ∧
≈ −σ̂−1 �eτe , η⊥ ≈ σ⊥

σ 2∧
≈ σ̂−1 .

(3.74)
As stressed by Balescu, this shows the following peculiarities: (1) the perpendic-
ular resistivity is not the inverse of the perpendicular conductivity, η⊥ 
= (σ⊥)−1,
and the simple relationship η⊥ ≈ 2 η‖ of the Spitzer resistivity (already introduced
in Eq. (2.65)), with no dependence on the magnetic field to leading order, is es-
sentially due to the contribution of the Hall conductivity σ∧ ; (2) in sharp contrast
to the corresponding component η′∧ of the Braginskii resistivity tensor, discussed
below, the component η∧ becomes very large when the magnetic field is large
(�eτe  1).

This does not yet provide the necessary expression for the friction force Re.
At this point, the Hermitian moment expansion brings in an additional number of
higher order moments, depending on the level of accuracy desired. In the 21M
approximation,

Re = me

eτe

[
j + 0.6 e(kTe)

−1he − 0.896 ene(kTe/me)
1/2 h̄(5)

e

]
, (3.75)
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where the heat flow he corresponds to the dimensionless third order Hermitian
moment h̄(3)

e , and h̄(5)
e is the dimensionless fifth order Hermitian moment. The

latter is related to the driving thermodynamic forces by

h̄(5)
e = 1

ene

√
me

kTe

[
γ · Ê − δ · ∇(kTe)

]
, (3.76)

where γ and δ are pseudo-transport coefficients:

γ‖ ≈ 0.132 σ̂ ,

γ∧ ≈ 4.64 σ̂ (�eτe)
−3 ,

γ⊥ ≈ −0.896 σ̂ (�eτe)
−2 ,

δ‖ ≈ 1.23 α̂ ,

δ∧ ≈ 12.4 α̂(�eτe)
−3 ,

δ⊥ ≈ −2.57 α̂(�eτe)
−2 .

(3.77)

This completes the closure of the electron fluid equations with respect to Re and
he.

� Braginskii’s transport expressions [41] originate from an entirely different approach,
leading to the following relations for the momentum transfer Re and the heat flow he:

Re = ene η′ · j − β · ∇(kTe) , (3.78)

he = −kTe

ene
β · j − κ′

e · ∇(kTe) . (3.79)

Here, j and −∇(kTe) are considered as the driving thermodynamic forces and −Re and he
as the fluxes (a ‘rather unnatural choice’, according to Balescu, although Onsager symme-
try is also obtained this way). The connection between Braginskii’s and Balescu’s expres-
sions2 for the electron electrical and thermal coefficients is given by

η′ = me

e2neτe

[
I + (0.6 e α − 0.896 γ) · σ−1

]
= σ−1 + me

e2neτe

[
α + 0.6 e(kTe)

−1 κe − 0.896 δ
]

· α−1 , (3.80)

β = −ene α · σ−1 , (3.81)

κ′
e = κe − kTe α · σ−1 · α , (3.82)

where the resistivity η′ now involves the pseudo-transport coefficients γ and δ. This yields
the following (very different from Balescu’s!) explicit expressions for the resistivity η′

λ, the

2 The notations used by Balescu and Braginskii differ, where we mostly follow the first author with some
exceptions dictated by consistency of the present text: η ≡ σ−1|Bal, γ ≡ β|Bal, δ ≡ γ|Bal, η′ ≡ ρ|Bal ≡
(ene)

−1α|Brag, β ≡ −b|Bal ≡ β|Brag, κ′
e ≡ κ′

e|Bal ≡ κe |Brag. (Note that α∧|Brag and κi∧|Brag have been
defined with opposite sign. Also note that our sign of �e is positive.)
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thermo-electric coupling βλ, and the electron thermal conductivity κ ′
eλ for Z = 1:

η′
‖ ≈ 0.51 σ̂−1 ,

η′∧ ≈ −1.70 (σ̂ �eτe)
−1 ,

η′
⊥ ≈ 1.0 σ̂−1 ,

β‖ ≈ 0.70 ne ,

β∧ ≈ 1.5 ne(�eτe)
−1 ,

β⊥ ≈ 5.1 ne(�eτe)
−2 ,

κ ′
e‖ ≈ 3.2 κ̂e ,

κ ′
e∧ ≈ 2.5 κ̂e(�eτe)

−1,

κ ′
e⊥ ≈ 4.66 κ̂e(�eτe)

−2 .

(3.83)

Note that Braginskii’s resistivity tensor η′ is not the inverse of the conductivity tensor σ.
Also note the significant difference between the two thermo-electric coefficients α and β
(where β‖ does not even depend on τe), and between the two parallel components of the
thermal conductivities κe and κ′

e. �

(b) Ion thermal coefficients Since there is only ion–ion scattering on the time scale
τi , the expressions for the ion vector moments are much simpler than those for the
electrons. Only the expression for the ion heat flow appears here, viz.

hi = −κi · ∇(kTi ) , (3.84)

with the following ion thermal conductivity coefficients κiλ:

κi‖ ≈ 5.52 κ̂i ,

κi∧ ≈ −2.5 κ̂i (�iτi )
−1 ,

κi⊥ ≈ 1.41 κ̂i (�iτi )
−2 with κ̂i ≡ ni kTi τi

mi
. (3.85)

(c) Heat transfer Neglecting viscous heating processes, the heat transfer functions
read:

Qe = 1

ene
Re · j − Qi , Qi = 3nek(Te − Ti )

2τeq
, (3.86)

demonstrating that equilibration of the electron and ion temperatures proceeds on
the time scale τeq defined in Eq. (3.55).

(d) Electron and ion viscosities The stress tensors πe and πi are related to the
traceless strain tensors We(ue) and Wi (ui ), respectively, through fourth rank
viscosity tensors which contain just five different elements µe� and µi� (now:
� =‖, 1, 2, 3, 4) for each species.3 Again, this is due to symmetry with respect
to rotations about the magnetic field. Suppressing the indices e and i , these

3 Again for consistency of the notation, we exploit the symbol µ for the viscosity with Balescu’s numbering of
the components: (µ‖, µ1, µ2, µ3, µ4) ≡ (η‖, η1, η2, η3, η4)|Bal ≡ (η0, −η4, η2, −η3, η1)|Brag.
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relationships are given by

π11 = −1
2µ‖(W11 + W22) + µ3W12 − 1

2µ4(W11 − W22) ,

π12 = π21 = −1
2µ3(W11 − W22) − µ4W12 ,

π13 = π31 = µ1W23 − µ2W13 ,

π22 = −1
2µ‖(W11 + W22) − µ3W12 + 1

2µ4(W11 − W22) ,

π23 = π32 = −µ1W13 − µ2W23 ,

π33 = −µ‖W33 , (3.87)

where the strain tensors are defined by

Wi j ≡ ∂ui

∂x j
+ ∂u j

∂xi
− 2

3δi j∇ · u . (3.88)

The electron viscosity coefficients µe� for Z = 1 read:

µe‖ ≈ 0.73 µ̂e ,

µe1 ≈ 1.0 µ̂e(�eτe)
−1 , µe3 ≈ 1

2µe1 ,

µe2 ≈ 2.05 µ̂e(�eτe)
−2 , µe4 ≈ 1

4µe2, with µ̂e ≡ nekTeτe.

(3.89)

The ion viscosity coefficients µi� read:

µi‖ ≈ 1.36 µ̂i ,

µi1 ≈ −1.0 µ̂i (�iτi )
−1 , µi3 ≈ 1

2µi1 ,

µi2 ≈ 0.85 µ̂i (�iτi )
−2 , µi4 ≈ 1

4µi2, with µ̂i ≡ ni kTiτi .

(3.90)

With the expressions listed under (a)–(d), the two-fluid equations (3.61)–(3.63)
have become a closed set.

3.3.3 Dissipative versus ideal fluids�

We now come to a peculiar point in the exposition: in the end, the extensive dis-
cussion of the transport coefficients just serves to neglect most of them! This will
be justified on the basis of the time scales τH for the hydrodynamic and τD for the
dissipative phenomena. Paradoxically, whereas the relaxation times τe,i measure
the very short time scales needed to establish the electron and ion fluids, the as-
sociated dissipative diffusion (decay) of the macroscopic quantities takes place on
the very long time scale τD. Hence, in the restricted range

τe,i � τH � τD , (3.91)
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the macroscopic fluid dynamics may be considered as dissipationless, or ideal. We
will demonstrate that this restriction not only permits a very significant reduction
of the number of variables, but also creates the essential window on the great ma-
jority of macroscopic plasma dynamical phenomena.

As an example, consider the transport of ion momentum and energy by viscosity
and heat conduction. This is described by the momentum equation (3.62)(b), with
the ion viscosities µi� given in Eq. (3.90), and the energy equation (3.63)(b), with
the ion heat conductivities κiλ given in Eq. (3.85). To estimate orders of magnitude,
we just single out the two terms that give a diffusion equation:

ni mi
∂ui

∂t
≈ −∇ · πi ∼ µi�

∂2ui

∂x2
�

, (3.92)

3

2
ni

∂(kTi )

∂t
≈ −∇ · hi ∼ κiλ

∂2(kTi )

∂x2
λ

. (3.93)

For simplicity, we consider the indices � and λ to just take the values ‖ and ⊥.
Since both µi‖ and κi‖ ∼ kTi τi , we obtain the following estimates for the parallel
and perpendicular ion diffusion time scales:

τD,i‖ ∼ L2

v2
th,i τi

, and τD,i⊥ ∼
( a

L

)2
(�iτi )

2 τD,i‖ . (3.94)

This exhibits the mentioned paradox. Since the relaxation time scale τi is consid-
ered to be short, the parallel diffusion time τD,i‖ will be long. Moreover, although
the ratio a/L of perpendicular to parallel plasma dimensions is small, typically
∼ 0.1, the factor �iτi is usually so large (see the numerical examples below
Eq. (3.57)) that the ratio [(a/L) �iτi ]2 between perpendicular and parallel diffu-
sion times will be huge: classical perpendicular thermal isolation is nearly perfect!
Of course, this is the very reason for using magnetic fields to confine thermonu-
clear plasmas in the laboratory. It is also the reason why large perpendicular tem-
perature gradients are maintained so well in coronal magnetic flux tubes.

Let us again insert the numbers of our generic examples, discussed in Sec-
tion 3.2.4, using the Tables B.3 and B.5. For a tokamak plasma with T̃ =
1 keV, vth,i = 0.4 × 106 m s−1, τi = 2.6 × 10−4 s, we obtain τD,i‖ = 8 × 10−6 s
and τD,i⊥ = 4.5 × 104 s (≈ 12 hrs!). For a coronal loop with T̃ = 0.1 keV,
vth,i = 1.4 × 105 m s−1, τi = 8.6 × 10−3 s, we obtain τD,i‖ = 6.2 × 106 s (≈ 72
days!) and τD,i⊥ is virtually infinite. This demonstrates, once more, the easy justifi-
cation of hydrodynamic models for astrophysical plasmas, due to the large length
scales L . It also justifies the use of ideal hydrodynamic models for those plas-
mas. On the other hand, satisfaction of the condition (3.91) for the parallel dif-
fusion in thermonuclear laboratory plasmas is difficult, for the same reasons as
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discussed in Section 3.2.4 with respect to the conditions (3.58) for hydrodynamic
behaviour. The comments raised there might serve to alleviate our concerns here
as well. From a practical point of view, rapid parallel diffusion is actually desir-
able in fusion devices since it evens out temperature gradients in the magnetic
surfaces.

Electron momentum and energy transport by viscosity and heat conduction lead
to similar considerations. The estimation of the numerical magnitudes is left as
an exercise for the reader. Consequently, under the restrictions (3.91), the electron
and ion anisotropic pressure and heat flow terms may be neglected:

πe,i → 0 (i.e. µe,i� → 0 ) , he,i → 0 (i.e. κe,iλ → 0 ) (3.95)

in the two-fluid equations (3.62)–(3.63).
The next step towards an ideal fluid description is the neglect of the ion–electron

momentum transfer Re in the two-fluid equations. This requires an entirely dif-
ferent type of argumentation since the pertinent transport coefficient is the elec-
trical conductivity σ‖ which, although proportional to τe like the other transport
coefficients, should be large (nearly perfect conductivity) instead of small for the
emergence of ideal fluid behaviour. We need to exploit some form of the
generalized Ohm’s law (see Sections 2.4.1 and 3.4.1), which is obtained by
subtracting from the electron momentum equation (3.62)(a) the ion momentum
equation (3.62)(b) multiplied with Zme/mi and neglecting small terms in the
mass ratio:

eneÊ = Re + j × B ⇒ ene(E + ui × B) ≈ Re . (3.96)

Here, the left expression is the one exploited by Balescu [14] to obtain his trans-
port coefficients keeping the appropriate number of Hermitian moments (typically
21M), whereas the right expression results from neglecting the contributions of
the electron pressure gradient and the Hall term. The latter approximations are
necessary to obtain a consistent representation in a low number of moments. As
suggested by Balescu, the above neglect of the electron heat flow (κe → 0) im-
plies that the thermo-electric coupling should be neglected as well (α → 0) and,
hence, that all higher moments in Eq. (3.75) disappear. Effectively, we are now
down to a crude 5M approximation with a very simple relationship between Re

and j :

Re = me

eτe
j = eneη0 j ⇒ η0 ≡ me

e2neτe
= 2η‖ = 2σ−1

‖ . (3.97)

Consequently, we obtain an isotropic resistivity tensor η0I which is off by
a factor of 2 in the parallel direction and misses the off-diagonal elements.
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Nevertheless, the resulting resistive fluid model is the most widely used one in
the plasma literature.

We still have to demonstrate why and when the ion–electron momentum trans-
fer, i.e. the resistivity, may be neglected. The crucial observation here is that
resistivity is the cause of current decay, i.e. decay of magnetic field inhomo-
geneity. Obviously, in fusion devices, such dissipation should be small in order
for the confinement configuration to be maintained. The relevant diffusion equa-
tion for magnetic field inhomogeneity is obtained by substituting in Faraday’s
law (3.8) the approximate electric field E ≈ (σ)−1 · j ≈ η0 j (from Eq. (3.70),
neglecting the ion flow and electron temperature gradient contributions) and ex-
ploiting Ampère’s law j ≈ µ−1

0 ∇ × B (from Eq. (3.9), neglecting the displacement
current) :

∂B
∂t

≈ −∇ × E ≈ −∇ ×
(

η0

µ0
∇ × B

)
∼ − η0

µ0

∂2B

∂x2
⊥

. (3.98)

This yields the following estimate of the resistive decay time:

τR ∼ µ0a2

η0
= µ0e2neτea2

me
= a2

(
ωpe

c

)2

τe ≡
(

a

δe

)2

τe . (3.99)

Here, a new length scale enters the discussion, viz. the electron skin depth,

δe ≡ c/ωpe , (3.100)

which measures the thickness of the layer in which high frequency electromagnetic
waves can penetrate a well-conducting plasma. Using the numbers of Tables B.3
and B.5 again, we find τR = 24 s for a 1 keV tokamak plasma and τR = 8 × 1012 s
(!) for a coronal loop plasma; sufficiently long to assume τH � τR and to put

Re → 0 (i.e. η0 → 0 ) (3.101)

in the two-fluid equations (3.62)–(3.63).
Finally, we need to insert the expression (3.86) for the electron–ion energy trans-

fer rate Qi into the two-fluid energy equations (3.63). These will be simplified
again by putting

Qi → 0 . (3.102)

In a two-fluid plasma model, this neglect of temperature equilibration may be jus-
tified for short time scales τH � τeq, when the two temperatures Te and Ti still
evolve by themselves. In the one-fluid model, considered in Section 3.4, the op-
posite will be assumed, viz. τH  τeq, when temperature equilibration has already



108 ‘Derivation’ of the macroscopic equations�

taken place so that Te = Ti . In both limits, the condition (3.102) is a valid assump-
tion. Hence, the ideal two-fluid equations are obtained from Eqs. (3.61)–(3.64) in
the limits (3.95), (3.101), (3.102), i.e. neglecting all the RHS terms.

Even though the condition τH � τR appears to be well satisfied for plasmas
of interest, there are important instances when resistive effects enter the hydrody-
namic time scales after all. This happens, e.g., because certain resistive instabili-
ties evolve on a time scale faster than τR, or turbulence creates current sheets with
much smaller length scales than a. Effectively, internal resistive boundary layers
with large gradients develop, very analogous to the boundary layers of ordinary
fluids. A spectacular example is the solar flare with the release of huge amounts
of magnetic energy, triggered by resistive phenomena on a very small length scale
(totally unrelated to the astronomical scales L and a). In those cases, it is expedient
to keep the resistive terms

Re = eneη0 j , and − (ue − ui ) · Re = (ene)
−1j · Re = η0|j|2 (3.103)

in the momentum and energy equations, where the right expression repre-
sents Ohmic heating. Hence, the resistive two-fluid equations are obtained from
Eqs. (3.61)–(3.64) in the limits (3.95) and (3.102), i.e. neglecting pressure
anisotropies and heat flows, but keeping the resistive terms (3.103) in the RHSs.
From now on, we will drop the subscript 0 on the resistivity η0, which we recall is
just a model representation of the actual anisotropic tensor.

In conclusion: the essential, but reduced, picture of ideal two-fluid plasma dy-
namics is valid in the wide range of time scales (3.91), intermediate between rapid
kinetics and slow transport. These conditions clearly indicate how the theory is
to be modified when the ideal description fails. When the left condition is vio-
lated, a kinetic description is in order, and when the right condition is not satisfied,
the dissipative transport terms should be restored in the equations. A very rele-
vant example of the latter procedure is the resistive two-fluid model, obtained after
restoring only the resistive terms in the ideal two-fluid equations.

3.3.4 Excursion: waves in two-fluid plasmas�

An instructive example of dynamics in a two-fluid plasma is the enormous va-
riety of waves it supports. We here derive the general dispersion equation for a
homogeneous, resistive, two-fluid plasma, jumping details to keep this subsection
within reasonable bounds. The dispersion equation will be solved explicitly for the
ideal case, exposing the different length and time scales of the waves in order to
facilitate the discussion of Section 3.4 where only the largest scales will survive.

Our starting point is the complete set of two-fluid equations (3.61)–(3.64),
neglecting the RHSs except for the resistive terms (3.103), and Maxwell’s
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equations (3.6)–(3.11). As in Section 2.3, we exploit the pressures pe,i instead of
the temperatures as variables. We assume a homogeneous background equilibrium
with the electrons and ions at rest:

pe0 , pi0 , B0 const , E0 = 0 ⇒ ne0 = Zni0 , ue0 = ui0 = 0 ⇒ j0 = 0 .

(3.104)

We now perturb this equilibrium with small amplitude oscillations. Dropping the
0 on the equilibrium quantities and indicating perturbations with a tilde, the equa-
tions for the perturbations become:

∂ ñe

∂t
+ ne∇ · ũe = 0 ,

neme
∂ũe

∂t
+ ∇ p̃e + ene(Ẽ + ũe × B) = me

e
ν j̃ = −nemeν(ũe − ũi ) ,

∂ p̃e

∂t
+ γ pe∇ · ũe = 0 , (3.105)

∂ ñi

∂t
+ ni∇ · ũi = 0 ,

ni mi
∂ũi

∂t
+ ∇ p̃i − Zeni (Ẽ + ũi × B) = −me

e
ν j̃ = nemeν(ũe − ũi ) ,

∂ p̃i

∂t
+ γ pi∇ · ũi = 0 , (3.106)

∇ × Ẽ = −∂B̃
∂t

, ∇ · Ẽ = − e

ε0
(ñe − Zñi ) ,

∇ × B̃ = 1

c2

∂Ẽ
∂t

− µ0ene(ũe − ũi ) , ∇ · B̃ = 0 .

(3.107)

Here, γ ≡ 5/3 and we have introduced an effective electron–ion collision fre-
quency,

ν ≡ τ−1
e ⇒ η = me(e

2ne)
−1ν , (3.108)

which turns out to be a convenient way of bookkeeping the resistive damping of
the waves.

Since all equilibrium quantities are constant in space and time, we assume plane
wave solutions, ne(r, t) ∼ exp[i(k · r − ωt)], etc., so that ∇ → ik, ∂/∂t → −iω.
This turns the partial differential equations into a set of algebraic equations. The
determinant of this set gives the dispersion equation ω = ω(k) of the waves. The
manner in which the time derivatives appear in these equations dictates the number
of waves to be expected: since there are five electron variables (ñe, ũe, p̃e), five
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ion variables (ñi , ũi , p̃i ), and four EM variables (two independent components of
Ẽ and two independent components of B̃), we may expect 14 different types of
waves!

To solve this system, we capitalize on all available geometrical and physical
relationships between the variables. To that end, we project on unit vectors oriented
with respect to k and B, with e3 along k :

e1 ≡ e2 × e3 , e2 ≡ B × k/|B × k| , e3 ≡ k/|k| , (3.109)

and indicate the direction of k by means of the angle ϑ between k and B :

λ ≡ k‖/k = cos ϑ , τ ≡ k⊥/k = sin ϑ . (3.110)

In this projection, the components Ẽ3 and B̃3 (= 0) may be eliminated and we
obtain the mentioned system of 14 variables.

Next, we isolate a peculiar class of marginal ‘waves’ (ω = 0) consisting of a
two-parameter family of modes with ñe 
= 0 and ñi 
= 0 and associated pressure
perturbations that are completely out of phase,

p̃e = − p̃i = i
ene

k
Ẽ3 = −e2ne

ε0k2
(ñe − Zñi ) , (3.111)

whereas the remaining variables vanish. These waves do not move, they just sit
there with the pressures kept in balance by the longitudinal electric field due to the
space charge clouds. Even in the absence of the latter, there still is a subclass of
charge-neutral modes with ñe = Zñi 
= 0, and all of the remaining variables iden-
tically zero. In the ideal MHD limit, the two-parameter marginal modes transform
into the one-parameter entropy modes discussed in Section 5.2.

For the remaining 12 solutions, which represent genuine waves (ω 
= 0), we
can freely divide by ω to express the density and pressure variables ñe,i and p̃e,i

in terms of ũe,i3, and the magnetic field perturbations B̃2,1 in terms of Ẽ1,2. This
yields a system of eight algebraic equations in the variables ũe,i and Ẽ1,2. At this
point, it is expedient to account for the phase differences of the variables, expressed
by the factors i , and to equalize the dimensions of the different terms. This is done
by introducing the following variables for the perturbations:

Ẽ1 ≡ i
√

ε0 Ẽ · e1 , Ẽ2 ≡ √
ε0 Ẽ · e2 ,

Ũe1,3 ≡ √
neme ũe · e1,3 , Ũe2 ≡ i

√
neme ũe · e2 ,

Ũi1,3 ≡ √
ni mi ũi · e1,3 , Ũi2 ≡ i

√
ni mi ũi · e2 , (3.112)
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and equilibrium parameters characterizing the waves:

ωpe ≡
√

e2ne

ε0me
, �e ≡ eB

me
, ve ≡

√
γ pe

neme
,

ωpi ≡
√

Z2e2ni

ε0mi
≡ √

µ ωpe , �i ≡ ZeB

mi
≡ µ�e , vi ≡

√
γ pi

ni mi
.

(3.113)

Here, ve and vi represent the electron and ion sound speeds (differing from the
thermal speeds by a factor of (γ /2)1/2 ≈ 0.913). The ratio of masses over charges,

µ ≡ Zme

mi
, (3.114)

is not yet assumed to be small in order to profit from the symmetry of electron and
ion terms in the analysis.

(a) Eigenvalue problem for a resistive two-fluid plasma The above transformations
yield the following eigenvalue problem:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2−k2c2 0 ωωpe 0 0 −ωωpi 0 0

0 ω2−k2c2 0 −ωωpe 0 0 ωωpi 0

ωpe 0 ω+iν λ�e 0 −i
√

µν 0 0

0 −ωpe λ�e ω+iν τ�e 0 −i
√

µν 0

0 0 0 ωτ�e
ω2+iνω
−k2v2

e−ω2
pe

0 0 ωpeωpi
−i

√
µνω

−ωpi 0 −i
√

µν 0 0 ω+iµν −λ�i 0

0 ωpi 0 −i
√

µν 0 −λ�i ω+iµν −τ�i

0 0 0 0 ωpeωpi
−i

√
µνω

0 −ωτ�i
ω2+iµνω
−k2v2

i −ω2
pi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· ( Ẽ1, Ẽ2, Ũe1, Ũe2, Ũe3, Ũi1, Ũi2, Ũi3 )T = 0.

(3.115)

Because of the judicious choice of variables, most of the matrix elements are real
now, except for the resistive terms (∼ iν). This implies that the waves will be
damped: ω = ω0 + iγ0 with γ0 < 0, or k = k0 + iα0 with α0 
= 0.
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Such behaviour is easily checked for the special case of cold, unmagnetized
electrons with heavy, immobile ions (ωpi = 0, �e = �i = 0, ve = vi = 0). The
dispersion equation then renders two branches, one for the longitudinal plasma
oscillations (discussed in Section 2.3.2) and one for the transverse electromagnetic
waves:

ω(ω + iν) − ω2
pe = 0 ⇒ ω2

0 ≈ ω2
pe , γ0 ≈ −1

2ν , (3.116)

(ω + iν)(ω2 − k2c2) − ωω2
pe = 0 ⇒ ω2

0 ≈ ω2
pe + k2c2 , γ0 ≈ −1

2ν
ω2

pe

ω2
0

,

(3.117)

where the damping is small when ωeτe  1. For the transverse waves, we
have assumed real k. On the other hand, if ω is imposed to be real, the wave
number becomes complex, satisfying k2

0 − α2
0 ≈ (ω2 − ω2

pe)/c2, with α0k0 ≈
1
2(ν/ω)(ω2

pe/c2). Hence, the electron skin depth δe ≡ c/ωpe, introduced in
Eq. (3.100), naturally emerges as the spatial decay length of transverse EM waves.

(b) Eigenvalue problem for an ideal two-fluid plasma In the limit of vanishing
resistivity (ν → 0), a significant simplification results from the elimination of the
variables Ũe2 and Ũi2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2−k2c2 0 ωpeω 0 −ωpiω 0

0 ω2−k2c2

−ω2
pe−ω2

pi
λωpe�e τωpe�e λωpi�i τωpi�i

ωpeω λωpe�e ω2−λ2�2
e −λτ�2

e 0 0

0 τωpe�e −λτ�2
e

ω2−k2v2
e

−ω2
pe−τ 2�2

e
0 ωpeωpi

−ωpiω λωpi�i 0 0 ω2−λ2�2
i −λτ�2

i

0 τωpi�i 0 ωpeωpi −λτ�2
i

ω2−k2v2
i

−ω2
pi−τ 2�2

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ẽ1

Ẽ2

Ũe1

Ũe3

Ũi1

Ũi3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 .

(3.118)

The twelfth order system is now represented by two EM variables, two electron
variables, and two ion variables. These yield a two-fold degenerate dispersion
equation since, due to the symmetry of the matrix, the eigenvalue parameter ω

will only appear squared.
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Since no assumption on the smallness of the mass ratio was made, the charac-
teristic electron and ion frequencies may still be assumed to have equal orders of
magnitude. Therefore, when frequencies are made dimensionless by means of the
plasma frequency, the electron and ion contributions appear on an equal footing:

ω̄ ≡ ω/ωp , where ωp ≡
√

ω2
pe + ω2

pi . (3.119)

Similarly, wavelengths are made dimensionless by means of the combined skin
depth for electromagnetic waves,

k̄ ≡ δk , where δ ≡ c/ωp , (3.120)

and velocities by means of the speed of light in vacuum, c. This yields six di-
mensionless parameters, which we indicate by one-letter symbols to facilitate the
formidable algebra and the numerical implementation:

e ≡ ωpe/ωp , E ≡ �e/ωp , v ≡ ve/c ,

i ≡ ωpi/ωp , I ≡ �i/ωp , w ≡ vi/c . (3.121)

These parameters are not all independent, though. Charge neutrality, ne = Zni ,
implies from the expressions (3.113) that e, i , and I may be eliminated in favour
of the ratio of masses over charges:

µ = i2

e2
= I

E
⇒ e2 = 1

1 + µ
, i2 = 1 − e2 = µ

1 + µ
, I = µE .

(3.122)
Hence, after removing dimensions with ωp ∼ n−1/2

e and c, the dimensionless dis-
persion equation is determined by the direction λ of the wave vector and the four
independent parameters µ, E ∼ B n−1/2

e , v ∼ T 1/2
e , w ∼ T 1/2

i , that are directly
related to the physical variables of the background state.

The actual construction of the explicit form of the dispersion equation is one
of those calculations which require, according to Stix [218], ‘in small proportion,
insight, and in large proportion, stamina’. Fortunately, the earlier enterprises of
Braginskii [40], and in particular of Denisse and Delcroix [66], and Stringer [220],
summarized by Swanson [223], permit conclusive checking of the correctness of
the final expressions below. Once this is established, to avoid confusion with con-
ventional symbols, the short-hand notation (3.121) is of course replaced again by
the physical expressions.

The dispersion equation for the waves in an ideal two-fluid plasma, finally ob-
tained by brute force reduction of the determinant expressions, is a polynomial of
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Table 3.1. Dispersion equation for an ideal two-fluid plasma
with asymptotic limits.

the sixth degree in ω̄2 and of the fourth degree in k̄2:

F(k̄2, ω̄2) ≡
6∑

m = 0

min (4 , 6−m)∑
n = max (0 , 3−m)

αmn k̄2n ω̄2m = 0 . (3.123)

Arranging the terms as shown in Table 3.1 facilitates the discussion of the dif-
ferent asymptotic limits for which analytic solutions can be found. The explicit
expressions for the 19 coefficients αmn = αmn(λ

2, µ, E2, v2, w2) are listed in
Table 3.2.

The numerical solution of this dispersion equation is shown in Fig. 3.1 for a
representative choice of the parameters (the tokamak example of Table B.3). As
expected, for each value of k2, there are six two-fold degenerate waves corre-
sponding to propagation in opposite directions (ω < 0 and ω > 0). Other than this
degeneracy, and that of the two EM waves at high frequencies (corresponding to
two different states of polarization), the six waves are non-degenerate for oblique
propagation. This means that waves in two-fluid plasmas exhibit very intricate
behaviour, where virtually all characteristic plasma frequency and length scales
enter, as is indicated by the dotted lines in Fig. 3.1. It is beyond the scope of the
present chapter to dwell on all of these aspects. The reader should consult any ba-
sic textbook on plasma physics, like Chen [53] and Goldston and Rutherford [92],
or books entirely devoted to waves in plasmas, like Stix [218] and Swanson [223].
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Table 3.2. Coefficients of the dispersion equation for an ideal two-fluid plasma.

Our interest here is to demonstrate how the MHD phenomena emerge from the
two-fluid ones.

To that end, we first analyse how the six waves split apart for extreme values of
k2 and ω2. By means of the Tables 3.1 and 3.2, one may easily determine those
asymptotic limits.
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Fig. 3.1. Dispersion diagram for the oblique waves of an ideal two-fluid (hy-
drogen) plasma; λ = 0.5 (ϑ = 60◦), µ = 5.4 × 10−4, E ≡ �e/ωp = 0.93, v ≡
ve/c = 0.2, w ≡ vi/c = 4.7 × 10−3 (T̃e = T̃i = 10 keV). The arrows refer to the
asymptotic limits (1)–(4) discussed in the text.

(1) Cutoff limits (k2 → 0):

ω2=

⎧⎪⎨
⎪⎩

ω2
p (plasma frequency)

ω2
p+ 1

2(�2
e + �2

i ) ± |�e − �i |
√

ω2
p+ 1

4 (�e+�i )2 (upper & lower cutoff).
(3.124)

They represent the lower limits of the high frequency waves. Excitation at fre-
quencies below these limits results in wave motion that is spatially evanescent
(k2 < 0). The huge evanescent gap in Fig. 3.1 between these waves, where the
electric field dominates, and the low frequency MHD waves, where the magnetic
field dominates, is the way in which the symmetry breaking of Maxwell’s equa-
tions mentioned in Section 1.3.4 appears.

(2) Resonance limits (k2 → ∞):

ω2 =

⎧⎪⎪⎨
⎪⎪⎩

λ2 �2
e (electron cyclotron resonance)

λ2 �2
i (ion cyclotron resonance). (3.125)
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These frequencies represent the asymptotic limits of spatially localized cyclotron
waves. (Different resonances (with hybrid contributions of ωp, �e, and �i ) are
obtained for cold plasmas (v = w = 0), as indicated by the dotted vertical line
labelled ‘cold’ in Table 3.1 to the right of which all contributions to the dispersion
equation vanish, whereas the remaining ones are also substantially simplified, as
is evident from Table 3.2.)

(3) Local, high frequency limit (k2 → ∞ , ω2 → ∞ , but ω2/k2 finite):

ω2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k2c2 (2 degenerate EM waves)

k2v2
e (electron sound wave)

k2v2
i (ion sound wave).

(3.126)

In this limit, corresponding to localization in both space and time, the electromag-
netic, the electron thermal, and the ion thermal contributions split apart.

(4) Global, low frequency MHD limit (k2 → 0 , ω2 → 0 , but ω2/k2 finite):

(1 + v2
A/c2)2

(ω

k

)6 − (1 + v2
A/c2)

[
(1 + λ2)v2

A + v2
s + λ2v2

s v2
A/c2

](ω

k

)4

+ λ2v2
A

[
v2

A + 2v2
s + (1 + λ2)v2

s v2
A/c2

](ω

k

)2 − λ4v4
Av2

s = 0 .

(3.127)

In this opposite limit, where the waves are both spatially and temporally
global, all characteristic plasma parameters ωp, �e, �i , ve, and vi contribute
to produce the following exact expressions for the two characteristic MHD
velocities:

E I ≡ �e�i

ω2
p

≡ B2

µ0(neme + ni mi )c2
≡ v2

A

c2
(Alfvén speed),

i2v2 + e2w2 ≡
ω2

piv
2
e + ω2

pev
2
i

ω2
pc2

≡ γ (pe + pi )

(neme + ni mi )c2
≡ v2

s

c2
(sound speed).

(3.128)

In other words: in this limit, the two-fluid plasma waves become entangled
to produce the three MHD waves that are central to macroscopic plasma
dynamics, as will be discussed extensively in Chapter 5. Consistent with the
non-relativistic form of the two-fluid equations employed, one should drop the
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four terms with v2
A/c2 (� 1) in the asymptotic dispersion equation (3.127).

With this single approximation, the expressions for the three MHD waves
become:

ω2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ2k2v2
A (Alfvén wave)

1
2 k2

[
v2

A + v2
s ±

√
(v2

A + v2
s )2 − 4λ2v2

Av2
s

]
(fast & slow m.s. wave).

(3.129)

They manifest the magnetic dominance of macroscopic plasma dynamics.

The two-fluid theory represents only a very partial picture of plasma wave
dynamics in the high frequency domain. This is evident from the fact that usu-
ally ωτe  1, in violation of the left part of the condition (3.91) for fluid be-
haviour. In fact, in RF (radio-frequency) wave diagnostics and heating, velocity
space effects determining Landau damping and the opposite phenomenon of mi-
croscopic instabilities (driven by non-monotonicities of the distribution functions)
become important. Accordingly, the greater part of the mentioned books on plasma
waves [218, 223] is devoted to the kinetic picture.

On the other hand, in the MHD limit of large scales, both in space and time, the
use of fluid theory is well justified. From Fig. 3.1 it is obvious how this condition
is to be quantified with respect to the different inverse time scales �i , �e, ωp,
and inverse length scales R−1

i , δ−1, R−1
e , λ−1

D that occur in the two-fluid model.
Whereas we did not use the smallness of the mass ratio µ so far, it is expedient to
exploit it now to find out that the ion scales determine the limits for the validity of
the MHD model:

ω � �i , k � R−1
i , (3.130)

i.e. the lower left quadrant of Fig. 3.1. Going down to larger and larger scales in
this diagram, e.g. to study the transition to instability (ω2 < 0), we automatically
encounter the finite size of the plasma so that we will have to drop the (enormously
simplifying) assumption of plasma homogeneity that was made in this section.
Hence, the counterpart of kinetic theory, paying attention to inhomogeneities in
velocity space, is the large scale magnetohydrodynamic theory, paying attention
to inhomogeneities in ordinary space. This will occupy us for most of the rest of
this book.
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3.4 One-fluid equations�

3.4.1 Maximal ordering for MHD�

We now derive the one-fluid MHD equations from the two-fluid equations (3.61)–
(3.63). They are obtained as linear combinations of the pairs of the mass conser-
vation equations for ne and ni , and of the momentum conservation equations for
ue and ui , and as the sum of the energy conservation equations for Te and Ti (or,
rather, pe and pi ). At this point, we annihilate the information on the tempera-
ture difference between electrons and ions by imposing the time scale restriction
τH  τeq (temperature equilibration is assumed to have taken place already) as-
sociated with the approximation (3.102), i.e. the electron–ion energy transfer rate
Qi → 0 . Consequently, the number of moment equations is reduced by one. This
permits the definition of the following one-fluid variables:

ρ ≡ neme + ni mi (total mass density),

τ ≡ −e (ne − Zni ) (charge density),

ρv ≡ nemeue + ni mi ui (momentum density),

j ≡ −e (neue − Zni ui ) (current density),

p ≡ pe + pi = (ne + ni ) kT (pressure), (3.131)

as we have already seen in Section 2.4.1. Except for the temperature difference, the
full information contained in the two-fluid equations is retained by the mentioned
linear combinations, when the inverses of the one-fluid variables are exploited:

ne = Z [ ρ − (mi/Ze)τ ]

mi (1 + µ)
≈ Z

mi (1 + µ)
ρ ,

ni = ρ + µ(mi/Ze)τ

mi (1 + µ)
≈ 1

mi (1 + µ)
ρ ,

ue = ρ v − (mi/Ze) j
ρ − (mi/Ze)τ

≈ v − mi

Ze

j
ρ

,

ui = ρ v + µ(mi/Ze) j
ρ + µ(mi/Ze)τ

≈ v + µ
mi

Ze

j
ρ

,

pe = nekT = ne

ne + ni
p ≈ Z

1 + Z
p ,

pi = ni kT = ni

ne + ni
p ≈ 1

1 + Z
p. (3.132)
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Here, the ratio µ of masses over charges has been defined in Eq. (3.114), and
the approximations on the RHS are due to the assumption of quasi charge-
neutrality:

|ne − Zni | � ne , or
mi

Ze
|τ | � ρ . (3.133)

As we have seen in Sections 1.4.1 and 2.3.2, this approximation is extremely
well satisfied for plasma phenomena with a macroscopic (hydrodynamic) length
scale

λH  λD ≡ vth,e/(
√

2 ωpe) . (3.134)

(For the tokamak and coronal loop examples of Tables B.3 and B.5, the values of
the relevant small parameter are λD/a = 7 × 10−5 and 7 × 10−11, resp.) This does
not imply that space charges do not occur, but just that they do not involve a size-
able fraction of the available free charges. Hence, for the time being (i.e. until we
estimate the different terms in Maxwell’s equations) we will keep the electrostatic
contributions when they occur by themselves (like τE in the momentum equation),
but drop them in the inverse expressions (3.132).

Multiplying the pair of equations (3.61) by the masses and adding them gives
the equation of mass conservation:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (3.135)

whereas multiplication by the charges and subtraction results in the equation of
charge conservation:

∂τ

∂t
+ ∇ · j = 0. (3.136)

Likewise, adding the pair of equations (3.62), while using the approximations on
the RHS of Eqs. (3.132), results in the equation of motion:

ρ
∂v
∂t

+ ρv · ∇v + µ
( mi

Ze

)2 ∇ ·
(

1

ρ
j j

)
+ ∇ p − τE − j × B = −∇ · (πe + πi ) .

(3.137)

(This equation reduces to the Navier–Stokes equation when electric and mag-
netic effects are absent and the stress tensor is replaced by the hydrodynamic
expression.) Multiplying the pair of equations (3.62) by the charge over mass quo-
tients and adding them results in an equation for the rate of change of the current
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density, which is known under the name generalized Ohm’s law:

∂j
∂t

+ ∇ ·
[

jv + vj − mi

Ze
(1 − µ)

1

ρ
j j

]

+ 1

µ

Ze

mi

[
(1 − µ) j × B − Z − µ

Z + 1
∇ p

]
− 1

µ

( Ze

mi

)2
ρ(E + v × B)

= 1

µ

Ze

mi

[
∇ · (πe − µπi ) − (1 + µ)Re

]
. (3.138)

Finally, addition of the equations (3.63) results in the heat balance equation:

∂p

∂t
+ v · ∇ p + γ p∇ · v + Z − µ

Z + 1

mi

Ze

[
(γ − 1)

1

ρ
j · ∇ p − γ j · ∇

( p

ρ

) ]

= −(γ − 1)

[
πe : ∇ue + πi : ∇ui + ∇ · (he + hi ) − (1 + µ)

mi

Ze

1

ρ
j · Re

]
,

(3.139)

where the ratio γ = 5/3 of specific heats is introduced again.
To reduce the dissipative expressions on the RHSs of Eqs. (3.137)–(3.139), we

again apply the time scale ordering (3.91) of Section 3.3.3, leading to the neglect
of the electron and ion viscosities and heat conductivities:

πe,i → 0 , he,i → 0 , (3.140)

and to the reduction of the ion–electron momentum transfer Re in terms of the
current density:

Re = ηenej ≈ η
1

1 + µ

Ze

mi
ρj . (3.141)

Here, the factor of proportionality, the resistivity η, is assumed to be a scalar.
To consistently derive the large scale dynamics associated with the MHD de-

scription, we now apply a maximal ordering4 of the one-fluid variables, starting
from the expressions (3.128) for the Alfvén and sound speed:

v2
A ≡ B2

µ0ρ
∼ v2

s ≡ γ p

ρ
∼ v2 . (3.142)

(This implies that we admit arbitrary values of the ratio between kinetic and
magnetic pressures, β ≡ 2µ0 p/B2 ∼ 1, and of the Mach number of the flow,
M ≡ v/vs ∼ 1 .) The hydrodynamic length and time scales will now (in contrast

4 In the sense of the principles of asymptotology, i.e. ‘the art of dealing with applied mathematical systems in
limiting cases’, formulated by Kruskal [132].
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to Section 3.3.3 !) be chosen to correspond to the size of the plasma:

λMHD ≡ |∇|−1 ∼ a  Ri

[
 δ  Re  λD

]
,

τMHD ≡ |∂/∂t |−1 ∼ a/vA  �−1
i

[
 ω−1

p ∼ �−1
e

]
.

(3.143)

(Again, admitting arbitrary values of the ratio between the transverse and lon-
gitudinal dimensions of the plasma geometry, a/L ∼ 1 .) The magnitudes of the
remaining, electrodynamic, variables j, E, and τ are chosen to be set by Ampère’s
law, Ohm’s law, and Poisson’s law, resp.:

j ∼ B

µ0a
, E ∼ vB , τ ∼ ε0 E

a
∼ ε0vB

a
. (3.144)

This suffices to bring the large scale MHD phenomena to the fore, as we will see.
Let us now get rid of the remaining local two-fluid effects in Eqs. (3.137)–

(3.139). To that end, we first check the assumption (3.133) of quasi-neutrality.
In terms of the maximal ordering (3.142)–(3.144), the relevant small parameter
becomes

mi

Ze

|τ |
ρ

∼ vth,i

c

λD

a

[
∼

(
vth,i

c

)2 1√
µ

δe

a

]
� 1 . (3.145)

In fact, with the additional small factor vth,i/c ( ∼ 5 × 10−3 for the tokamak exam-
ple again), this becomes an excellent approximation. Next, we assume the relative
velocity of the ions and electrons to be small compared to the centre of mass ve-
locity:

|ui − ue| � |v| , or
mi

Ze
|j| � ρ|v| . (3.146)

The latter restriction on the magnitude of the current density is to be understood
in the sense of the maximal ordering, so that there is an upper limit to the current
density also for static plasmas (v = 0), where |v| should be replaced by vs or vA

in the inequality. The magnitude of the associated small parameter is

mi

Ze

|j|
ρ|v| ∼ 1√

µ

δe

a
� 1 , (3.147)

i.e. much less extreme than the condition (3.145) for quasi-neutrality (note the
expression in square brackets there), but still easily satisfied for plasmas of in-
terest (and extremely easily for astrophysical plasmas due to their huge length
scales).
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With this ordering, and the condition (3.146) on the current density, the evolu-
tion equations for v, j, and p simplify to

ρ
∂v
∂t

+ ρv · ∇v + ∇ p − τE − j × B = 0 , (3.148)

−µ
( mi

Ze

)2 1

ρ

[
∂j
∂t

+ ∇ · (jv + vj)
]

− mi

Ze

1

ρ

[
(1 − µ) j × B − Z − µ

Z + 1
∇ p

]

+E + v × B = ηj , (3.149)

∂p

∂t
+ v · ∇ p + γ p∇ · v = (γ − 1) η|j|2 . (3.150)

Here, we have momentarily kept an intermediate form of the generalized Ohm’s
law with the time derivative term, which is small to second order in the small pa-
rameter (3.147), and the Hall current term, which is small to first order. Keeping
those terms would conserve the evolutionary form of Ohm’s law, but numerical
computation of the current density this way would be extremely inaccurate since
it would force the computation to proceed on the short time scale of the two-fluid
model instead of on the much longer time scale of the MHD model. Obviously,
for consistency of the MHD description, we have to drop those terms so that the
usual Ohm’s law of the second line of Eq. (3.149) remains. However, this law
gives the current density j = σE′ with a large (and inaccurately known) parameter
σ ≡ η−1 multiplying the electric field in the moving frame: not very accurate
either! Moreover, in the ideal MHD case (η = 0), Ohm’s law E + v × B = 0 com-
pletely changes character from an equation that determines j into one that ex-
presses E in terms of v and B. Apparently, something else is required to restore
the peace in the system. This will be the subject of the next section.

Concluding this section, it will have been noticed that we did not exploit the
obvious further reduction of the expressions (3.132) for small values of the ratio
µ of masses over charges. Although µ = 5.4 × 10−4 for hydrogen plasmas, we
have seen in Section 3.3.4 that MHD phenomena do not really depend on the as-
sumption µ � 1. This implies that the MHD equations will also be valid for other
plasmas, like electron–positron plasmas in the classical, and non-relativistic, limit.
However, this would require adaptation of the transport coefficients since the ex-
pressions of Section 3.3.2 essentially depend on the assumption µ � 1. Also, the
sequences of inequalities (3.143) in the square brackets will no longer apply since
the quantities involved become of the same order in µ for those plasmas. This is
not a serious problem though, since the hydrodynamic scales will then be defined
by the largest one of them.
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3.4.2 Resistive and ideal MHD equations�

We still need to subject Maxwell’s equations to the maximal ordering (3.142)–
(3.144). Before we do that, it is expedient to collect all equations derived so far,
even though not quite consistent at this point:

∂ρ

∂t
+ ∇ · (ρv) = 0 (continuity), (3.151)[

∂τ

∂t
+ ∇ · j = 0 (charge)

]
, (3.152)

ρ
∂v
∂t

+ ρv · ∇v + ∇ p
[

− τE
]

− j × B = 0 (momentum), (3.153)

∂p

∂t
+ v · ∇ p + γ p∇ · v = (1 − γ )η j2 (internal energy), (3.154)

∂B
∂t

+ ∇ × E = 0 (Faraday), (3.155)[
1

c2

∂E
∂t

+
]

µ0j − ∇ × B = 0 (‘Ampère’), (3.156)

where

ηj = E + v × B (Ohm), (3.157)

and initially the following conditions need to be satisfied:[
∇ · E = τ/ε0 (Poisson)

]
, (3.158)

∇ · B = 0 (no magnetic monopoles). (3.159)

These equations would represent evolution equations for the variables ρ, τ , v, p, B
and E, with Ohm’s law determining j and the last two equations to be considered
as initial conditions on the differential equations for E and B.

First notice that the charge conservation equation (3.152) is really redundant
since it follows from Eqs. (3.156) and (3.158). Therefore, we should drop it and de-
termine τ from Poisson’s law (3.158). Consequently, Poisson’s law can no longer
be considered as an initial condition on ‘Ampère’s’ law, indicating that something
should be changed there as well. This becomes immediately clear by estimating
the displacement current in the ordering (3.142)–(3.144):

1

c2

∣∣∣∣∂E
∂t

∣∣∣∣ ∼ v2

c2

B

a
� |∇ × B| ∼ B

a
. (3.160)
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Hence, for the non-relativistic flows we are considering, where

v2/c2 � 1 , (3.161)

the displacement current is negligible and we return to the pre-Maxwell equations
[32]. These are characterized by the fact that Eq. (3.156) is replaced by Ampère’s
law proper (without the quotes, since this is the form in which Ampère posed it):

j = µ−1
0 ∇ × B . (3.162)

We have now lost the evolution equation for E and obtained instead the simple
expression for j as determined by the curl of B . This appears to be consistent
with the result of Section 3.4.1: Ohm’s law should be read from right to left, i.e. it
determines E rather than j .

So far so good. But how about the charge conservation equation (3.152), that
we have already dropped? Equation (3.162) implies that ∇ · j = 0 so that charge
conservation now appears to tell us that ∂τ/∂t = 0. This would be in conflict with
Eqs. (3.156) and (3.158), which imply that

∂τ

∂t
= ε0∇ · ∂E

∂t
= −ε0

∂

∂t
∇ · (v × B) 
= 0 ,

in general. The way out is to consistently apply an ordering in the small parameter
v2/c2. One then finds that the electrostatic force τE in the momentum equation is
one order smaller than the macroscopic Lorentz force j × B , so that it should be
dropped:

|τE| ∼ ε0 E2

a
∼ v2

c2

B2

µ0a
� |j × B| ∼ B2

µ0a
. (3.163)

After this, all equations are expressions of the same order, except for the charge
conservation equation (3.152) which is one order in v2/c2 smaller. This justifies
its elimination from the system. Poisson’s equation may still be used to calculate
the charge density, but, since τ does not occur in any of the other equations, that
equation should be dropped as well. The resulting set of equations is a mathe-
matically consistent set which, amongst the many other attractions exposed in this
book, enjoys the property of being Galilean invariant.

Clearly, the approximations of the present section are of a different kind than
those of the previous one. In the latter section, the conditions given are mandatory
for the description of macroscopic dynamics, whereas the restriction (3.161) of
the present section can be, and has been, lifted to construct a consistent relativis-
tic MHD theory. This has been done for special as well as general relativity, see
e.g. Lichnerowicz [145], Achterberg [2], and Anile [8].
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In conclusion, all expressions in square brackets in Eqs. (3.151)–(3.159) should
be dropped and we obtain the following set of resistive or ideal MHD equations
determining the evolution of the macroscopic variables ρ, v, p, and B (already
introduced in Section 2.4.1):

∂ρ

∂t
+ ∇ · (ρv) = 0 (mass), (3.164)

ρ
∂v
∂t

+ ρv · ∇v + ∇ p − j × B = 0 (momentum), (3.165)

∂p

∂t
+ v · ∇ p + γ p∇ · v =

⎧⎨
⎩

(1 − γ ) η j2 (resistive)

0 (ideal)
(internal energy), (3.166)

∂B
∂t

+ ∇ × E = 0 (Faraday), (3.167)

where the variables j and E may be eliminated by means of the algebraic equations

j = µ−1
0 ∇ × B (Ampère), (3.168)

E + v × B =
⎧⎨
⎩

ηj (resistive)

0 (ideal)
(Ohm), (3.169)

and the magnetic field needs to satisfy the initial condition

∇ · B = 0 . (3.170)

This is how, in the end, the double set of five moment equations of kinetic theory,
combined with Maxwell’s equations, lead to a very powerful description of large
scale plasma dynamics, where collisions appear to have served no other purpose
(i.e. in the ideal case) than to establish the coherence of the single fluid.

3.5 Literature and exercises�

Notes on literature

Kinetic theory and transport:

– Braginskii’s paper [41] on ‘Transport processes in a plasma’ in the first volume of
the Russian Reviews of Plasma Physics is a masterpiece on the subject that has been
used by most plasma physicists in one form or the other ever since its appearance.

– Balescu’s two volumes [14] on Transport Processes in Plasmas are fruits of a life-
long dedication to the science of statistical mechanics and non-equilibrium thermo-
dynamics of charged particles. His love for the subject shines through every page of
these books. The first volume is devoted to ‘Classical Transport’ and the second to
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‘Neo-classical transport’. The announced future volume on ‘Anomalous Transport’
will be a most welcome guide through the jungle of turbulent transport processes.

– Neo-classical transport in toroidal plasmas is discussed in the review paper by Galeev
& Sagdeev [77].

– Chapman & Cowling, The Mathematical Theory of Non-uniform Gases [52] is the
classical treatise of obtaining hydrodynamic equations by expansion of the distribu-
tion functions in a small parameter.

– The papers by Rosenbluth et al. [196] and Trubnikov [231] contain the derivation of
the Fokker–Planck form of the collision operator for charged particles.

– Montgomery & Tidman, Plasma Kinetic Theory [158] is a critical exposition of the
principles of kinetic theory of plasmas.

Derivation of fluid equations:

– Grad, and Blank et al., Notes on Magnetohydrodynamics [98, 32] present the pio-
neering lecture notes on the foundations of MHD.

– Most basic textbooks on plasma physics contain one or more chapters on the deriva-
tion and conditions of a macroscopic description, e.g.:
Spitzer, Physics of Fully Ionized Gases [213], Chapter 2 and Appendix,
Clemmov & Dougherty, Electrodynamics of Particles and Plasmas [58], Chapter 11,
Schmidt, Physics of High Temperature Plasmas [203], Chapter 3,
Boyd & Sanderson, Plasma Dynamics [35], Chapter 3,
Krall & Trivelpiece, Principles of Plasma Physics [129], Chapter 3,
Akhiezer et al., Plasma Electrodynamics [4], Chapter 1.

– Hazeltine & Meiss, Plasma Confinement [107] contains a fundamental discussion of
MHD and alternative closures of the moment equations.

Exercises

[ 3.1 ] Collision integral

Prove that the Landau collision operator (3.13) satisfies the conservation properties (3.18)–
(3.22).

[ 3.2 ] Transport coefficients

Estimate the numerical magnitudes of the electron momentum and energy transport by
viscosity and heat conduction for tokamak and coronal loop plasmas. What conclusions
can be drawn from these numbers?

[ 3.3 ] � Waves in two-fluid plasmas

Write a numerical program, in the computer language of your choice, for the numerical
solution of the dispersion equation, derived in Section 3.3.4, for the waves in two-fluid
plasmas. Carefully copy the explicit expressions of Table 3.2 in a separate subroutine!
(As always in computations, you save time by spending enough time when coding up the
algebra.) The graphical representation of the solution of the dispersion equation is most
easily obtained by just contour plotting the implicit dispersion function F(k̄2, ω̄2) = 0 .
For simplicity, you may restrict the analysis to cold plasmas by dropping the thermal terms.
Now, enjoy the powerful tool you have obtained to study:

– Ordinary and extra-ordinary cutoffs, upper and lower hybrid resonances, whistler
waves, etc. Compare the numerical results with the analytical asymptotic results.
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– Compute the dispersion diagrams for perpendicular (λ = 0) and parallel (λ = 1)
propagation and compare them with Fig. 3.1. Comment on the degeneracies obtained.

– Which of the MHD waves do you obtain in the large scale limit?

[ 3.4 ] Derivation of the one-fluid equations

Complete the derivation of the one-fluid equations by constructing the sixth equation, for
the temperature difference between electron and ions. Check for the consistency of omit-
ting this equation under the conditions formulated.



Part II

Basic magnetohydrodynamics





4

The MHD model

4.1 The ideal MHD equations

The dynamics of magnetically confined plasmas, as exploited in laboratory nuclear
fusion research and observed in astrophysical systems, is essentially of a macro-
scopic nature so that it can be studied in the fluid (MHD) model introduced in
Chapter 2. The ‘derivation’ of the MHD equations in Chapter 3 provided indica-
tions about the range of validity and the limitations of the equations. In the present
chapter, we will develop the MHD model for the interaction of plasma and mag-
netic field in detail and, thus, obtain a powerful ‘picture’ for the dynamics of the
mentioned plasmas.

Recall from the introduction of Chapter 3 that the equations of magnetohydro-
dynamics can be introduced either by just posing them as postulates for a hypothet-
ical medium called ‘plasma’ or by the much more involved procedure of averaging
the kinetic equations. Whereas Chapter 3 was mainly concerned with the second
method, in the present chapter we exploit the first method: we simply pose the
equations and use physical arguments and mathematical criteria to justify the re-
sult. We continue the exposition of Section 2.4.1, where we already encountered
the relevant equations.

4.1.1 Postulating the basic equations

The ideal MHD equations describe the motion of a perfectly conducting fluid
interacting with a magnetic field. Hence, we need to combine Maxwell’s equa-
tions with the equations of gas dynamics and provide equations describing the
interaction.

First, consider Maxwell’s equations, already encountered in Chapters 2 and 3.
They describe the evolution of the electric field E(r, t) and the magnetic field
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B(r, t) in response to the current density j(r, t) and the space charge τ(r, t):

∇ × E = −∂B
∂t

, (4.1)

∇ × B = µ0j + 1

c2

∂E
∂t

, c ≡ (ε0µ0)
−1/2 , (4.2)

∇ · E = τ

ε0
, (4.3)

∇ · B = 0 . (4.4)

Next, consider the equations of gas dynamics for the evolution of the density
ρ(r, t) and the pressure p(r, t):

Dρ

Dt
+ ρ∇ · v ≡ ∂ρ

∂t
+ ∇ · (ρv) = 0 , (4.5)

Dp

Dt
+ γ p∇ · v ≡ ∂p

∂t
+ v · ∇ p + γ p∇ · v = 0 . (4.6)

We will see later that these equations actually express mass conservation and con-
servation of entropy. Note that we have used the occasion to introduce the notation

D

Dt
≡ ∂

∂t
+ v · ∇

for the Lagrangian time-derivative, evaluated while moving with the fluid, in con-
trast to the Eulerian time-derivative ∂/∂t , which is evaluated at a fixed position.

So far, the two systems described by the variables E, B, and ρ, p do not appear
to interact. Such interaction is introduced through the equations involving the ve-
locity v(r, t) of the fluid. First, ‘Newton’s’ equation of motion for a fluid element,

ρ
Dv
Dt

= F ≡ −∇ p + ρg + j × B + τE , (4.7)

expresses the acceleration of a fluid element (LHS) caused by the force F consist-
ing of pressure gradient, gravity, and electromagnetic contributions (RHS).1 Next,
one of the most characteristic equations describing the plasma state is the equation
for the electric field in a perfectly conducting moving fluid,

E′ ≡ E + v × B = 0 , (4.8)

which expresses that the electric field E′ in a co-moving frame should vanish.
The system of equations (4.1)–(4.8) is now complete, but not yet in a form suit-

able for self-consistent calculations for the majority of plasmas occurring in the
laboratory and in nature. We need to make one additional assumption (repeating

1 Actually, these expressions have the dimension of force density.
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some of the discussion and expressions of Section 3.4.2). For most plasma phe-
nomena it is sufficient to restrict the analysis to non-relativistic velocities:

v � c . (4.9)

In that case, we can make the following estimates for the orders of magnitude of
the different terms in Eq. (4.2):

1

c2

∣∣∣∣∂E
∂t

∣∣∣∣ ∼ v2

c2

B

l0
� |∇ × B| ∼ B

l0
(using Eq. (4.8)) ,

where we have indicated the length scale of gradients by l0 and the time scale by t0,
so that v ∼ l0/t0. Hence, the displacement current (Maxwell’s great contribution
to electrodynamics) is small, O(v2/c2), and can be removed again from Eq. (4.2),
so that the current j may be expressed directly in terms of B and the original form
of Ampère’s law is recovered:

j = 1

µ0
∇ × B . (4.10)

Furthermore, the non-relativistic approximation implies a remarkable simplifica-
tion of the equation of motion (4.7) as well since the electrostatic acceleration,

τ |E| ∼ v2

c2

B2

µ0l0
� | j × B| ∼ B2

µ0l0
(using Eqs. (4.3), (4.8), and (4.10)) ,

is also O(v2/c2). Consequently, space charge effects can be neglected, and Pois-
son’s law (4.3) may be dropped since it is no longer needed. The electric field then
becomes a secondary quantity, to be determined from Eq. (4.8):

E = −v × B . (4.11)

This shows that, for non-relativistic MHD motions, the order of magnitude of the
electric field as compared to the magnetic field is given by |E| ∼ |v||B|, i.e. an
order O(v/c) smaller than for electromagnetic waves, where |E| ∼ c|B|.

Exploiting the mentioned approximations and eliminating E and j from the
equations by means of Eqs. (4.10) and (4.11), the basic equations of ideal MHD
of Sections 2.4.1 and 3.4.2 are recovered:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (4.12)

ρ
(∂v

∂t
+ v · ∇v

)
+ ∇ p − ρg − 1

µ0
(∇ × B) × B = 0 , (4.13)

∂p

∂t
+ v · ∇ p + γ p∇ · v = 0 , (4.14)

∂B
∂t

− ∇ × (v × B) = 0 , ∇ · B = 0 . (4.15)
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This is a set of eight nonlinear partial differential equations for the eight variables
ρ(r, t), v(r, t), p(r, t), and B(r, t). Here, the magnetic field equation (4.15)(b)
is to be considered as a condition on the initial values: once satisfied, it remains
satisfied for all later times by virtue of Eq. (4.15)(a). Depending on the physical
problem considered, the value of the gravitational acceleration g(r, t) is either an
externally fixed quantity or partially determined by the plasma itself. This aspect
is discussed below.

For static equilibria (∂/∂t = 0 and v = 0) in the absence of gravity (g = 0), the
MHD equations reduce to

∇ p = 1

µ0
(∇ × B) × B , ∇ · B = 0 . (4.16)

Now, the magnetic field equation (4.16)(b) fully counts, in contrast to the dynam-
ical problem, where it is just an initial condition. Thus, we appear to obtain four
equations for the determination of p(r) and the three components of B(r). How-
ever, we have already seen in Section 2.4.3, for the specific example of a z-pinch,
that the equilibrium equations leave much more freedom in the determination of
these quantities than this remark suggests. This is due to the symmetry that is usu-
ally assumed for equilibria.

(a) Thermodynamic variables The above formulation of the ideal MHD equations
exploits ρ, v, p, B as the basic variables. It is of interest to also work out the
evolution equations for the other thermodynamical variables, which could replace
ρ and p, viz.: e – the internal energy per unit mass (which is equivalent to T – the
temperature) and s – the entropy per unit mass. These are defined by the ideal gas
relations, with p = (ne + ni )kT :

e ≡ 1

γ − 1

p

ρ
≈ Cv T , Cv ≈ (1 + Z)k

(γ − 1)mi
,

s ≡ Cv ln S + const , S ≡ pρ−γ , (4.17)

where mi is the mass of the ions, k is the Boltzmann constant, and γ ≡ C p/Cv

is the ratio of specific heats at constant pressure and volume, respectively. We
have introduced the variable S ≡ ρ−γ p here since it is a slightly more convenient
measure for entropy than the variable s itself because it does not contain awkward
constants any more.

Neglecting thermal conduction and heat flow, i.e. considering adiabatic pro-
cesses, the entropy convected by the fluid is constant:

Ds

Dt
= 0 , or

DS

Dt
≡ D

Dt
(pρ−γ ) = 0 . (4.18)
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Eliminating the density ρ from the latter equation by means of Eq. (4.12) yields
again the pressure evolution equation (4.14). This substantiates our claim that
Eq. (4.14) actually expresses entropy conservation. On the other hand, we could
also exploit the internal energy e (or T ) as a basic variable. From Eqs. (4.12) and
(4.14) we then have:

De

Dt
+ (γ − 1) e∇ · v = 0 . (4.19)

Which pair of the four state variables ρ, p, s, e one chooses to complement the
description by means of v and B is usually a matter of convenience. However, for
the expression of conservation laws and certain symmetry properties this choice
matters, as we will see later (Sections 4.3.1 and 5.2.1).

� Exercise. Anticipating the discussion of the conservation properties in Section 4.3.1:
why is the internal energy convected by the fluid not constant? �

(b) Gravitation In the equation of motion (4.13), the gravitational acceleration
g due to the masses of the plasma within the region under consideration may
be derived from an internal gravitational potential �in

gr. It satisfies the Poisson
equation

∇2�in
gr = 4πGρ(r) , (4.20)

having the solution

�in
gr(r) = −G

∫
ρ(r′)

|r − r′| d3r ′ , (4.21)

so that

gin(r) = −∇�in
gr(r) = −G

∫
ρ(r′)

r − r′

|r − r′|3 d3r ′ . (4.22)

To check the solution (4.21), use the property of the Dirac delta function in three
dimensions,

∇2
(

1

|r − r′|
)

= −4πδ(r − r′) , (4.23)

that is also exploited in the analogous problem of electrostatics (see Jackson
[117]).

In many astrophysical systems, the internal gravitational force Fin
g ≡ ρgin is

completely negligible compared to the Lorentz force FB ≡ j × B, but also com-
pared to the gravitational force Fex

g ≡ ρgex due to an external compact object. We
will represent such an external gravitational field by a point mass M∗ situated at
a position r = r∗ far outside the plasma region. In that case, we have a Poisson
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equation

∇2�gr = 4πG
[

M∗δ(r − r∗) + ρ(r)
]
, (4.24)

having the solution

�gr(r) = −G
M∗

|r − r∗| + �in
gr(r) , (4.25)

so that

g(r) = −∇�gr(r) = −G M∗ r − r∗
|r − r∗|3 + gin(r) , (4.26)

where the internal field is given by Eqs. (4.21) and (4.22).
Let us now estimate the relative magnitudes of the Lorentz and the gravitational

forces. For a tokamak, with typical parameters as given in Table B.5, we get:

|FB | ≡ | j × B| ∼ B2

µ0a
= 7.2 × 106 kg m−2 s−2 ,

|Fex
g | ≡ |ρgex| ∼ ρG

M∗
R2∗

= 1.7 × 10−6 kg m−2 s−2 ,

|Fin
g | ≡ |ρgin| ∼ ρ2Ga = 1.9 × 10−24 kg m−2 s−2 , (4.27)

where a is the width of the plasma tube and M∗ and R∗ here, of course, refer
to the Earth (G ME/R2

E = 10 m s−2). Clearly, the gravitational contributions are
completely negligible for tokamak plasmas.

� Exercise. Compute the corresponding numbers for solar coronal flux tubes from
Table B.5 and also for ‘your favourite plasma’ (filling out the last column of Table B.6) by
finding the relevant orders of magnitude for the different quantities from whatever source
you can find. (This may turn out to be rather difficult!) What do you conclude from these
numbers? �

Let us also estimate the relative magnitudes of the forces for a typical astro-
physical plasma, viz. an accretion disc surrounding a compact object (see Frank,
King and Raine [70], and Balbus and Hawley [12]). A schematic picture of the
system is shown in Fig. 4.1. The compact object is located in the origin and matter
is accreting in a thin rotating disc of size ∼ Rd and height ∼ Hd (at a distance
∼ 0.1Rd from the centre). The compact object carries its own magnetic field,
which is mainly dipolar, and the disc features a protruding poloidal magnetic
field Bp. One important aspect is the frequent appearance of powerful jets ejected
from the centre in the direction perpendicular to the disc (along the Z -axis). To
estimate forces, we will exploit the expressions (4.27) with a = Hd but replacing
R∗ by a reasonable distance away from the central object, viz. R = 0.1Rd . This
object may be a black hole, but our gravitational equations refer to a Newtonian
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Fig. 4.1. Schematic presentation of accretion disc around compact object with
ejected jets.

potential, excluding general relativistic effects, so that we have to stay far outside
the Schwarzschild radius, i.e.

R 
 RSchw = 2G M∗
c2

. (4.28)

This condition is easily met by our choice of the distance since RSchw is just a
multiple of 3 km for every solar mass unit in the black hole.

Fig. 4.1 may be used to illustrate astrophysical plasmas on entirely different
scales. Let us consider the following two examples.

(a) Accretion disc around a young stellar object (YSO), a protostellar cradle for
stars and planets: Rd ∼ 1 AU (= 1.5 × 1011 m), Hd ∼ 0.01 AU (= 1.5 × 109 m).
The central object has a mass of the order of the solar mass, M∗ ∼ 1M�
(= 2.0 × 1030 kg), and the accretion rate is of the order Ṁ ∼ 10−7 M� y−1 (=
6 × 1015 kg s−1). Representative values of the other physical parameters are: B =
10−4 T (= 1 G), n = 1018 m−3, T = 104 K, so that ρ ≈ 1.7 × 10−9 kg m−3, and
vA = 2.2 × 103 m s−1. This gives the following estimate for the three forces:

|FB | = 5.3 × 10−12, |Fex
g | = 1.0 × 10−9, |Fin

g | = 2.9 × 10−19 [ kg m−2 s−2] .

(4.29)

In this case, the contribution of the external gravitational field dominates.

(b) Accretion disc around an active galactic nucleus (AGN): Rd ∼ 50 kpc
(= 1.6 × 105 ly = 1.5 × 1021 m), Hd ∼ 120 pc (= 3.3 × 1018 m). The central ob-
ject has a mass of the order of a hundred million solar masses, M∗ ∼ 108 M�
(= 2.0 × 1038 kg), and the accretion rate is of the order Ṁ ∼ 0.1M� y−1

(= 6 × 1021 kg s−1). Representative values of the other physical parameters are:
B = 10−4 T (= 1 G), n = 1012 m−3, T = 108 K, so that ρ ≈ 1.7 × 10−15 kg m−3,
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and vA = 2.2 × 106 m s−1. This gives:

|FB | = 2.2 × 10−21, |Fex
g | = 1.0 × 10−27, |Fin

g | = 6.4 × 10−22 [ kg m−2 s−2].
(4.30)

Now, even though there may be a huge black hole in the centre, the internal gravity
field dominates over the external field at the position chosen.

� Exercise. Complete the discussion of the different forces at work in the two types of
accretion disc by also estimating the rotational and pressure terms. Do these estimates
permit stationary equilibrium (i.e. solutions with ∂/∂t = 0 , but v �= 0 )? What is the ratio
of the plasma pressure p compared to the magnetic pressure B2/(2µ0)? How is vertical
equilibrium established? �

4.1.2 Scale independence

The MHD equations (4.12)–(4.15) can be made dimensionless by means of three
quantities expressing a choice for the units of length, mass, and time. For that pur-
pose, a typical length scale l0 is chosen (e.g. the transverse confinement length
scale of the plasma), and values for the magnitude B0 of the magnetic field and
for the plasma density ρ0 are chosen at some representative position (e.g. on the
magnetic axis in a tokamak). The unit of time then follows by exploiting the basic
speed of macroscopic plasma dynamics, viz. the Alfvén speed introduced in Sec-
tion 2.4.2:

v0 ≡ vA,0 ≡ B0√
µ0ρ0

⇒ t0 ≡ l0

v0
. (4.31)

Thus, the relevant triplet of basic parameters becomes l0, B0, t0.
By means of this triplet, and the derived quantities ρ0 and v0, we now create the

dimensionless independent variables and their associated differential operators,

l̄ ≡ l/ l0 , t̄ ≡ t/t0 ⇒ ∇̄ ≡ l0∇ , ∂/∂ t̄ ≡ t0 ∂/∂t , (4.32)

and the dimensionless dependent variables,

ρ̄ ≡ ρ/ρ0 , v̄ ≡ v/v0 , p̄ ≡ p/(ρ0v
2
0) , B̄ ≡ B/B0 , ḡ ≡ (l0/v

2
0) g .

(4.33)

With these transformations, the equations (4.12)–(4.15) remain unchanged, except
that all quantities are equipped with a bar and that the awkward quantity µ0 (asso-
ciated with the mks system of units) disappears. Obviously, we will drop the bars
again and just enjoy the fact that dimensions need no longer worry us.

The important result of the exercise is the realization that the equations do not
depend on the size of the plasma (l0), on the magnitude of the magnetic field (B0),
and on the density (ρ0), i.e. on the time scale (t0): the ideal MHD equations are
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Table 4.1. Scales of different plasmas.

l0 (m) B0 (T) t0 (s)

tokamak 20 3 3 × 10−6

magnetosphere Earth 4 × 107 3 × 10−5 6
solar coronal loop 108 3 × 10−2 15
magnetosphere neutron star 106 108 ∗ 10−2

accretion disc YSO 1.5 × 109 10−4 7 × 105

accretion disc AGN 4 × 1018 10−4 2 × 1012

galactic plasma 1021 10−8 1015

(=105 ly) (=3 × 107y)

∗ Some recently discovered pulsars, called magnetars, have record magnetic
fields of 1011 T: the plasma Universe is ever expanding!

scale independent with respect to changes of these quantities. Notwithstanding
the huge differences in magnitude of the parameters l0, B0, and t0 encountered in
nature and in the laboratory (see Table 4.1), yet the same equations of magnetohy-
drodynamics apply! This provides the basis for the description of macroscopic dy-
namics of 90% of matter in the Universe and, hence, for effective cross-fertilization
between laboratory and astrophysical plasma physics (Section 1.1).

After the scaling with l0, B0, t0, the value p̄0 of the dimensionless pressure at
the reference point automatically becomes a quantity of intrinsic importance. It is
directly related to the ratio of the plasma kinetic pressure to the magnetic pressure,
commonly indicated by the symbol β:

β ≡ 2µ0 p0

B2
0

= 2 p̄0 . (4.34)

Since β � 1 for many plasmas of interest, pressure terms, labelled by the param-
eter β, are frequently neglected or only computed as a higher order correction in
the dynamics.

� Exercise. Compute the value of β for ‘your favourite plasma’ from the numbers you have
collected in the last column of Table B.6 and compare it with the other plasmas. Can you
now estimate the relative importance of the different terms in the momentum equation? �

4.1.3 A crucial question

Having obtained the complete set of partial differential equations (4.12)–(4.15) for
the plasma variables, and realizing their huge potential from the previous section,
we now ask a crucial question: do these equations provide us with a complete
model for plasma dynamics?
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This question is to be answered with an emphatic NO! The reason is that the
two most essential elements of a scientific model are still missing, viz.

(1) What is actually the physical problem we want to solve?
(2) How is this problem mathematically translated in conditions to be imposed on the

solutions of the partial differential equations?

For example, one might want to study the stability of a laboratory fusion plasma
or the evolution of an expanding flux tube in the solar corona. This brings in the
specific space and time constraints embodied in the boundary conditions and ini-
tial data. The consideration of initial data will be our concern in the next chapter
(Section 5.2). For now, this part is nearly trivial since it just amounts to prescribing
arbitrary functions

ρi (r) ≡ ρ(r, t =0) , vi (r) ≡ v(r, t =0) ,
(4.35)

pi (r) ≡ p(r, t =0) , Bi (r) ≡ B(r, t =0) ,

on the domain of interest. For these initial data, there is no restriction on the kind
of functions permitted other than ∇ · Bi (r) = 0 . However, the consideration of
the appropriate boundary conditions is a much more involved one since it implies
the specification of a geometry associated with a particular magnetic confinement
scheme.

We will extensively dwell on the specific boundary conditions for the differ-
ent magnetic confinement geometries encountered in the laboratory and nature in
Section 4.6. However, before we can effectively do that, we first have to introduce
the central concepts of magnetohydrodynamics underlying it all, viz. magnetic
flux tubes and flux conservation (Section 4.2), the general conservation properties
of the MHD equations (Sections 4.3 and 4.4), and the discontinuities permitted
(Section 4.5).

4.2 Magnetic flux

4.2.1 Flux tubes

Magnetic flux tubes occur in different kinds, e.g. closed onto themselves, like in
thermonuclear tokamak confinement machines, or connecting onto a medium of so
vastly different physical characteristics that one may consider the flux tube to be
finite and separated from the other medium by suitable jump conditions. The latter
kind is the appropriate model for coronal flux tubes. These two generic plasma
configurations are shown schematically in Fig. 4.2. The main point of this illustra-
tion is to show the global geometry, which is superficially similar but essentially
different.
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Fig. 4.2. Generic plasma confinement structures: (a) tokamak and (b) coronal
magnetic loop (arrows indicate periodic directions).

� Exercise. It is frequently said that solar coronal flux loops that are ‘standing’ for weeks
on the Sun appear to mock the stability problems encountered in laboratory plasmas. Con-
sult Table 4.1 and compare a tokamak with a plasma that is routinely confined for half a
minute (a typical operational feature at the end of the twentieth century) with a coronal
loop that stands for two weeks on the Sun before erupting. Is the statement true or false?
(Hint: stability is to be measured in terms of the number of Alfvén wave crossing times of
the configuration.) �

The tokamak basically consists of closed and nested magnetic surfaces which
have a toroidal shape, i.e. they are periodic in two directions (poloidal and
toroidal). The typical solar coronal magnetic loop, on the other hand, is a finite
flux tube bound by the photosphere, which is considered to be infinitely inert,
so that there is no motion at the ends (so-called line-tying). Whereas the same
MHD equations may be used to describe the macroscopic plasma dynamics in
both configurations, the boundary conditions are obviously quite different and,
consequently, the exact form of the resulting dynamics will be different as well.
We will return to this point in Section 4.6.

The above examples demonstrate that magnetic fields confining plasmas, man
made as well as naturally occurring, are basically tubular structures. This is the
result of the magnetic field equation (4.15)(b), repeated here for convenience,

∇ · B = 0 , (4.36)

which does not permit, for example, spherically symmetric solutions. Instead,
magnetic flux tubes become the essential constituents of a magnetically confined
plasma configuration. Following Newcomb [163, 167], we consider a surface el-
ement dσ1 and all magnetic field lines puncturing it (Fig. 4.3). The magnetic flux
through an arbitrary other surface element dσ2 intersecting that field line bundle is
the same. This follows from the application of Gauss’ theorem (A.14):∫∫∫

V
∇ · B dτ =

∫
©
∫

B · n dσ = −
∫ ∫

S1

B1 · n1 dσ1 +
∫ ∫

S2

B2 · n2 dσ2 = 0 ,
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S1

S2

Fig. 4.3. Magnetic flux tube.

where n1 and n2 are the unit normals to the surfaces S1 and S2. Hence, the magnetic
flux

� ≡
∫ ∫

S
B · n dσ (4.37)

through an arbitrary cross-section of the magnetic flux tube is a well-defined quan-
tity, i.e. it does not depend on how S is taken. This holds for the flux tube as a whole
(like the ones shown in Fig. 4.2), but also for the infinity of smaller flux tubes that
one can imagine to be obtained by subdividing the cross-section S. Obviously, the
important question to be asked next is: how do these flux tubes move when the
plasma moves?

4.2.2 Global magnetic flux conservation

Whereas the concept of flux tube comes from the electromagnetic field equation
(4.36), the dynamics of flux tubes requires the consideration of the two other
electromagnetic field equations (4.1) and (4.8) absorbed in the induction equation
(4.15)(a), which is repeated again for convenience:

∂B
∂t

= ∇ × (v × B) . (4.38)

Exploiting this equation, one should always remember that it is really a contrac-
tion of Faraday’s law, ∂B/∂t = −∇ × E , describing the time dependence of the
magnetic field, and ‘Ohm’s’ law with perfect conductivity, E + v × B = 0 , relat-
ing the electric field to the plasma flow. These two aspects also guide the following
analysis.

Consider the complete magnetic flux tube inside the toroidal vessel of a tokamak
(Fig. 4.4). The toroidal plasma volume is indicated by the letter V , the surrounding
conducting wall by W , and the normal vector on the wall by nw. We will inves-
tigate the implications of the electromagnetic field equations for the dynamics of
that flux tube inside the vessel.
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ϕ
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W
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Fig. 4.4. Tokamak geometry.

First of all, we need boundary conditions at the wall. An obvious one is the
requirement that the wall is ‘perfect’, i.e. it neither absorbs plasma nor emits gas
(impurities). This translates into the boundary condition

nw · v = 0 (on W ) . (4.39)

A second boundary condition is the requirement that the wall acts as a perfect
conductor, i.e. it short-circuits tangential electric fields Et . Interestingly enough,
this condition is not a restriction on the kind of materials a wall could be made
of, but rather on the resistivity of the plasma itself: if the wall is an isolator, a thin
perfectly conducting plasma layer in front of the wall serves the same purpose of
short-circuiting the electric field. Hence, ‘Ohm’s’ law applied to this layer yields:

nw × [ E + (v × B) ]
(A.2)= nw × Et + nw · B v − nw · v B = 0 . (4.40)

Since the tangential electric field vanishes, Et = 0, and there is no flow across the
wall, nw · v = 0, the other contribution has to vanish as well:

nw · B = 0 (on W ) . (4.41)

Hence, the magnetic field lines do not intersect the wall so that this boundary
condition prevents plasma flowing along the field lines hitting the wall and being
lost.

Let us now study the consequences of the magnetic field evolution equation
(4.38) for the total magnetic flux inside a tokamak. Since there are two magnetic
field components (poloidal and toroidal), there are also two magnetic fluxes, as-
sociated with the two different surfaces obtained by a cut along or across the
torus. The toroidal component is the simplest. Starting from Eq. (4.37), with
S ≡ Spol indicating a poloidal cross-section of the torus (Fig. 4.5(a)), we find by
the application of Stokes’ law that the time derivative of the total toroidal flux
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Fig. 4.5. Surfaces for (a) toroidal magnetic flux, (b) poloidal magnetic flux in a
tokamak.

vanishes:

∂�tor

∂t
≡

∫ ∫
Spol

∂Btor

∂t
· ntor dσ =

∫ ∫
∇ × (v × Btor) · ntor dσ

× (A.18)=
∮

vBtor · dlpol = 0 , (4.42)

because v, Btor, and lpol are tangential to the wall. In other words, the two boundary
conditions (4.39) and (4.41) suffice to guarantee that the total toroidal magnetic
flux inside the tokamak is conserved: �tor = const.

A similar story holds for the poloidal flux:

∂�pol

∂t
≡

∫ ∫
Stor

∂Bpol

∂t
· npol dσ = 0 ⇒ �pol = const , (4.43)

where we exploit a surface Stor bounded by a toroidal circle lying in the wall and
by the magnetic axis (Fig. 4.5(b)). For the time being, this proof requires that the
magnetic axis should be kept fixed. Relaxing the latter constraint requires the con-
sideration of the local version of magnetic flux conservation. This is a slightly more
complicated, but more powerful, property that will be dealt with in Section 4.3.3.
Anticipating the outcome of that analysis, viz. that the magnetic flux through any
surface moving with the plasma is constant, it becomes clear that magnetic flux
conservation is the central issue in magnetohydrodynamics. To put this into proper
perspective, we now turn to a systematic exposition of the conservation properties
of the MHD equations.
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4.3 Conservation laws

4.3.1 Conservation form of the MHD equations

We have already stated several times that the MHD equations express conservation
of the main macroscopic quantities of a plasma, viz. mass, momentum, energy, and
magnetic flux. We will now substantiate this claim.

A system of quasi-linear partial differential equations is said to be in conser-
vation form if all terms can be written as a generalized divergence (incorporating
the time and space derivatives on an equal footing) of the dependent variables, or
simple functions of them:

∂

∂t
(· · ·) + ∇ · (· · ·) = 0 . (4.44)

The use of such a form of the equations is that one can obtain local and global
conservation laws and jump conditions from them. Moreover, powerful numerical
algorithms exist for the solution of such equations. We will return to this point in
a later chapter on numerical magnetohydrodynamics in the companion Volume 2.

Consider again the set of nonlinear ideal MHD equations discussed in Sec-
tion 4.1, exploiting the internal energy e rather than the pressure p as a variable,
according to Eq. (4.19), and dropping the constant µ0 for convenience:2

∂ρ

∂t
+ ∇ · (ρv) = 0 , (4.45)

ρ
∂v
∂t

+ ρv · ∇v + ∇ p − j × B = −ρ∇� , j = ∇ × B ,

p = (γ − 1)ρe , (4.46)

∂e

∂t
+ v · ∇e + (γ − 1)e ∇ · v = 0 , (4.47)

∂B
∂t

+ ∇ × E = 0 , E = −v × B , ∇ · B = 0 . (4.48)

Evidently, only the mass conservation equation (4.45) and the magnetic field equa-
tion (4.48)(c) have the required conservation form. We only consider the effect
of an external gravitational potential � in the momentum equation (4.46), where
g = −∇�, since it is instructive to demonstrate how such a field spoils the strict
conservation property of the equations. This is why this term is put on the right
hand side of the equality sign.

The following text, in small print, consists of some rather intricate vector al-
gebra that may be skipped on first reading because we will just exploit the end

2 This will be done consistently from now on. To restore mks units one should make the replacements B →
B /

√
µ0 , E → E /

√
µ0 , and j → √

µ0 j in the formulas.
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result, viz. the conservation form of the ideal MHD equations summarized in Eqs.
(4.59)–(4.62).

� Transformation to conservation form. The mass conservation form, already obtained,
is repeated in Eq. (4.59) below. In order to bring the other equations into conservation form
one makes use of the following vector identities (where equation numbers above the equal
signs refer to auxiliary equations like those of Appendix A):

∇ · (ab)
(A.11)= a · ∇b + b ∇ · a , (4.49)

a × (∇ × b)
(A.8),(A.11)= (∇b) · a − ∇ · (ab) − b ∇ · a , (4.50)

∇ × (a × b)
(A.13)(a)= ∇ · (ba − ab) , (4.51)

∇(a · b)
(A.10)(a)= (∇a) · b + (∇b) · a . (4.52)

The first two terms of the momentum equation, (4.46) may then be transformed to

ρ
∂v
∂t

+ ρv · ∇v
(4.45)= ∂

∂t
(ρv) + v∇ · (ρv) + ρv · ∇v

(4.49)= ∂

∂t
(ρv) + ∇ · (ρvv) , (4.53)

and the last term to

−j × B = B × (∇ × B)
(4.50),(4.52)= ∇( 1

2 B2) − ∇ · (BB) , (4.54)

so that we obtain the conservation form of the momentum equation, Eq. (4.60) below.
Similarly, the second term of Faraday’s law (4.48) becomes

∇ × E = −∇ × (v × B)
(4.51)= ∇ · (vB − Bv) , (4.55)

so that we obtain the conservation form of the magnetic flux equation, Eq. (4.62) below.
Finally, the internal energy equation (4.47) cannot be brought into conservation form

for the obvious reason that it contains only part of the energy, which can be converted
into other forms of energy. We therefore need a conservation equation for the total energy
density. This is obtained by adding the separate contributions of the kinetic, the internal,
and the magnetic energy:

v · Eq. (4.46) �⇒ ρv · (
∂v
∂t

+ v · ∇v) + v · ∇ p − v · j × B = −ρv · ∇�

−→ ∂

∂t
( 1

2ρv2) − 1
2v2 ∂ρ

∂t
+ 1

2ρv · ∇v2 + v · ∇ p − v · j × B = −ρv · ∇�

(4.45)−→ ∂

∂t
( 1

2ρv2) + ∇ · ( 1
2ρv2v) + v · ∇ p − v · j × B = −ρv · ∇� , (4.56)

ρ Eq. (4.47) �⇒ ρ
∂e

∂t
+ ρv · ∇e + (γ − 1)ρe ∇ · v = 0

−→ ∂

∂t
(ρe) − e

∂ρ

∂t
+ ρv · ∇e + p∇ · v = 0

(4.45)−→ ∂

∂t
(ρe) + ∇ · (ρev) + p∇ · v = 0 , (4.57)

B · Eq. (4.48) �⇒ B · ∂B
∂t

− B · ∇ × (v × B) = 0



4.3 Conservation laws 147

(A.12)−→ ∂

∂t
( 1

2 B2) + ∇ · [ B × (v × B) ] − (v × B) · ∇ × B = 0

(A.2)−→ ∂

∂t
( 1

2 B2) + ∇ · [ B · B v − v · B B ] + v · j × B = 0 . (4.58)

Adding Eqs. (4.56), (4.57), and (4.58) gives the conservation form of the energy equation,
Eq. (4.61) below. �

Recapitulating the preceding analysis, the conservation form of the ideal MHD
equations reads:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (4.59)

∂

∂t
(ρv) + ∇ ·

[
ρvv + (p + 1

2 B2) I − BB
]

= −ρ∇� ,

p = (γ − 1)ρe , (4.60)

∂

∂t
(1

2ρv2 + ρe + 1
2 B2) + ∇ ·

[
(1

2ρv2 + ρe + p + B2)v − v · BB
]

= −ρv · ∇� , (4.61)

∂B
∂t

+ ∇ · (vB − Bv) = 0 , ∇ · B = 0 . (4.62)

Note that the energy conservation form (4.61) for the total energy, which replaces
the evolution equation (4.47) for the internal energy e, required the most extensive
transformation since e cannot be conserved by itself.

From the preceding analysis we conclude that the best representation of the
evolution equations is in terms of the variables ρ, v, e, and B, as expressed by
the Eqs. (4.45)–(4.48). A peculiar additional variable is the specific entropy s (the
entropy per unit mass), introduced in Section 4.1.1. For adiabatic processes of ideal
gases, which is applicable here, we have

S ≡ pρ−γ = f (s) , or s = Cv ln (pρ−γ ) + const . (4.63)

Hence, from Eqs. (4.45) and (4.47),

DS

Dt
≡ ∂S

∂t
+ v · ∇S = 0 , (4.64)

which is not in conservation form, but expresses the conservation of specific en-
tropy co-moving with the fluid. A genuine conservation form is obtained by trans-
forming to the variable ρS, associated with the entropy per unit volume. In that
variable we get

∂

∂t
(ρS) + ∇ · (ρSv) = 0 , (4.65)
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which is in conservation form now so that one may derive the global conservation
law for the entropy of the whole system from it.

4.3.2 Global conservation laws

To understand the physical meaning of the different terms in the conservation equa-
tions (4.59)–(4.62) of ideal MHD, we define the following quantities:

– momentum density π ≡ ρv , (4.66)

– stress tensor T ≡ ρvv + (p + 1
2 B2) I − BB , (4.67)

– total energy density H ≡ 1
2ρv2 + p

γ − 1
+ 1

2 B2 , (4.68)

– energy flow U ≡
(

1
2ρv2 + γ

γ − 1
p
)

v + B2v − v · B B , (4.69)

– (no name) Y ≡ vB − Bv . (4.70)

Neglecting gravity, the conservation equations (4.59)–(4.62) may then be written
as

∂ρ

∂t
+ ∇ · π = 0 (conservation of mass), (4.71)

∂π

∂t
+ ∇ · T = 0 (conservation of momentum), (4.72)

∂H
∂t

+ ∇ · U = 0 (conservation of energy), (4.73)

∂B
∂t

+ ∇ · Y = 0 (conservation of magnetic flux). (4.74)

These are the evolution equations for the variables ρ, π, H, and B in conserva-
tion form. Note that the quantities appearing in the divergence terms can all be
expressed in terms of these four variables so that they constitute yet another basic
set of variables to describe ideal MHD.

� Computation of primitive variables from conserved ones. The conservation equations
(4.71)–(4.74) are used in many numerical schemes to compute the time-advance of the
conserved variables ρ, π, H, B. The calculation of the primitive (original) variables ρ, v,
e or p, B from them is straightforward. However, calculation of the pressure,

p = (γ − 1)
[
H− 1

2 (π2/ρ + B2)
]
, (4.75)

presents a particular numerical problem. It involves subtraction of the sum of kinetic en-
ergy 1

2π2/ρ and magnetic energy 1
2 B2 from the total energy H, which may not result in
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Fig. 4.6. Magnetic stress and tension in a flux tube.

a positive numerical value for p. It is clear that this requires additional care in the con-
struction of acceptable numerical schemes since β ≡ 2p/B2 � 1 for many plasmas of
interest. �

The stress tensor T is composed of the Reynolds stress tensor ρvv, the isotropic
pressure p I , and the magnetic part 1

2 B2 I − BB of the Maxwell stress tensor. In
a projection based on the velocity v, the only non-vanishing contribution to the
Reynolds stress is a positive stress (‘pressure’) ρv2 along v . The remaining part of
the stress tensor is more clearly represented in a projection based on the magnetic
field B : ⎛

⎜⎜⎝
p + 1

2 B2 0 0

0 p + 1
2 B2 0

0 0 p − 1
2 B2

⎞
⎟⎟⎠

⊥
⊥
‖ .

Hence, the magnetic field provides positive stress, magnetic pressure, in directions
perpendicular to B and negative stress, magnetic tension, parallel to B (Fig. 4.6).

The different terms of the total energy densityHmay be grouped into two parts:

H = K +W , (4.76)

where K is the kinetic energy density,

K ≡ 1
2ρv2 , (4.77)

andW is the potential energy density,

W ≡ ρe + 1
2 B2 = p

γ − 1
+ 1

2 B2 . (4.78)
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In many plasmas of interest, the magnetic energy density 1
2 B2 represents a huge

energy reservoir that may be released suddenly, e.g. in violent disruptions in toka-
maks, in solar flares, in coronal mass ejections, and in many other explosive events
in astrophysics. The energy flow vector U is again composed of a hydrodynamic
part (the term with the bracket in Eq. (4.69)) and a magnetic part. The latter part
may be transformed into the usual Poynting vector:

Umagn ≡ B2v − v · B B
(A.2)= −(v × B) × B

(4.48)= E × B ≡ S , (4.79)

which represents the flow of electromagnetic energy.
On purely formal grounds, we have introduced the tensor Y ≡ vB − Bv in the

evolution equation (4.74) for B. We have not given a name to this symbol because
it appears to have no direct intuitive meaning. The reason we wrote the flux equa-
tion in this way is that one obtains the jump conditions most easily from it (see
Section 4.5) and, also, numerical algorithms based on finite volume discretiza-
tion exploit this formulation. However, whereas global conservation laws for mass,
momentum, and energy are obtained by the application of Gauss’ theorem on the
equations for ρ, π and H, to get a global conservation law for the magnetic flux
one should apply Stokes’ theorem. For that reason, the previously exploited form
of Faraday’s law (4.15), with the curl operator, is far to be preferred over that of
Eq. (4.74), with the divergence.

Consider now a plasma surrounded by a perfectly conducting wall so that both
v · n = 0 and n · B = 0 at the wall (which are the b.c.s (4.39) and (4.41) derived
in Section 4.2.2). Define the following quantities:

– total mass M ≡
∫

ρ dτ , (4.80)

– total momentum Π ≡
∫

π dτ , (4.81)

– total energy H ≡
∫
H dτ , (4.82)

– total magnetic flux � ≡
∫

B · ñ dσ̃ , (4.83)

where we now abbreviate the previously used triple and double integral signs for
volume and surface integration by just a single integral. In the definitions of the
total mass, momentum, and energy,

∫
dτ is the total plasma volume enclosed by

the surface
∮

dσ of the wall. However, in the definition (4.83) of the total magnetic
flux, we have put a tilde on the surface element dσ̃ and the normal vector ñ to
indicate that they refer to a cross-section of the plasma enclosed by a boundary
curve

∮
dl lying in the wall (like in Fig. 4.5 for the fluxes in a tokamak).
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By applying Gauss’ theorem (A.14) to the local mass conservation equation
(4.71) we find the time derivative of the total mass,

Ṁ =
∫

ρ̇ dτ = −
∫

∇ · π dτ = −
∮

π · n dσ = 0 , (4.84)

which vanishes by virtue of the b.c. (4.39). Hence, the total mass is conserved.
Applying Gauss’ theorem, and the b.c.s (4.39) and (4.41), to the local momentum
conservation equation (4.72) gives

F = Π̇ =
∫

π̇ dτ = −
∫

∇ · T dτ = −
∮

(p + 1
2 B2) n dσ , (4.85)

so that the total momentum is conserved, however, only if the total force exerted
by the wall vanishes. If this were not the case, there would be an imbalance of the
last term involving the total pressure. This is a logical proviso if the configuration
is to remain in place (we exclude disasters like earthquakes or disruptions of the
vessel). Applying Gauss’ theorem, and the mentioned b.c.s, to the local energy
conservation equation (4.73) gives

Ḣ =
∫
Ḣ dτ = −

∫
∇ · U dτ = −

∮
U · n dσ = 0 , (4.86)

which states that the total energy is conserved.
On the other hand, applying Stokes’ theorem (A.18), and the b.c.s (4.39) and

(4.41), to the induction equation (4.48), we obtain

�̇ =
∫

Ḃ · ñ dσ̃ =
∫

∇ × (v × B) · ñ dσ̃ =
∮

v × B · dl = 0 , (4.87)

since v, B, and dl are tangential to the wall (as discussed already in Section 4.2.2).
Hence, magnetic flux is conserved as well: it cannot leave or enter the vessel.

Consequently, in a plasma enclosed by a rigid shell (this will be called model I
in Section 4.6), the boundary conditions v · n = 0 and n · B = 0 guarantee that
all physical quantities of interest are conserved, so that the system is closed.
This remains true for a plasma surrounded by vacuum (model II), as will be
proved in Section 4.6 by appropriate modifications of these boundary conditions.
It is no longer true if the wall is replaced by a system of external coils with
time-dependent currents (model III): magnetic flux and Poynting flux may be
pumped into the system. Similarly, coronal plasmas bounded by an immobile
photosphere (models V and VI of Section 4.6), can be extended to incorporate
coronal changes of mass, momentum, energy and magnetic flux by photospheric
boundary motions. We conclude that the conservation equations (4.71)–(4.74) are
an extremely powerful representation of the nonlinear macroscopic dynamics of
plasmas.
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Fig. 4.7. Kinematics of (a) line element dl, (b) surface element dσ, (c) volume
element dτ .

4.3.3 Local conservation laws – conservation of magnetic flux

We now wish to describe the local conservation properties, in particular flux con-
servation, in terms of the dynamics of fluid elements. To that end, it is helpful to
derive the kinematic expressions for the change in time of the geometric quantities.

First, consider the fluid flow v(r) at the positions r and r + dl and let us find the
equations describing the motion of the line element dl connecting those positions
(Fig. 4.7(a)). This is given by the Lagrangian derivative of dl,

D

Dt
(dl) = D(r + dl)

Dt
− Dr

Dt
= v(r + dl) − v(r) = dl · (∇v) , (4.88)

which describes the kinematics of a line element.
Next, we define the surface element by the vector product dσ ≡ dl1 × dl2

(Fig. 4.7(b)). Its Lagrangian derivative is derived by applying Eq. (4.88) twice:

D

Dt
(dσ) = D(dl1)

Dt
× dl2 + dl1× D(dl2)

Dt
= dl1 · (∇v) × dl2 − dl2 · (∇v)× dl1.

Note the brackets around the expression (∇v) , which are introduced here to in-
dicate that the gradient is meant to operate only on the quantity inside. To further
reduce the kinematic relation obtained, we need some vector identities that are
rather involved because of the tensorial character of (∇v) and, therefore, put in
small print.

� Horrible derivation of a useful expression. Use vector identity (A.2) of Appendix A:

(a × b) × c = a · c b − b · c a = b a · c − a b · c ,

where c has been moved to the utmost right since we will replace it by ∇:

(a × b) × ∇ = b a · ∇ − a b · ∇ .

Applying this operator on v gives

[ (a × b) × ∇ ] × v = [ba · ∇] × v − [ab · ∇] × v = −a · (∇v) × b + b · (∇v) × a .
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Setting a ≡ dl1 and b ≡ dl2, so that a × b ≡ dσ , we obtain the required expression:

−dl1 · (∇v) × dl2 + dl2 · (∇v) × dl1 = (dσ × ∇) × v = (∇v) · dσ − ∇ · v dσ ,

where Eq. (A.9) has been used in the last step. �
Hence,

D

Dt
(dσ) = −(dσ × ∇) × v = −(∇v) · dσ + ∇ · v dσ , (4.89)

which is the kinematic expression for the motion of a surface element.
For the derivation of local magnetic flux conservation the expression (4.89)

would be sufficient. However, to derive the local conservation laws for the other
variables, we also need the kinematics of a volume element. Its definition, dτ ≡
dσ · dl3 = (dl1 × dl2) · dl3 (Fig. 4.7(c)), gives by straightforward application of
Eqs. (4.89) and (4.88):

D

Dt
(dτ) = D(dσ)

Dt
· dl3 + dσ · D(dl3)

Dt

= −dl3 · (∇v) · dσ + ∇ · v (dσ · dl3) + dl3 · (∇v) · dσ

= ∇ · v dτ . (4.90)

This is the kinematic expression for the motion of a volume element.
Combining now the dynamic equation (4.71) with the kinematic relation (4.90)

for the motion of the mass of a fluid element, d M ≡ ρdτ , gives the following
expression for its rate of change:

D

Dt
(d M) = D

Dt
(ρdτ) = Dρ

Dt
dτ + ρ

D

Dt
(dτ)

= − ρ∇ · v dτ + ρ∇ · v dτ = 0 . (4.91)

Hence, the mass of a moving fluid element is constant.
Similarly, the rate of change of the momentum of a fluid element, dΠ ≡ πdτ ,

is found from Eqs. (4.72) and (4.90):

D

Dt
(dΠ) = Dπ

Dt
dτ + π

D

Dt
(dτ)

= −∇ · T dτ + (v · ∇π) dτ + π∇ · v dτ

= −∇ ·
[
ρvv + (p + 1

2 B2) I − BB − vπ
]

dτ

=
[

− ∇(p + 1
2 B2) + ∇ · (BB)

]
dτ

= (−∇ p + j × B) dτ �= 0 , (4.92)
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where the equality (4.54) has been used in the last step. Hence, the momentum
of a moving fluid element is not constant: it changes through the force density
−∇ p + j × B acting upon it.

For the change of the energy of a fluid element, d H ≡ H dτ , one finds from
Eqs. (4.73) and (4.90):

D

Dt
(d H) = DH

Dt
dτ +H D

Dt
(dτ)

= (−∇ · U + v · ∇H+H∇ · v) dτ = −∇ · (U − vH) dτ

= −∇ ·
[(

1
2ρv2 + p

γ − 1
+ p + B2

)
v − v · BB

− v
(

1
2ρv2 + p

γ − 1
+ 1

2 B2
)]

dτ

= −∇ ·
[
(p + 1

2 B2)v − v · BB
]

dτ

= −∇ ·
{[

(p + 1
2 B2) I − BB

]
· v

}
dτ �= 0 . (4.93)

Hence, the energy of a moving fluid element changes through the work performed
by the total pressure (isotropic as well as anisotropic) on the element. So far, in the
Lagrangian (co-moving) picture, we have only obtained the triviality of local mass
conservation. Momentum and energy are not conserved.

There is one local Lagrangian conservation law though which is non-trivial and
truly important. This does not follow from the motion of a volume element, but
from that of a surface element. Consider the magnetic flux through a surface el-
ement, d� ≡ B · dσ. Departing now from the original evolution equation (4.48)
for B, rather than the artificial one (4.74), we have

∂B
∂t

= ∇ × (v × B)
(A.13)= B · ∇v − B∇ · v − v · ∇B , (4.94)

so that

DB
Dt

≡ ∂B
∂t

+ v · ∇B = B · ∇v − B∇ · v . (4.95)

From this dynamic equation for B and the kinematic relation (4.89) for the surface
element, we obtain:

D

Dt
(d�) = D

Dt
(B · dσ) = DB

Dt
· dσ + B · D

Dt
(dσ)

= (
B · ∇v − B∇ · v

) · dσ + B · ( − (∇v) · dσ + ∇ · v dσ
) = 0 . (4.96)
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Hence, the magnetic flux through a co-moving surface element is constant. But,
since this holds for any surface element, the flux through any surface bounded by
a contour C moving with the fluid is conserved:

� =
∫

C
B · n dσ = const . (4.97)

This completes the discussion started in Sections 4.2.1 and 4.2.2, and centred
around the magnetic field equation (4.36) and the induction equation (4.38). To
summarize:

(1) the magnetic flux � of an arbitrary flux tube is a well-defined quantity;
(2) this flux remains constant as the flux tube moves.

Since we may shrink the cross-section of the flux tube to an arbitrarily small
size, the dynamics of single magnetic field lines now also comes into view. How-
ever, in this limit the magnetic flux vanishes so that we have to divide by another
quantity, that also vanishes in this limit, to get a finite result. For this we may take
the mass of a segment of the flux tube. To that end, combine the induction equa-
tion (4.95) in Lagrangian form with the mass conservation equation in Lagrangian
form,

Dρ

Dt
= −ρ∇ · v , (4.98)

so that

D

Dt

(
B
ρ

)
= 1

ρ
(B · ∇v − B∇ · v) + B

ρ
∇ · v =

(
B
ρ

)
· ∇v . (4.99)

Compare this expression with the kinematic relation (4.88) and note that a line
element dl ‖ B moves in exactly the same fashion as the quantity B/ρ . Plasma
on this line element and magnetic field line move together. In the words of
Alfvén (1950) [6], p. 82: the lines of force are thus ‘frozen’ in the body. Indeed,
in ideal MHD (perfect conductivity!), the concept of magnetic field lines obtains
more physical reality than it even had in Faraday’s times.

Thus, field lines and magnetic flux moving with the plasma manifest the princi-
pal conservation property of plasmas, viz. conservation of magnetic flux.

4.3.4 Magnetic helicity

After the discussion of the local and global conservation properties of the basic
MHD equations, the exposition of conservation laws appears to be complete. How-
ever, even though the four partial differential equations for ρ, v, p and B are a
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complete set expressing these conservation properties, this is not so. Magnetohy-
drodynamics permits many different approaches which shed light on this fasci-
nating subject, and which all start afresh from the basic equations. In particular,
in studies of the dynamo mechanism for magnetic field generation, the develop-
ment of MHD turbulence, and the resistive reconnection of magnetic field lines,
the discussion of the magnetic topology properties of global plasma configurations
is greatly facilitated by a representation of the magnetic field in terms of the vector
potential.

Let us, therefore, concentrate on the magnetic field equations, taking the deter-
mination of the density, velocity, and pressure from the first three MHD equations
for granted (assuming some magic black box taking care of those variables). We
decompose the induction equation (4.15)(a) again in Faraday’s law and the ideal
MHD version of Ohm’s law and, of course, take into account that B should be
divergence free:

∂B
∂t

= −∇ × E , E = −v × B , ∇ · B = 0 . (4.100)

The latter constraint is also called the solenoidal condition for the magnetic field.
It may be satisfied once for all by means of the vector potential A:

B = ∇ × A . (4.101)

Ohm’s law then becomes

E = −v × (∇ × A) , (4.102)

and Faraday’s law may be integrated once to provide the induction equation in
terms of A:

∂A
∂t

= v × (∇ × A) − ∇� , (4.103)

where � is a scalar potential. Since the equations (4.101)–(4.103) are invariant
under a gauge transformation A → A + ∇χ , � → � − ∂χ/∂t , with arbitrary
scalar function χ , there is no loss in generality if we choose � = 0 as a gauge
condition; see Jackson [117].

Next, we introduce the magnetic helicity

K (V ) ≡
∫

V
A · B dτ , (4.104)

where the integration is over the volume V of some flux tube, as introduced in
Section 4.2.1. The Lagrangian rate of change of this quantity is easily determined
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from the expressions we have derived:

DK

Dt
=

∫ [
DA
Dt

· B + A · DB
Dt

]
dτ +

∫
A · B

D

Dt
(dτ)

(4.90)=
∫ [

∂A
∂t

· B + v · (∇A) · B + A · ∂B
∂t

+ v · (∇B) · A + A · B ∇ · v
]

dτ

(A.6)=
∫ [

(v × B) · B + A · ∇ × (v × B) + ∇ · (A · B v)

]
dτ

(A.12)=
∫

∇ ·
[
(v × B) × A + A · B v

]
dτ

(A.14)=
∫ [

A · v B − A · B v + A · B v
]

· n dσ = 0, (4.105)

because B · n = 0 on the boundary of the flux tube. Hence, as first shown by
Woltjer [247], the magnetic helicity of any flux tube is conserved in ideal MHD.
Clearly, since the plasma can be decomposed in infinitely many different ways
in flux tubes, from infinitesimally small to globally large, there is an infinity of
different magnetic helicities which are all conserved.

To appreciate the subtleties of the magnetic helicity concept, let us compute it
for some magnetic field distributions in an infinitely long plasma cylinder with
circular cross-section:

B = Bθ (r) eθ + Bz(r) ez , (4.106)

where r , θ , z are cylindrical coordinates. This helical magnetic field may be char-
acterized by the distribution of the inverse pitch µ(r) of the field lines:

µ(r) ≡ Bθ (r)

r Bz(r)
. (4.107)

(For the finite length (L = 2π R0) periodic cylinder model of a torus, this quan-
tity is related to the safety factor q(r), defined in Eq. (2.161) of Section 2.4.3,
by q = (µR0)

−1.) For the θ -pinch (µ = 0) and z-pinch (µ → ∞) examples of
Section 2.4.3,

Bθ = 0 ⇒ Az = −
∫ r

0
Bθ dr = 0 (θ -pinch) ,

(4.108)

Bz = 0 ⇒ Aθ = 1

r

∫ r

0
r Bz dr = 0 (z-pinch) ,

so that the integrand I ≡ Aθ Bθ + Az Bz of the helicity integral (4.104) vanishes,
and, hence, the helicity vanishes as well. Apparently, the magnetic field should be
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Fig. 4.8. Thin flux tube topologies: (a) two linked magnetic loops; (b) one knot-
ted loop. (Adapted from Moffatt [157].)

at least helical to have K �= 0 . However, for a general helical magnetic field in
cylindrical geometry, the expression for the integrand may be written as

I (r) = Bθ

r

∫ r

0
r Bz dr − Bz

∫ r

0
Bθ dr = µBz

∫ r

0

Bθ

µ
dr − Bz

∫ r

0
Bθ dr .

(4.109)
Hence, also for a constant pitch (µ = const) helical magnetic field in a cylinder,
the helicity vanishes: I (r) = 0 ⇒ K (r) = 0 . In other words, magnetic helicity
is not just the property that field lines are helical. In an infinite cylinder, the field
lines should at least have different values of µ at different radii, i.e. they should
have magnetic shear.

More important than these local considerations are the global magnetic topol-
ogy implications for the magnetic helicity. This may be demonstrated from the
example of linked magnetic loops constructed by Moffatt [157] (see Fig. 4.8). Two
infinitesimally thin flux tubes C1 and C2 with longitudinal magnetic fluxes �1 and
�2 are linked as shown in Fig. 4.8(a). Outside these loops, B = 0 . The helicity of
the first loop then becomes

K1 =
∫

V1

A · B dτ =
∮

C1

A · dl
∫

S1

B · n dσ = �1

∮
C1

A · dl . (4.110)

Since the magnetic field vanishes in the intermediate region, the contour C1 of the
latter line integral over A may be shrunk to a small contour bounding the cross-
section of the second loop, so that

�2 =
∫

S2

B · n dσ =
∫

S2

(∇ × A) · n dσ
(A.18)=

∮
C1

A · dl . (4.111)

A similar argument may be applied to the second loop, so that we obtain the fol-
lowing significant expression for the total helicity:

K1 = K2 = �1�2 ⇒ K = K1 + K2 = 2�1�2 . (4.112)
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When the tubes wind n times around each other, we get

K1 = K2 = ±n�1�2 ⇒ K = K1 + K2 = ±2n�1�2 , (4.113)

where the + or − refers to right- or left-handed orientation.
Magnetic flux tubes may also be knotted, with non-vanishing helicity in gen-

eral. A single right-handed trefoil knot is shown in Fig. 4.8(b). Since the magnetic
field has opposite directions at the points A and B, pinching the loop by moving
these points towards each other produces a linking equivalent to Fig. 4.8(a). Hence,
�1 = �2 = �, so that K = 2�2 for this knot.

Returning now to our infinite cylindrical flux tubes, an example of suffi-
cient complexity in the radial direction is obtained for force-free magnetic fields.
Such fields, where j ‖ B so that the Lorentz force vanishes, are solutions of the
differential equation

j = ∇ × B = αB , (4.114)

where α is an arbitrary function of r. A particularly useful example is the cylindri-
cal solution for constant α constructed by Lundquist [149]:

Bz = C J0(αr) , Bθ = C J1(αr) , (4.115)

where C ≡ Bz(0) is the amplitude of the magnetic field on axis, and J0 and J1

are the zeroth and first order Bessel functions of real argument; see Abramowitz
and Stegun [1], Chapter 9. Because the Bessel functions oscillate with increasing
values of r , the direction of this helical magnetic field constantly changes for the
different annularly nested cylinders, which all may be considered as separate flux
tubes; see Fig. 4.9(a). Using the differential properties of the Bessel functions,

J1 = −J0
′ , x J0 = (x J1)

′ , (4.116)

where x ≡ αr , the expressions for the vector potential become

Az = −C
∫ r

0
J1(αr) dr = C

α

[
J0(αr) − 1

]
,

(4.117)

Aθ = C

r

∫ r

0
r J0(αr) dr = C

α
J1(αr) .

Hence,

Ī (r) ≡ α I (r) ≡ α (Aθ Bθ + Az Bz) = C2
[

J 2
0 (αr) + J 2

1 (αr) − J0(αr)
]
,

(4.118)
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Fig. 4.9. Lundquist force-free magnetic field: (a) components; (b) normalized
helicities.

and the renormalized helicity per volume of unit length L of the cylinder becomes

K̄ (r) ≡ α

π Lr2
K (r) = 2

r2

∫ r

0
Ī (r) r dr

= 2C2

α2r2

∫ αr

0

[
J 2

0 (x) + J 2
1 (x) − J0(x)

]
x dx ,

= C2

α2r2

[ (
αr J0(αr)

)2 +
(
αr J1(αr) − 1

)2 − 1 + 4
∞∑

n=1

2n J 2
2n(αr)

]
.

(4.119)

The integrals of the Bessel functions are obtained from standard formulas; see
Abramowitz and Stegun [1], Chapter 11. The essential point is that, whereas the
integrand I (r) oscillates, the integral K (r) remains positive definite (for α > 0 ) or
negative definite (for α < 0 ); see Fig. 4.9(b). Hence, the total helicity of a force-
free magnetic flux tube of constant α is non-zero, in contrast to the constant pitch
magnetic field (which could be force-free as well) considered above. Moreover,
since the integrand I (r) oscillates, the helicities of the constituent annular flux
tubes have consecutively opposite signs. All these flux tubes are linked in the sense
of Fig. 4.8.
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Consequently, the dynamics of force-free magnetic fields, conserving all these
helicities, is an intricate subject. In particular, considering the finite length periodic
cylinder as a model for toroidal configurations, one should enforce the helicity
to remain single-valued on the domain (which is multiply-connected in a torus).
This may be done by means of a gauge-invariant generalization of the helicity; see
Reiman [192]. Similarly, when the solar corona is considered as a dynamic mag-
netized plasma bounded by the photosphere, one should pay particular attention
to the formulation of gauge-invariant boundary conditions at the photosphere; see
Berger [24].

For further discussions of the helicity concept: see Moffatt [157] for applica-
tions to dynamo theory, see Biskamp [29] for the theory of Taylor [227] on the
attainment of minimum energy states by self reversal of magnetic fields, and see
Priest and Forbes [191] for applications to coronal magnetic fields.

4.4 Dissipative magnetohydrodynamics

4.4.1 Resistive MHD

Conservation of magnetic flux is directly connected with perfect conductivity,
i.e. zero resistivity. Like in ordinary fluid mechanics, ideal fluids do not provide the
full story but have to be complemented with a consideration of dissipative effects
in boundary layers that generally occur, even though the dissipation coefficient
may be extremely small; see e.g. Batchelor [17]. This happens because this coef-
ficient multiplies the gradient of a physical quantity that is usually bounded but
becomes very large in the boundary layer, producing a finite (and important) effect
there. In contrast to ordinary fluid mechanics, in resistive MHD such ‘boundary’
layers are not associated with the physical boundaries of the system but with in-
ternal boundaries beyond which the gradient of the magnetic field (i.e. the current
density) becomes very large.

The ideal MHD equations (4.12)–(4.15) for the variables ρ, v, p and B permit
a straightforward generalization to include one form of dissipation, viz. Ohmic
dissipation through the plasma resistivity η. The resistive MHD equations3 were
introduced in Section 2.4.1. We recall the main points of the discussion: Ampère’s
law (4.10),

j = 1

µ0
∇ × B , (4.120)

3 In this section, we temporarily reintroduce the constant µ0 to establish the dimensional expressions for the
dissipative parameters. This requires the replacements B → B /

√
µ0 , E → E /

√
µ0 , j → √

µ0 j , and η →
η/µ0 in the previously obtained dimensionless equations.



162 The MHD model

and Ohm’s law (4.8) in the moving frame, extended with the resistive term,

E′ ≡ E + v × B = η j , (4.121)

are substituted in Faraday’s equation (4.1) and combined with the classical fluid
equations. This gives the following set of evolution equations for resistive MHD,
expressing

– conservation of mass:

∂ρ

∂t
= −∇ · (ρv) , (4.122)

– conservation of momentum:

ρ
( ∂

∂t
+ v · ∇

)
v = −∇ p + ρ g + 1

µ0
(∇ × B) × B, (4.123)

– (near) conservation of entropy:

( ∂

∂t
+ v · ∇

)
p = −γ p∇ · v + (γ − 1)

η

µ2
0

(∇ × B)2 , (4.124)

– (near) conservation of magnetic flux:

∂B
∂t

= ∇ × (v × B) − 1

µ0
∇ × (η ∇ × B) , ∇ · B = 0 . (4.125)

We have seen in Section 4.3.1, for the ideal MHD case, that the equations need sub-
stantial reworking to bring them in conservation form and to demonstrate the actual
conservation of the indicated quantities. The resistive counterpart, i.e. demonstra-
tion of non-conservation (or, rather, conservation excepting small dissipative con-
tributions) will be given in Section 4.4.2.

The equations have been written as evolution equations, i.e. in a form that is
suitable for numerical integration. In this context, the constraint ∇ · B = 0 on the
magnetic field complicates the structure of the evolution problem (4.122)–(4.125)
significantly. Since the dynamics of plasmas is associated with an evolving mag-
netic geometry, its satisfaction is an important issue in computational MHD.

(a) Dimensionless parameters The ideal MHD equations (4.12)–(4.15) are ob-
tained from Eqs. (4.122)–(4.125) by just dropping the terms with η , i.e., the Joule
heating term in Eq. (4.124) and the magnetic field dissipation term in Eq. (4.125),
so that exact conservation is obtained. This is justified if the magnetic Reynolds
number, introduced in Section 2.4.1, is large:

Rm ≡ µ0l0v0

η

 1 . (4.126)
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Here, l0 and v0 are characteristic length and velocity scales of the plasma flow. In
Section 4.1.2, we have introduced another characteristic velocity for the plasma,
viz. the Alfvén speed vA. Using that characteristic velocity, we may define an-
other dimensionless parameter that is large for small resistivity, viz. the Lundquist
number:

Lu ≡ µ0l0vA

η

 1 . (4.127)

(In laboratory plasma literature, this quantity is usually indicated by the symbol S.
Since we already have another use for this symbol, we prefer the symbol Lu here.)
Which of the two dimensionless numbers is to be preferred depends on the resistive
problem considered. In turbulence problems, where flow dominates, the magnetic
Reynolds number is the more significant one. In resistive instabilities, also present
in the absence of flow, the Lundquist number is the more relevant one (Biskamp
[29]). Their ratio is determined by a third dimensionless parameter, characteristic
for ideal MHD flow problems, viz. the Alfvén Mach number:

Rm

Lu
= v0

vA
≡ MA . (4.128)

Note that we have not distinguished v0 and vA in the numerical tables of Appendix
B. (In other words, MA = 1 has been assumed there.)

For fusion plasmas, the value of the resistivity is usually quite small, typically,
Rm ∼ 109. For astrophysical plasmas, the resistivity may be somewhat larger, but
then the length scales are very much larger too, so that huge values of the mag-
netic Reynolds number are obtained, e.g. Rm ∼ 1013 for the solar corona. It would
appear that the approximation (4.126) is an extremely good one so that there is
no need for the consideration of dissipative effects. However, heating and recon-
nection (connected with the non-conservation of magnetic flux) are generally ob-
served in plasmas, so that resistive processes must be operating. The crucial point
is that η occurs in the equations in combination with gradients of the magnetic
field. Hence, if very small-scale perturbations occur, e.g. due to specific resistive
modes (like tearing modes, see below) or turbulence, the associated resistive terms
may become sizeable. In addition, turbulence may increase the resistive coefficient
itself, which then becomes an anomalous transport coefficient. For numerical cal-
culations, all this implies extreme requirements on the necessary spatial resolution.

(b) Tearing and reconnection of magnetic field lines To appreciate the global im-
pact of small-scale resistive effects, consider the generic configuration illustrated
in Fig. 4.10(a). A sheet of surface currents pointing into the plane of drawing cre-
ates a magnetic field with opposite directions in the upper and lower halves of the
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cba

Fig. 4.10. Tearing and reconnection of magnetic field lines: (a) magnetic field
of opposite directions created by sheet current (pointing into the plane); (b) ideal
MHD perturbation; (c) reconfiguration of the magnetic geometry by a resistive
perturbation.

space. (The concept of surface current is precisely defined in Section 4.5.2. For
now, it suffices to consider it as a thin plasma layer where the current density be-
comes very large.) Magnetic configurations of this kind frequently occur, e.g. on
the day-side of the magnetosphere, when the solar wind impinges upon it with an
embedded IMF (interplanetary magnetic field) that may have a direction opposite
to that of the magnetosphere itself, and also on the night-side of the magneto-
sphere, where the solar wind drags the planetary magnetic field lines stretching
them out to create the magnetotail over a distance of many planetary radii. These
situations are inherently dynamic where the two magnetic fields may be pushed to-
gether by plasma motions. In ideal MHD perturbations, as shown in Fig. 4.10(b),
such dynamics is essentially flux-conserving so that the magnetic topology cannot
be changed. In resistive MHD, however, the two parts of the magnetic structure
may be reconfigured to form the structure shown in Fig. 4.10(c): the magnetic
field lines have been broken and rejoined to form an entirely new magnetic topol-
ogy with an x-point separatrix (dotted line).

The driving force leading to reconnection is the fact that the magnetic con-
figuration depicted in Fig. 4.10(c) represents a lower energy state than that of
Fig. 4.10(a). The ideal MHD perturbation of Fig. 4.10(b) is not able to create that
state because of flux conservation. Hence, the important remaining question to be
answered is on what time scale the constraint of flux conservation can be bro-
ken so that reconnection can take place. In the absence of current concentration,
this time scale is just determined by resistive diffusion, which is extremely slow,
as we have seen in Sections 2.4 and 3.3.3. However, when external forcing creates
current sheets this time scale apparently becomes short enough to permit all the vi-
olent plasma phenomena observed in astrophysical plasmas. On the other hand, in
laboratory fusion research efforts have been successful to avoid such disruptions.

We will return to resistive plasma dynamics in the companion Volume 2 on
Advanced Magnetohydrodynamics, when we have obtained sufficient preparation
from ideal and one-dimensional analysis. The subject of reconnection is exten-
sively treated in the monographs by Biskamp [30] and by Priest and Forbes [191].
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4.4.2 (Non-)conservation form of the dissipative equations�

It is instructive to consider how the introduction of resistivity and other dissipative
effects spoils the conservation form of the MHD equations. This section is put in
small print since it may be skipped on first reading of Chapter 4.

� (a) Resistive effects Introducing resistivity, the original equations (4.45) for ρ and (4.46)
for v are unchanged, but Eq. (4.47) for the internal energy e is modified by the Ohmic
dissipation term:

∂e

∂t
+ v · ∇e + (γ − 1)e ∇ · v = 1

ρ
η j2 , e ≡ 1

γ − 1

p

ρ
, (4.129)

whereas Eq. (4.48) for the magnetic field B is changed by the modification of the electric
field in Ohm’s law:

∂B
∂t

+ ∇ × E = 0 , E = −v × B + η j , ∇ · B = 0 . (4.130)

Consequently, the conservation equations (4.59) for ρ and (4.60) for ρv remain unchanged,
but the energy conservation (4.61) and the flux conservation equation (4.62) have to be
modified.

In the derivation of the energy conservation equation, the contribution (4.56) remains
the same, but the contributions (4.57) and (4.58) are to be replaced by

∂

∂t
(ρe) + ∇ · (ρev) + p∇ · v = η j2 , (4.131)

∂

∂t

(
B2

2µ0

)
+ 1

µ0
∇ ·

[
B × (v × B)

]
+ v · j × B = − 1

µ0
B · ∇ × (ηj)

(A.12)= − 1

µ0
∇ · (η j × B) − η j2.

(4.132)

Adding the contributions (4.56), (4.131), and (4.132) yields the resistive version of the
energy conservation equation:

∂

∂t

(
1
2ρv2 + ρe + B2

2µ0

)
+ ∇ ·

[(
1
2ρv2 + ρe + p

)
v

+ 1

µ0

(
− v × B + η j

)
× B

]
= −ρv · ∇�. (4.133)

Clearly, this equation remains an energy conservation equation: magnetic energy may be
converted into internal energy, but the sum is constant. Notice that resistivity here enters in
the divergence term as µ−1

0 E × B , which is the Poynting flux discussed in Section 4.3.2.
In contrast, the magnetic flux equation becomes essentially non-conservative, due to the

magnetic diffusivity coefficient η/µ0 (with dimension [η/µ0] = m2 s−1 ) on the RHS:

∂B
∂t

+ ∇ · (vB − Bv) = −∇ ×
( η

µ0
∇ × B

)
(A.7),(A.5)= η

µ0
∇2B + j × ∇η , ∇ · B = 0 .

(4.134)
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Finally, the entropy conservation equations (4.64) and (4.65) change into equations that
clearly exhibit non-conservation due to Ohmic dissipation:

DS

Dt
≡ ∂S

∂t
+ v · ∇S = (γ − 1)ρ−γ η j2 ,

∂

∂t
(ρS) + ∇ · (ρSv) = (γ − 1)ρ−γ+1 η j2 . (4.135)

The equations (4.59), (4.60), (4.133), (4.134) constitute the complete set of (non-)
conservation equations for resistive MHD, whereas the equations (4.135) are a mere con-
sequence. �
� (b) Other dissipative effects It is also instructive to generalize the equation of motion
and the internal energy equation with contributions of viscosity, heat conduction, radiative
losses, etc., to indicate how the MHD equations are related to the ordinary hydrodynamics
equations (like the Navier–Stokes equation); see e.g. Roberts [194]. For the sake of that
argument, we ignore the tremendous complexity of the plasma transport coefficients in the
presence of a magnetic field, as summarized in Section 3.3.2, and just exploit scalar one-
fluid transport coefficients.

The inclusion of viscous effects turns Eq. (4.123) into an equation expressing (near)
conservation of momentum:

ρ
( ∂

∂t
+ v · ∇

)
v = −∇ p + ρ g + 1

µ0
(∇ × B) × B + Fvisc , (4.136)

Fvisc ≈ ρν(∇2v + 1
3∇∇ · v) , (4.137)

where ν ≡ µ/ρ is the kinematic viscosity coefficient (with dimension [ν] = m2 s−1 ).
The internal energy equation (4.19) is modified by the effects of heat generation and

heat flow, associated with the different dissipation mechanisms, as follows:

ρ
De

Dt
+ (γ − 1)ρe∇ · v = −∇ · h + Q , (4.138)

where h is the heat flow and Q is the generated heat per unit volume. The heat flow is given
by the expression

h ≈ −κ∇(kT ) = −ρλ∇e , (4.139)

where κ is the coefficient of thermal conductivity and λ ≡ kκ/(Cvρ) is the coefficient of
thermal diffusivity (with dimension [λ] = m2 s−1). The total generated heat can be written
as the difference between heating proper, H , due to resistivity, viscosity, thermonuclear
fusion energy production, etc., and the thermal losses, L , e.g. due to radiation:

Q ≡ H − L , H = Hres + Hvisc + Hfus + · · · , L = Lrad + · · · . (4.140)

The resistive and viscous heating terms may be estimated as

Hres ≈ η j2 = η µ−2
0 |∇ × B|2 , Hvisc ∼ ρν|∇v|2 , (4.141)

where we stress once more that the anisotropies of the transport coefficients parallel and
perpendicular to the magnetic field have been ignored.

This indicates how the kinematic diffusivity ν governs diffusion of the velocity, the
thermal diffusivity λ governs diffusion of the internal energy, and the magnetic diffusiv-
ity η/µ0 governs diffusion of the magnetic field. These effects are completely negligible
when the MHD description of plasmas applies, except when small-scale structures are
present. �
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4.5 Discontinuities

4.5.1 Shocks and jump conditions

An important application of the MHD conservation equations (4.59)–(4.62), or
(4.71)–(4.74), is the derivation of shock conditions. Here, it is crucial that the
energy conservation equation (4.61), rather than the entropy conservation equa-
tion (4.65), is exploited because a shock is an irreversible (entropy-increasing)
transition; see Burgess [46], Courant and Friedrichs [59], or Landau and
Lifshitz, Fluid Mechanics [137]. In ordinary gas dynamics, this transition is asso-
ciated with supersonic flow upstream of the shock and subsonic flow downstream.
Given the upstream state of the flow, the question there arises: what is the state
on the downstream, subsonic, side of the shock? The Rankine–Hugoniot relations,
i.e. the shock conditions, provide the answer to this question for ordinary gas dy-
namics. In that case, the characteristic speed of propagation of disturbances is the
sound speed, c, and the so-called Mach number, M ≡ v/c, determines whether the
flow is supersonic (M > 1) or subsonic (M < 1). In MHD, there are three char-
acteristic speeds (as we will see in Chapter 5). Consequently, the subject of MHD
shocks is much richer than that of gas dynamic shocks. For two-fluid (or multi-
fluid) plasmas, the consideration of the separate particle effects of the electrons
and ions even leads to more characteristic speeds, corresponding to the different
electron and ion wave motions. In the kinetic theory of plasma dynamics, the no-
tion of collisionless shocks occurs, which is important, e.g., for the description of
magnetospheric plasmas; see Burgess [46]. Here, we will restrict the analysis to
MHD shocks.

At this point, our interest is even more restricted since we have not yet de-
veloped the dynamical tools (e.g. the MHD waves to be discussed in Chapter 5)
that are necessary to properly analyse the different shocks permitted. Hence, the
discussion of genuine shocks is relegated to a later chapter, devoted to transonic
MHD flows and shocks, in the companion Volume 2. Here, we will just use the
mechanism of shock formation to derive the appropriate jump conditions for plas-
mas with an internal boundary. Our immediate aim is to generalize the boundary
conditions (4.39) and (4.41), which are valid for laboratory plasmas that are com-
pletely isolated from the outside world by a rigid wall, to boundary conditions
describing more compound magnetic confinement structures.

First, consider the one-dimensional flow of gas in which sound waves are ex-
cited. Local perturbations travel with the sound speed c ≡ √

γ p/ρ. Their trajec-
tories in the x−t plane, called characteristics (see Section 5.4), are two sets of
parallel straight lines with derivatives dx/dt = ±c . Suppose now that we sud-
denly increase the pressure, so that the sound speed increases (Fig. 4.11). In the
x−t plane this means that the slopes of the characteristics decrease. Therefore,
we may arrive at the situation where the characteristics would cross (Fig. 4.12(a)),



168 The MHD model

δ

p

x

2 1

shocked unshocked

Fig. 4.11. Shock formation.
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Fig. 4.12. (a) ‘Crossing characteristics’ due to a sudden change of the back-
ground variables. (b) In the ideal model, the characteristics meet at the shock
discontinuity.

if some other mechanism did not interfere. The picture suggests what will hap-
pen: information originating from different space-time points accumulates. Con-
sequently, gradients in the macroscopic variables build up until the point that the
idealized model breaks down and dissipative effects due to the large gradients have
to be taken into account. Eventually, a steady state will be reached where nonlinear
and dissipative effects counterbalance: a shock-wave has been created. Neglecting
the thickness δ of the shock, the steady state will consist of two regions with differ-
ent sound speed, separated by the moving shock front. In the x−t plane, this front
is located at the position where the forward characteristics (+c2) of the shocked
part meet the backward characteristics (−c1) of the unshocked part (Fig. 4.12(b)).

Without specifying the kind of dissipation, one may arrive at the so-called shock
relations that relate variables on the two sides of the propagating shock front. The
idea is that the ideal model breaks down inside a layer of infinitesimal thickness δ

(i.e., a thickness proportional to some power of the dissipation coefficient, which is
assumed to be vanishingly small), but it holds on either side of the layer. In the limit
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Fig. 4.13. Shock front.

δ → 0 the variables will jump across the layer, and the magnitude of the jumps
is determined from the condition that mass, momentum, energy and magnetic flux
should be conserved. Thus, one integrates the conservation equations (4.59)–(4.62)
across the shock and keeps the leading order contributions arising from the gradi-
ents normal to the shock front only, since these gradients are infinitely large in the
limit: ∂ f/∂l → ∞ , where f indicates any of the physical variables. Defining the
jump in f by

[[ f ]] ≡ f1 − f2 , (4.142)

these contributions give

lim
δ→0

∫ 2

1
∇ f dl = − lim

δ→0
n

∫ 2

1

∂ f

∂l
dl = n [[ f ]] , (4.143)

where n is the normal to the shock front, chosen to point in the direction of the
undisturbed fluid ahead of the shock (Fig. 4.13). By convention, the integration
across the shock, along l, is chosen in just the opposite direction, viz. from ©1
(undisturbed fluid) to ©2 (shocked part of the fluid). The time-derivatives ∂ f/∂t
also contribute to the shock conditions, as may be seen by transforming to a frame
moving with the normal speed u of the shock front:(

D f

Dt

)
shock

= ∂ f

∂t
− u

∂ f

∂l
,

where (D f/Dt)shock denotes the rate of change in a frame moving with the shock.
Since this quantity remains finite and ∂ f/∂l → ∞ , for balance we must have
∂ f/∂t → ∞ as well. Hence,

lim
δ→0

∫ 2

1

∂ f

∂t
dl = u lim

δ→0

∫ 2

1

∂ f

∂l
dl = −u [[ f ]] . (4.144)
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In conclusion: from Eqs. (4.143) and (4.144) it follows that the shock relations are
obtained by simply making the substitutions

∂ f/∂t → −u [[ f ]] , ∇ f → n [[ f ]] , (4.145)

in the conservation equations.
For the ideal MHD conservation equations (4.59)–(4.62), the substitutions

(4.145) result in the following general jump conditions:

−u [[ρ]] + n · [[ρv]] = 0 , (4.146)

−u [[ρv]] + n · [[ρvv + (p + 1
2 B2) I − BB]] = 0 , (4.147)

−u
[[

1
2ρv2 + p

γ − 1
+ 1

2 B2
]]

+ n ·
[[(

1
2ρv2 + γ

γ − 1
p + B2

)
v − v · BB

]]
= 0 , (4.148)

−u [[B]] + n · [[vB − Bv]] = 0 , n · [[B]] = 0 , (4.149)

where we have eliminated the internal energy variable e in favour of the pressure
p. Recall that the original entropy conservation equation had to be replaced by
the energy conservation equation since the latter remains valid in the presence of
dissipation. In the limit δ → 0, the dissipative boundary layer contributions vanish
and the variables ρ, v, p, and B may become discontinuous, according to the jump
conditions (4.146)–(4.149). However, the second law of thermodynamics demands
that the entropy should have increased (or, rather, should not have decreased) when
the shock has passed. Hence, Eqs. (4.146)–(4.149) have to be supplemented with
the condition that entropy increases across the shock:

[[s]] ≤ 0 , or [[S]] ≡ [[ρ−γ p]] ≤ 0 (entropy). (4.150)

This miraculous condition is all that remains from the dissipative processes in the
limit of infinitesimal thickness of the boundary layer.

For the steady shocks that we will now consider, it is convenient to trans-
form to the shock frame, in which the shock is stationary, and the fluid veloc-
ities v′ ≡ v − un are evaluated with respect to this frame. The jump conditions
(4.146)–(4.149) may then be written as

[[ρv′
n]] = 0 (mass), (4.151)

[[ρv′
n

2 + p + 1
2 B2

t ]] = 0 (normal momentum), (4.152)
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ρv′
n[[v′

t ]] = Bn[[Bt ]] (tangential momentum), (4.153)

ρv′
n

[[
1
2

(
v′

n
2 + v′

t
2
)

+ 1

ρ

(
γ

γ − 1
p + B2

t

)]]
= Bn[[v′

t · Bt ]] (energy), (4.154)

[[Bn]] = 0 (normal flux), (4.155)

ρv′
n

[[
Bt

ρ

]]
= Bn[[v′

t ]] (tangential flux), (4.156)

where the momentum equation (4.147) and the magnetic flux equation (4.149)
have been projected in the directions normal and tangential to the shock front.
Of course, these shock conditions also have to be supplemented with the entropy
condition (4.150).

We have now obtained six algebraic equations for the six jumps [[ρ]], [[vn]],
[[vt ]], [[p]], [[Bn]], [[Bt ]], so that we may compute the values of all variables on the
downstream side of the shock if their upstream values are known from the solution
of the PDEs themselves. The values of the variables on the downstream boundary
thus computed provide the boundary conditions to be imposed on the solution of
the PDEs in the downstream region. The entropy condition just forbids solutions
that do not correspond to an increase of the entropy on the shocked side.

4.5.2 Boundary conditions for plasmas with an interface

The jump conditions (4.150)–(4.156) provide the necessary tools to describe two
quite different physical phenomena (see Landau and Lifshitz, Electrodynamics of
Continuous Media [138]), viz.:

(1) boundary conditions for moving plasma–plasma interfaces, where there is no flow
across the discontinuity (v′

n = 0);
(2) jump conditions for genuine shocks, where flow across the discontinuity (v′

n �= 0) is an
essential feature.

We will not enter the discussion of the second class of discontinuous phenomena
at this point, except to mention that our definition of shocks is chosen such that it
contains rotational discontinuities (usually not considered to be proper shocks) as
well as magneto-sonic shocks. Their dynamics will be treated in a later chapter, in
Volume 2.

For the first class of discontinuous phenomena (co-moving interfaces, v′
n = 0),

the jump conditions reduce to:

[[p + 1
2 B2

t ]] = 0 (normal momentum), (4.157)
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Bn[[Bt ]] = 0 (tangential momentum), (4.158)

Bn[[v′
t · Bt ]] = 0 (energy), (4.159)

[[Bn]] = 0 (normal flux), (4.160)

Bn[[v′
t ]] = 0 (tangential flux). (4.161)

This permits two distinct possibilities for jumps, viz.

(a) contact discontinuities, if the magnetic field intersects the interface (Bn �= 0),
where the variables are alternatively

– jumping: [[ρ]] �= 0 ,

– continuous: v′
n = 0 , [[v′

t ]] = 0 , [[p]] = 0, [[Bn]] = 0 , [[Bt ]] = 0;
(4.162)

(b) tangential discontinuities, if the magnetic field is parallel to the interface (Bn =
0), where the variables are alternatively

– jumping: [[ρ]] �= 0 , [[v′
t ]] �= 0 , [[p]] �= 0 , [[Bt ]] �= 0 ,

– continuous: v′
n = 0 , Bn = 0 , [[p + 1

2 B2
t ]] = 0 . (4.163)

Note that the latter discontinuities are not a special case of the former ones.
On the basis of these two kinds of discontinuity, we may distinguish two types

of magnetic configuration with an interface, viz. astrophysical plasmas where the
magnetic fields typically originate in a planet, star, or other rotating object, with a
dynamo operating inside, but intersect the surface (in the case of a star, the pho-
tosphere) where the plasma density may jump to the much lower values pertinent
for a corona. Such jumps may be characterized as contact discontinuities. All vari-
ables should be continuous there, except for the density ρ (or the temperature T ,
or the entropy S). In laboratory plasmas aimed at thermonuclear energy produc-
tion, on the other hand, the discontinuities of interest really serve to confine a high
density plasma by a lower density one, that may even effectively qualify as a vac-
uum, in order to isolate it thermally from an outer wall. Such jumps are typically
tangential discontinuities at a magnetic surface that is nested within the other ones.
From Eq. (4.163) it is clear that these discontinuities permit much more freedom in
the choice of the values of the variables. Except for the density, also the tangential
velocity, the pressure, and the tangential magnetic field may jump, as long as the
magnetic field stays tangential and the total pressure remains balanced.

It should be stressed that this classification is not at all strictly one-to-one corre-
sponding with that of astrophysical and laboratory plasmas. In many astrophysical
plasmas of interest (e.g. at magnetospheric boundaries) tangential discontinuities
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occur, whereas in laboratory plasmas magnetic fields intersecting the boundary
have become an important issue (e.g. in divertor plasmas). We will treat the two
kinds of discontinuity, and their associated physical models, in reverse order since
tangential discontinuities (laboratory plasmas) admit a much cleaner picture of
confinement (Section 4.6.1). In this respect, the apparent simplicity of contact dis-
continuities is deceiving because these discontinuities separate regions with widely
different physical properties so that the formulation of realistic boundary condi-
tions usually becomes a much more involved problem. In Section 4.6.3, we will
just sketch the kind of astrophysical models possible.

We finish our exposition of discontinuities with the formulation of the bound-
ary conditions for plasma–plasma interfaces in the laboratory frame. In that frame,
vn = v′

n + u. Eliminating the normal speed u of the interface, the interface discon-
tinuities are characterized by [[vn]] = 0. The boundary conditions for a tangential
plasma–plasma interface then become:

n · B = 0 (at the interface) , (4.164)

n · [[v]] = 0 (at the interface) , (4.165)

[[p + 1
2 B2]] = 0 (at the interface) . (4.166)

The jump of the tangential magnetic field implies that there should be a surface,
or skin, current flowing at the plasma–plasma interface. Such a current is obtained
in the limit of a surface layer of thickness δ with large current density j when the
limits δ → 0 and |j| → ∞ are taken in such a way that j� ≡ lim δ→0, |j|→∞ (δ j)
remains finite. Note that the dimension of j� is that of current density times length,
i.e. current per unit length. Application of our jump recipe (4.145) to Ampère’s
law, j = ∇ × B, provides an expression for the magnitude of this surface current
density:

j� = n × [[B]] . (4.167)

When the plasma is rotating, so that there is a finite vorticity ω ≡ ∇ × v, there
may be a surface vorticity as well:

ω� = n × [[v]] . (4.168)

For the present purpose, these expressions (representing singularities of the cur-
rent density and the vorticity) are to be considered as mere consequences of the
application of the interface b.c.s (4.164)–(4.166).

4.6 Model problems

We are now in a position to formulate the proper boundary conditions to distin-
guish two broad classes of magnetic confined configurations, of which the tokamak
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and the coronal loop shown in Fig. 4.2 are a particular example. We will identify
six models, consisting of the MHD equations (4.12)–(4.15) + specification of a
particular magnetic geometry with associated b.c.s. Models I–III refer to labora-
tory plasmas with tangential discontinuities, and models IV–VI refer to astrophys-
ical plasmas with contact discontinuities.

4.6.1 Laboratory plasmas (models I–III)

The three models for confined laboratory plasmas are shown in Fig. 4.14. These
configurations refer to toroidally symmetric tokamaks, i.e. the toroidal angle is
an ignorable coordinate (∂/∂ϕ = 0) for all physical variables. Such problems in-
volve the solution of partial differential equations (PDEs) in the two spatial co-
ordinates associated with the poloidal cross-section (shaded in the upper part of
Fig. 4.14). Therefore, they are called two-dimensional (2D) problems. The solution
of 2D PDEs requires numerical analysis, which has been carried out extensively
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Fig. 4.14. Three MHD models for magnetic confinement of laboratory plasma
(tokamak). (a) Model I: plasma surrounded by a wall; (b) model II (*): plasma
isolated from the wall by a vacuum (*: or another plasma); (c) model III: plasma
excited by currents in external coils. Bottom part: 1D (cylindrical) versions of
the three models. Surfaces where boundary conditions have to be imposed are
indicated by arrows.
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for tokamaks. One step more complicated is the stellarator, also a toroidal plasma
confinement system but axi-symmetry is lost there by the introduction of asym-
metric external coils and cross-sectional shaping in order to eliminate the toroidal
plasma current (which is essential for tokamak confinement, but associated with
dissipative decay and current-driven instabilities). Such configurations are called
3D. They require even more sophisticated numerical analysis.

However, in order to build up physical understanding and to develop mathemat-
ical techniques, the approximation of the toroidal geometry by that of an infinite or
‘periodic’ cylinder (bottom part of Fig. 4.14) is extremely useful. Since a circular
cylinder has two directions of symmetry, the resulting equations will be non-trivial
in only one of the three spatial coordinates (the radial one) and reduce to ordinary
differential equations (ODEs) in that coordinate. For this reason, this geometry is
considered to be one-dimensional (1D). The important point for the present discus-
sion is that this reduction does not change the b.c.s discussed, but merely facilitates
the solution of the differential equations. We will extensively exploit this simplifi-
cation.

(a) Model I : plasma confined inside rigid wall In this model (Fig. 4.14(a)), the
plasma is closed off from the outside world by a perfectly conducting wall. This is
appropriate for the study of equilibrium, waves, and instabilities of confined plas-
mas in closed vessels, as used in thermonuclear research. We already considered
the appropriate boundary conditions for this model in Section 4.2.2. At the wall,
both the normal magnetic field and the normal velocity have to vanish:

n · B = 0 (at the wall) , (4.169)

n · v = 0 (at the wall) . (4.170)

Recall from Section 4.3.2 that these b.c.s are sufficient to guarantee that the system
conserves all important physical quantities (mass, momentum, energy, magnetic
flux). Hence, this model is the simplest, and most relevant, one to describe confined
plasmas.

Amazingly, only two b.c.s need to be satisfied for eight variables. This is due to
the intrinsic anisotropy introduced in the system by the magnetic field. Of course,
the model is a restriction to facilitate analysis of confined plasmas. In reality, one
may encounter n · v �= 0, e.g. when plasma is injected or ejected, but this is a
complication to be introduced only when the more basic dynamics of this model
is fully understood.

(b) Model II : plasma–vacuum system confined inside rigid wall In this model
(Fig. 4.14(b)), the plasma is confined inside a rigid wall and isolated from it by
a region of low enough density to be treated as a ‘vacuum’. This model again
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describes confined plasmas in a closed vessel, but separated from the wall by a
vacuum region. The dynamics of the vacuum field variables Ê and B̂ should cor-
respond to the plasma dynamics described by the non-relativistic MHD equations
(4.12)–(4.15), where time and length scales were assumed to satisfy |∂/∂t |/|∇| ∼
v � c . This implies neglect of the displacement current also in Maxwell’s equa-
tions for the vacuum:

∇ × B̂ = 0 , ∇ · B̂ = 0 , (4.171)

∇ × Ê = −∂B̂
∂t

, ∇ · Ê = 0 . (4.172)

Actually, this again degrades the electric field to a secondary variable that may be
computed from the magnetic field B̂ . Hence, in the vacuum only one basic variable
is needed, viz. B̂, satisfying Eq. (4.171) and the boundary condition

n · B̂ = 0 (at the conducting wall) . (4.173)

This boundary condition is consistent with the assumption of vanishing tangential
electric field,

n × Ê = 0 (at the conducting wall) , (4.174)

since this also implies that n · (∇ × Ê) = 0 there, so that Eq. (4.172) then yields
the boundary condition (4.173) on the normal magnetic field.

Of course, we also need b.c.s connecting the plasma variables with the vacuum
magnetic field across the plasma–vacuum interface. In order to establish those,
we consider the closely related Model II*: plasma–plasma system confined in-
side rigid wall. This model is also illustrated by Fig. 4.14(b) and indicated by
the asterisk. Now, instead of a vacuum with B̂ satisfying Eq. (4.171), we have an-
other plasma with variables that satisfy the ideal MHD equations. These variables
are subject to the b.c.s (4.169) and (4.170) at the wall and the plasma–plasma
interface b.c.s (4.164)–(4.166) derived in Section 4.5.2. Hence, this model is com-
plete as well. Its significance is twofold: (1) it provides a useful alternative for the
description of the outer region of tokamaks; (2) it is more widely applicable to as-
trophysical plasmas, e.g. a solar coronal magnetic loop where an external plasma
may interact with the inner one to excite waves or to provide confinement. (In
that case, confinement by the outer wall is tacitly dropped and replaced by some
condition on behaviour at infinity.)

We now simply extrapolate model II* to obtain the b.c.s for model II. If the
outer plasma is replaced by a vacuum, the b.c. (4.165) is no longer needed since
the plasma velocity just determines the velocity of the plasma–vacuum interface
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and nothing else. Hence, the b.c.s for model II proper become:

n · B = n · B̂ = 0 (at the plasma–vacuum interface) , (4.175)

[[p + 1
2 B2]] = 0 (at the plasma–vacuum interface) . (4.176)

These boundary conditions are quite reasonable. If a normal magnetic field com-
ponent were sticking through the plasma–vacuum boundary, i.e. if Eq. (4.175) did
not hold, the vacuum region simply could not exist since plasma would freely flow
along the magnetic field lines into the vacuum region. Next, if there were no bal-
ance of the total pressure, i.e. if Eq. (4.176) were not valid, the plasma–vacuum
interface would simply be blown apart by the huge pressure imbalance. Finally,
recall from the discussion in Section 4.5.2 that this pressure balance condition per-
mits jumps in the pressure and in the two tangential components of the magnetic
field, associated with a surface current density

j� = n × [[B]] (at the plasma–vacuum interface) . (4.177)

This is not a separate b.c. but just a consequence of the b.c.s (4.175) and
(4.176).

For later applications, it is of interest to also derive the boundary condition on
the electric field at the plasma–vacuum interface. In Section 4.5, we derived the
jump conditions starting from the MHD equations (4.12)–(4.15), where the electric
field was already eliminated. Applying the substitutions (4.145) to Faraday’s law
(4.1) before this elimination, with the normal interface velocity determined by
the plasma velocity, u = n · v, we obtain the following jump condition for the
electric field at model II interfaces: n × [[E]] = n · v [[B]] . On the plasma side of
the interface, Ohm’s law (4.8) yields n × E = −n × (v × B) = n · v B . Hence,
we obtain a basic relationship between the vacuum field variables Ê and B̂ and the
normal plasma velocity:

n × Ê = n · v B̂ (at the plasma–vacuum interface) . (4.178)

This b.c. is actually redundant, just like the b.c. (4.174) at the conducting wall.

(c) Model III : Plasma–vacuum system excited by external currents In this model
(Fig. 4.14(c)), instead of a wall we consider an open plasma–vacuum system
excited by time-dependent magnetic fields B̂(t) that are externally created. In lab-
oratory plasmas, this external excitation may be caused by a system of coils. Such
a system may be modelled by replacing the wall of model II by an auxiliary sur-
face on which a time-dependent surface current j�c(r, t) forces oscillations onto the
plasma–vacuum system. The effect of such an outer boundary is that the system is
not isolated from the outside world: energy flows into the system. The appropriate
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boundary conditions at the coil surface are again obtained by applying our jump
recipe (4.145) to the vacuum magnetic field equations ∇ · B̂ = 0 and ∇ × B̂ = ĵ ,
giving

n · [[B̂]] = 0 (at the coil surface) , (4.179)

n × [[B̂]] = j�c(r, t) (at the coil surface) . (4.180)

Note that the surface current j�c(r, t) is now cause, not effect as in model II, since it
is prescribed. Also, the magnetic field outside the coils, in principle all the way up
to ∞, is needed to solve this problem. Clearly, this case is of importance for lab-
oratory plasma confinement because this always involves external magnetic fields
that have to be created somehow. External excitation of MHD waves also gives
rise to this time-dependent problem.

Model III can also be exploited for the analysis of waves in astrophysical plas-
mas, e.g. by mimicking the effects of excitation of MHD waves by an external
plasma by means of a localized set of ‘coils’ when the response of the internal
plasma is the main issue (e.g. in the problem of sunspot oscillations excited by
sound waves in the photosphere; see Section 11.3.3.)

4.6.2 Energy conservation for interface plasmas

In Section 4.3.2 we proved energy conservation of the nonlinear system of ideal
MHD equations for model I (plasma enclosed by a wall). In a later chapter (Sec-
tion 6.6.3) we will need the law of conservation of the total energy for a plasma–
vacuum system (model II). In such interface systems, the separate energies of
plasma and vacuum are not conserved but the total energy is. Also, it is instructive
to consider energy conservation for model III, where the outer boundary is replaced
by a current-carrying coil which transfers energy to the system.

The generalization to model II is straightforward. The total energy for plasma
and vacuum is

H =
∫
Hp dτ p +

∫
Hv dτ v , (4.181)

where

Hp ≡ 1
2ρv2 + p

γ − 1
+ 1

2 B2 , Hv ≡ 1
2 B̂2 . (4.182)

In the time dependence of these energies one needs to account for the rate of
change of the volume elements as given by Eq. (4.90) of Section 4.3.3. Hence,
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D

Dt

∫ Hp dτ =
∫

DHp

Dt
dτ +

∫
Hp D

Dt
(dτ) =

∫ (
∂Hp

∂t
+ v · ∇Hp +Hp∇ · v

)
dτ

=
∫ (

∂Hp

∂t
+ ∇ · (Hpv)

)
dτ =

∫
∂Hp

∂t
dτ +

∫
Hp v · n dσ , (4.183)

where Gauss’ theorem (A.14) has been applied in the last step. Although v is only
defined in the plasma, so that Eq. (4.90) is only valid there, Eq. (4.183) obviously
applies to the vacuum as well (with Hp replaced by Hv) as it merely tells us that
the rate of change of the energy is due to the changes of the energy density and of
the total volume.

According to the energy conservation equation (4.73), with the expression
(4.69) for the energy flow inserted, we may integrate the plasma contribution by
parts to get:

∂ Hp

∂t
= −

∫ (
1
2ρv2 + p

γ − 1
+ p + B2

)
v · n dσ

= −
∫
Hp v · n dσ −

∫
(p + 1

2 B2) v · n dσ ,

so that

DH p

Dt
= −

∫
(p + 1

2 B2) v · n dσ . (4.184)

For the vacuum contribution, we exploit Faraday’s law (4.1) to introduce the elec-
tric field Ê and the Poynting vector Ŝ ≡ Ê × B̂ :

∂Hv

∂t
= B̂ · ∂B̂

∂t
= −B̂ · ∇ × Ê

(A.12)= −∇ · (Ê × B̂) − Ê · ∇ × B̂ = −∇ · (Ê × B̂),

so that

DHv

Dt
=

∫
∂Hv

∂t
dτ v −

∫
Hv v · n dσ =

∫
Ê × B̂ · n dσ −

∫
1
2 B̂2 v · n dσ .

(4.185)
To remove the electric field from this expression again, we exploit the boundary
condition (4.178) for model II interfaces derived above:

DHv

Dt
=

∫
B̂2 v · n dσ −

∫
1
2 B̂2 v · n dσ =

∫
1
2 B̂2 v · n dσ . (4.186)

Adding Eqs. (4.184) and (4.186) for the energies, and applying the jump condition
(4.176) for the total pressure, yields the desired result:

DH

Dt
=

∫
[[p + 1

2 B2]] v · n dσ = 0 ; (4.187)

QED.
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For model III, where the vacuum is enclosed by coils with surface currents j�c ,
there is no conservation of energy for the interior region because the surface cur-
rents pump energy into the system. If we assume that these currents are arranged
in such a way that no magnetic energy is lost external to these coils, i.e. B̂ext = 0 ,
the rate of change of the energy is given by:

DH int

Dt
= ∂ H int

∂t
= −

∫
Ŝ · n dσc

= −
∫

Ê × B̂ · n dσc =
∫

n × B̂ · Ê dσc = −
∫

Ê · j�c dσc, (4.188)

where we have exploited the jump condition (4.180) for the surface currents. (Note
the change of sign of the Poynting flux and of the magnetic field jump since n
points into the vacuum in Eq. (4.185) but out of it in the present case.) Hence, the
rate of change of the energy internal to the coils is given by the Poynting flux across
the coils, which equals the power transferred by the coils (see Jackson [117]).

4.6.3 Astrophysical plasmas (models IV–VI)

The three models for astrophysical plasmas are shown in Fig. 4.15. These con-
figurations refer, respectively, to closed and open coronal magnetic loops, and to
solar or stellar wind outflow. All three examples are 2D exhibiting only azimuthal
symmetry. This is indicated by the angle θ in the loop examples (which may be
described by cylinder coordinates r , θ , z) and by the angle φ in the wind example
(which may be described by spherical coordinates r , θ , φ). The actual physical
problems really involve genuine 3D geometries because, in general, the loops are
not straight and the stellar wind outflows are not axi-symmetric. Nevertheless, it
is useful for the analysis to consider the simpler quasi-1D cylindrical versions of
the loops (shown in the bottom part of Fig. 4.15) as well. It is to be noted though
that this simplification does not lead to genuine 1D problems because of the pho-
tospheric b.c.s to be imposed. Also, although 1D versions of the stellar outflow
problem are sometimes considered, we have not indicated this possibility in the
figure because it cannot be turned into a self-consistent model.

(a) Model IV : ‘closed’ coronal magnetic loop In this model (Fig. 4.15(a)), the
magnetic field lines of a finite plasma column are line-tied on both sides to a
plasma of so much higher density that it may be considered as effectively immo-
bile. Of course, the magnetic field lines do not end at the bounding planes, but the
tubular domain is simply closed-off by the so-called line-tying boundary condi-
tions

v = 0 (at the photospheric end planes) . (4.189)
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Fig. 4.15. Three MHD models for magnetic confinement in astrophysical
plasmas. (a) Model IV: closed coronal magnetic loop, line-tied at both ends;
(b) model V: open coronal magnetic loop, line-tied at one end and flaring on
the other; (c) model VI: stellar wind outflow. Bottom part: quasi-1D (cylindrical)
versions of two of the three models. Surfaces where boundary conditions have to
be imposed are hatched.

These conditions represent an idealization of plasma–plasma interfaces with large
density differences, where ‘line-tying’ refers to the fact that the magnetic field
sticks through the interface and that it is effectively tied to the much heavier plasma
below.

This model is appropriate for the study of waves in solar coronal flux tubes
emanating from the photosphere because the density of the latter is of the order
of a factor of at least 109 higher than in the corona. Clearly, in the consideration
of the dynamics of a tenuous coronal flux tube, the back reaction on the photo-
sphere may be neglected: the photosphere is too massive to be set in motion by the
corona. Of course, the reverse problem is also meaningful and even quite impor-
tant physically: the dynamics of the photosphere forces motion onto the coronal
flux tubes. This problem may be represented by replacing the right hand side of
the b.c. (4.189) by a prescribed velocity field at the photospheric boundary. In that
case, Poynting flux enters the loop so that it is not closed at all then (which is why
we have put quotation marks on ‘closed’).

(b) Model V : open coronal magnetic loop In this model (Fig. 4.15(b)), the mag-
netic field lines of a semi-infinite plasma column are line-tied on one side to a mas-
sive plasma. This model is appropriate for the description of open magnetic field
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lines, emanating from the so-called coronal holes on the Sun, and associated with
the solar wind which escapes along them into interplanetary space. The boundary
condition (4.189) now only applies to the end that is fixed into the photosphere
underneath the coronal hole. Again, one can consider either the passive problem
of waves in open field lines by themselves, as represented by the b.c. (4.189), or
the driven problem of wave generation by photospheric motion, which requires a
non-zero right hand side of Eq. (4.189). Other applications of models IV and V are
the dynamics of closed and open field lines in the magnetospheres of planets and
pulsars.

(c) Model VI : stellar wind In this model (Fig. 4.15(c)), a plasma is ejected from
the photosphere of a star and accelerated mainly along the open magnetic field
lines into outer space. Clearly, this model is a composite of models IV and V, with
the stress now on the outflow rather than on the waves.

This suffices for our purpose, which was the introduction of self-consistent
boundary value problems that are relevant for magnetically confined laboratory
and astrophysical plasmas. Clearly, the construction of the last two models has
not been complete, since we have skipped over the most difficult problems there,
viz. the appropriate conditions at infinity. It would be wrong to suggest that these
problems have been solved to the same level of satisfaction as obtained for the
models I–III. It makes no sense to discuss them separately from the dynamics. It
is time to close this chapter and to move to the time domain: Chapter 5 is devoted
to the simplest of all geometries possible, infinite homogeneous space, but replete
with genuine plasma dynamics.

4.7 Literature and exercises

Notes on literature

Ideal MHD model and conservation laws:

– Goedbloed, Lecture Notes on Ideal Magnetohydrodynamics [83], containing the ma-
terial of a course taught in Brazil 25 years ago, is the origin of this book that has been
elaborated ever since. A chapter on the dynamics of the screw pinch, an illuminating
illustration of the coupling of nonlinear plasma dynamics and external circuits has
been eliminated here since we considered it outdated; the main ideas can be found in
Ref. [90]. Exercise 4.12 is devoted to some intriguing aspects of this problem.

Flux tube dynamics:

– The classical paper by Newcomb [163] on ‘Motion of magnetic lines of force’ is still
very worth studying.

Magnetic helicity:

– Moffatt, Magnetic Field Generation in Electrically Conducting Fluids [157], Chap-
ter 2 on magnetokinematics with a discussion of the topology implications of mag-
netic helicity.
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Resistive MHD and reconnection:

– Biskamp, Nonlinear Magnetohydrodynamics [29], Chapter 6 on the central impor-
tance of magnetic reconnection in nonlinear MHD.

– Priest and Forbes, Magnetic Reconnection [191], Chapter 4 on the classical solutions
of steady reconnection.

Discontinuities and shocks:

– Courant and Friedrichs, Supersonic Flow and Shock Waves [59], Chapter IIIC on
shocks in one-dimensional flows in ordinary fluids, with emphasis on irreversibility.

– Landau and Lifshitz, Fluid Mechanics [137], Chapter IX on shock waves in ordinary
fluids.

– Landau and Lifshitz, Electrodynamics of Continuous Media [138], Chapter VIII on
magnetic fluid dynamics with a section on MHD shock waves.

Exercises

[ 4.1 ] Conservation laws

Here comes the most important question on magnetohydrodynamics: what is the principal
conservation law of magnetized plasmas? (If you do not know, reread Chapter 4. If you
still do not know, ask your professor. If he does not know, he should not be teaching this
subject.)

[ 4.2 ] Eulerian and Lagrangian time-derivatives

Write down and explain the two different ways of evaluating time derivatives in fluid dy-
namics.

[ 4.3 ] Non-relativistic approximation

Construct the MHD equations from Maxwell’s equations and the equations for classical
fluid dynamics. Show that, by assuming v � c, the displacement current and the elec-
trostatic acceleration become negligible. Write down the resulting non-relativistic MHD
equations in their most compact form.

[ 4.4 ] Scale independence

Why, and when, does it make sense to compare the plasma dynamics in small laboratory
devices with the plasma dynamics in huge plasma-astrophysical systems?

[ 4.5 ] � Conservation form

The MHD equations can be brought into so-called ‘conservation form’.
– What is the general structure of this form and can you give an interpretation of it?
– Try to construct the conservation form of the ideal MHD equations in terms of the

variables ρ, v, e, and B. If this is too much for you, try at least to indicate the basic
steps involved in the construction.

[ 4.6 ] Stress tensor

In the conservation form of the MHD equations, one encounters the stress tensor defined
by T ≡ ρvv + (p + 1

2 B2) I − BB , representing the Reynolds stress tensor, the isotropic
pressure, and the magnetic part of the Maxwell stress tensor.

– Project the Reynolds stress tensor on the velocity v and show that the only contribu-
tion is ρv2 along v. Decompose the remaining part of the stress tensor parallel and
perpendicular to B and show how it is represented in matrix form.
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– Draw a picture of a flux tube and comment on the different stresses acting on it.

[ 4.7 ] Surface element kinematics and magnetic flux conservation

We consider the magnetic flux d� ≡ B · dσ through a surface element dσ. When the
latter element moves with the plasma, it changes in time as D(dσ)/Dt = −(∇v) · dσ +
∇ · v dσ .

– Use the vector identities of Appendix A to show that the Lagrangian time derivative
of the magnetic flux through that surface element vanishes: D(d�)/Dt = 0 .

– What role does the assumption of perfect conductivity play here?

[ 4.8 ] Magnetic helicity and force-free magnetic fields

In Section 4.3.4, the magnetic helicity of a special class of cylindrical force-free magnetic
fields of constant α has been computed. Let us extend these calculations in two directions.

– Calculate the components of a cylindrical force-free magnetic field with constant
pitch µ. We already know that the helicity of this field vanishes. Now derive the
expression for α(r) for this field and note that it tends to a constant value on the axis.
How does that relate to the expression for the helicity of a constant α force-free field?

– Calculate the helicity for the compound configuration of a force-free magnetic field of
constant α within a cylinder of radius r = a surrounded by a vacuum magnetic field
in the annular cylinder a ≤ r ≤ b . Does it make a difference whether that annular
region is considered as a proper vacuum (η = ∞) or as just a plasma (η = 0) without
current?

[ 4.9 ] Neglect of resistivity and dimensionless parameters

We start with the resistive induction equation for the magnetic field B (Eq. (4.125)).
– Use a length scale l0 for the gradients and velocity v0 for the flow to construct

the dimensionless parameter (Rm) which justifies neglect of the resistive term when
Rm 
 1.

– Another dimensionless parameter (Lu) may be constructed where v0 is replaced by
the characteristic velocity of Alfvén waves. When and why would that number be
relevant?

[ 4.10 ] Jump conditions

Boundary conditions at plasma–plasma or plasma–vacuum interfaces may be derived from
jump conditions obtained from the theory of supersonic flow and shocks in gas dynamics.
Integrating the partial differential equation for a variable f across a shock results in jumps
of ∇ f and ∂ f/∂t of magnitude n [[ f ]] and −u [[ f ]], resp., where n is the normal to the
shock front, the jump [[ f ]] ≡ f1 − f2, and u is the normal velocity of the shock.

– Derive the ideal MHD jump conditions from the conservation laws.
– Transform these conditions to a frame moving with the shock, so that the fluid veloc-

ities relative to this frame may be written as v′ ≡ v − un .
– Find the required interface conditions by assuming absence of flow across and a mag-

netic field tangential to the interface.

[ 4.11 ] � Plasma–vacuum configuration between walls

Consider a configuration of a plasma resting (against vertical gravity) on top of a vac-
uum with horizontal magnetic field confined between two horizontal, infinitely extended,
conducting walls. (The stability of this configuration will be investigated in Section 6.6.4.)
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– Derive all boundary conditions for the plasma variables at the top wall, the plasma–
vacuum interface (assuming no flow across the boundary), and the vacuum variables
at the bottom wall. Also give the equations for the magnetic field B̂ in the vacuum.

[ 4.12 ] � Flux and energy conservation in a plasma coupled to external circuits

Fig. 1.4 showed how the combination of the θ -pinch and z-pinch concepts led to the stable
equilibrium of a tokamak requiring a large toroidal magnetic field and the vicinity of a
wall. A similar configuration is the toroidal screw pinch; van der Laan et al. (1971) [236].
It is also a stable equilibrium, has a 100 × higher density than a tokamak, but operates
in a pulsed fashion (∼ 100 µs). The toroidal and poloidal magnetic field components are
created by discharging two capacitor banks simultaneously, so that the plasma experiences
an inward force consisting of the two components jθ Bz and jz Bθ . (We neglect toroidal
effects, except for the induction of the plasma current Iz2 by means of the primary cur-
rent Iz1 in the z-coil, exploiting a finite-length cylindrical model with coordinates r , θ ,
z, where 0 ≤ z ≤ 2π R0 .) We wish to solve the following (model III) problem. At t = 0
the two charged capacitors Cz and Cθ of voltage Vz and Vθ are switched to the z- and
θ -coil surrounding the plasma. What is the resulting plasma motion and how are the avail-
able electrostatic energies 1

2 Cz V 2
z and 1

2 Cθ V 2
θ converted into magnetic field energies

Wθ ≡ ∫
(B2

θ /2µ0)dτ and Wz ≡ ∫
(B2

z /2µ0)dτ ?
– Idealize the two coils to be one copper shell closely fitting the plasma vessel with

a poloidal cut (the plane z = 0) over which the voltage Vz is applied and a toroidal
cut (the half-plane θ = 0) over which the voltage Vθ is applied. Compute the electric
fields Ez and Eθ at the boundary r = a. Determine, by means of the ideal Ohm’s law,
the imposed radial velocity v(a, t) and the pitch µ(a, t) of the magnetic field lines.

– Neglect the effects of pressure and density on the plasma dynamics, so that the plasma
part of the problem is reduced to the determination of the time-dependence of a
force-free magnetic field by the ideal MHD induction equation. Show that the way
of switching of the capacitor banks produces the constant pitch force-free field of
Exercise 4.8.

– The circuit equations determine the time evolution of Vz(t) and Vθ (t). We assume
that the coupling of the coils to the plasma is perfect, so that the primary poloidal cur-
rent Iθ directly determines the plasma magnetic field Bz(a, t) through V̇θ = C−1

θ Iθ ,
whereas the primary toroidal current Iz1 is coupled to the induced plasma current Iz2
through the self-inductance LT of the torus: Vz = −ψ̇T = LT ( İz1 + İz2), where
V̇z = C−1

z Iz1 and ψT is the poloidal flux through the hole of the torus. Now com-
plete the solution of the full problem and show that the plasma dynamics couples the
two circuits in such a way that a nonlinear oscillation is excited where the magnetic
fluxes associated with Bz and Bθ are conserved separately, but the energies are only
conserved as the sum Wθ + Wz . (Consult Goedbloed & Zwart [90] for the detailed
solution.)
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Waves and characteristics

5.1 Physics and accounting

5.1.1 Introduction

In the previous chapter, we have stressed the spatial aspect of MHD by formu-
lating the different boundary value problems associated with different plasma
confinement geometries. In this chapter, we will stress the temporal aspect by ne-
glecting all effects of the geometry by considering, first, the linear waves of an
infinite homogeneous plasma (Sections 5.1–5.3) and, next, the nonlinear counter-
part of these waves, viz. the characteristics and associated initial value problem
(Section 5.4). The effects of plasma geometry and inhomogeneity will be the sub-
ject of the following chapters, dealing with spectral theory (Chapter 6) and the
important topic of plasma stability (Chapter 7).

The theory of wave propagation in plasmas necessarily contains a large number
of algebraic manipulations to reduce a particular problem with many variables to
one that can be solved explicitly and that manifests the physics. Whereas extreme
care is needed to avoid mistakes in this reduction, the bookkeeping should not
obscure the physics. We will use the familiar example of sound waves to illustrate
how this works in practice.

5.1.2 Sound waves

As a preliminary to the study of linear MHD waves, let us consider the simplest
example of waves described by fluid equations, viz. sound waves. To that end, we
start from the gas dynamic equations, contained in the MHD equations (4.12)–
(4.14) as the special case of vanishing magnetic field (B = 0), where we also

186
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neglect gravity (g = 0):

∂ρ

∂t
+ ∇ · (ρv) = 0, (5.1)

ρ
(∂v

∂t
+ v · ∇v

)
+ ∇ p = 0, (5.2)

∂p

∂t
+ v · ∇ p + γ p∇ · v = 0 . (5.3)

We now linearize these equations about a time-independent (∂/∂t = 0) infinite
and homogeneous (∇ = 0) background, characterized by arbitrary, but constant,
values of ρ0, v0, and p0. The perturbations of this background may be written as

ρ(r, t) = ρ0 + ρ1(r, t) (where |ρ1| � ρ0 = const),

p(r, t) = p0 + p1(r, t) (where |p1| � p0 = const), (5.4)

v(r, t) = v0 + v1(r, t) (where |v1| is small) .

Note that |v1| is considered to be small, but not with respect to |v0|, because we
wish to consider the special case of static (v0 = 0) background in particular and
there is another quantity that can serve as a measure for large and small velocities,
viz. the sound speed.

Inserting these expressions in the differential equations and neglecting nonlinear
coupling through quadratic and higher order terms, since the amplitudes of the
waves are assumed to be small, we obtain the linearized equations of gas dynamics:( ∂

∂t
+ v0 · ∇

)
ρ1 + ρ0∇ · v1 = 0, (5.5)

ρ0

( ∂

∂t
+ v0 · ∇

)
v1 + ∇ p1 = 0, (5.6)

( ∂

∂t
+ v0 · ∇

)
p1 + γ p0∇ · v1 = 0 . (5.7)

Note that Eq. (5.5) for ρ1 does not couple to the other equations, so that it may be
dropped or solved separately after the equations for v1 and p1 have been solved.
The latter two equations may be combined by applying the operator ∂/∂t + v0 · ∇
to Eq. (5.6) for v1 and eliminating p1 from it by means of Eq. (5.7). This yields
the wave equation for sound waves:( ∂

∂t
+ v0 · ∇

)2
v1 − c2 ∇∇ · v1 = 0, (5.8)

where

c ≡
√

γ p0/ρ0 (5.9)
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is the velocity of sound of the background medium. (We are free to exploit the
symbol c for this purpose since we have removed the displacement current from
Maxwell’s equations in Section 4.1.1, so that the plasmas considered here will not
support electromagnetic waves and the velocity of light does not appear any more
in the equations.)

The wave equation has constant coefficients (v0 and c2) so that the most general
solution can be written as a superposition of plane waves:

v1(r, t) =
∑

k

v̂k ei(k·r−ωt) (5.10)

(for simplicity represented as a sum, corresponding to waves in a finite box). These
plane waves do not couple, since the problem is linear and homogeneous, so that
each harmonic by itself is a solution of the problem. Hence, we will consider them
separately and drop the subscript k. For such solutions, the differential operators
of the PDEs turn into multiplications by algebraic factors:

∇ → ik , ∂/∂t → −iω. (5.11)

This transforms the wave equation (5.8) into an algebraic eigenvalue equation:

[
(ω − k · v0)

2 I − c2 kk
]

· v̂ = 0. (5.12)

This eigenvalue problem for the frequency ω, measured in the laboratory frame,
may also be considered as a (simpler) eigenvalue problem for the Doppler shifted
frequency ω′, measured in the co-moving frame:

ω′ ≡ ω − k · v0. (5.13)

For homogeneous media (v0 = const) the Doppler shift is constant so that the dif-
ference between the two eigenvalue problems is trivial. However, our main concern
in the following chapters will be inhomogeneous media where the influence of the
background flow would significantly complicate the wave propagation problem.
We will leave that subject for a later chapter (in Volume 2) and, for the time being,
concentrate on wave propagation in static media (v0 = 0) where ω′ = ω. For those
problems, the eigenvalue ω only appears squared.

Since there is no preferred direction in the system, there is no loss in generality
if we restrict the waves to propagate in the z-direction only, k = k ez , so that the
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eigenvalue problem reduces to

ω2 v̂x = 0,

ω2 v̂y = 0, (5.14)

(ω2 − k2c2) v̂z = 0.

The important solutions are given by

ω = ±k c, v̂x = v̂y = 0, v̂z arbitrary, (5.15)

representing plane sound waves travelling to the right (+) or to the left (−). These
waves are compressible (∇ · v1 �= 0) and longitudinal (v1 ‖ k). The other solu-
tions,

ω2 = 0, v̂x , v̂y arbitrary, v̂z = 0, (5.16)

just correspond to time-independent incompressible transverse (v1 ⊥ k) transla-
tions. They do not represent interesting physics, but simply establish the com-
pleteness of the velocity representation.

Recapitulating: we have transformed the original system (5.5)–(5.7) of first or-
der PDEs for the primitive variables ρ1, v1, p1 to the second order wave equation
(5.8) in terms of v1 alone. This transformation highlights the important physics of
the problem, which is sound wave propagation, but also yields some trivial ω = 0
solutions that are not interesting from the physical point of view. Of course, the
two representations should be equivalent.

Now count: the first order system appears to have five degrees of freedom rep-
resented by the five primitive variables, whereas the second order system appears
to have six degrees of freedom since there are three components of v1 and the
eigenvalue is squared. One easily recognizes though that the second order system
actually only has four degrees of freedom, since the quadratic dependence on ω

does not double the actual number of translations (5.16). This spurious doubling
of the eigenvalue ω = 0 happened when we applied the operator ∂/∂t + v0 · ∇ to
Eq. (5.6) to eliminate p1. One easily checks that the solutions (5.15) and (5.16),
with ω = 0, are solutions of the original system of equations (5.5)–(5.7). Hence,
we have actually lost one degree of freedom in the reduction to the wave equation
in terms of v1 only. This happened when we dropped Eq. (5.5) for ρ1. By inserting
v1 = 0 in the original system we find the signature of this lost mode:

ωρ̂ = 0 ⇒ ω = 0, ρ̂ arbitrary, but v̂ = 0 and p̂ = 0. (5.17)

This mode is called an entropy wave: it represents a perturbation of the density and,
hence, of the entropy function S ≡ pρ−γ , since the pressure is not perturbed. Like
the translations (5.16), the entropy mode does not represent important physics but
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it is needed to account for the degrees of freedom of the different representations.
This is an important issue in computational studies. It will return in the MHD
analysis below, where the system is much more involved, so that the distinction
between genuine and spurious solutions is much less transparent.

5.2 MHD waves

5.2.1 Symmetric representation in primitive variables

We now perform a similar analysis for the magnetohydrodynamic system, with the
magnetic terms included. In Chapter 4, the basic MHD equations were presented
in two forms, viz. Eqs. (4.12)–(4.15) for the variables ρ, v, p, B, and Eqs. (4.45)–
(4.48) for the variables ρ, v, e, B. Since the derivation of conservation laws was
based on the latter set of equations, we will exploit that set for the present deriva-
tion. We drop the gravitational term in the momentum equation, since it is in-
compatible with the assumption of a homogeneous plasma, and convert the two
occurring cross-products by means of the vector identities of the Appendix:

−j × B = −(∇ × B) × B
(A.8)= (∇B) · B − B · ∇B,

∇ × E = −∇ × (v × B)
(A.13)= −B · ∇v + B∇ · v + v · ∇B.

This yields the following set of equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (5.18)

ρ
∂v
∂t

+ ρv · ∇v + (γ − 1)∇(ρe) + (∇B) · B − B · ∇B = 0, (5.19)

∂e

∂t
+ v · ∇e + (γ − 1)e∇ · v = 0, (5.20)

∂B
∂t

+ v · ∇B + B∇ · v − B · ∇v = 0, ∇ · B = 0, (5.21)

which is yet another form of the basic nonlinear MHD equations.
We again choose an infinite homogeneous plasma at rest (v0 = 0) as the back-

ground state:

ρ = ρ0, e = e0 ≡ p0

(γ − 1)ρ0
, B = B0,

where ρ0, e0, and B0 are constants (in space and time) that characterize this state.
Linearization proceeds as in Section 5.1. Since there are no gradients of the equi-
librium quantities, terms like v1 · ∇ρ0 disappear. Again, we only keep linear terms,
like ρ0∇ · v1 , but neglect nonlinear terms, like ρ0v1 · ∇v1. This results in the
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following set of linearized MHD equations:

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (5.22)

ρ0
∂v1

∂t
+ (γ − 1)(e0∇ρ1 + ρ0∇e1) + (∇B1) · B0 − B0 · ∇B1 = 0, (5.23)

∂e1

∂t
+ (γ − 1)e0∇ · v1 = 0, (5.24)

∂B1

∂t
+ B0∇ · v1 − B0 · ∇v1 = 0, ∇ · B1 = 0. (5.25)

Two characteristic speeds now describe the background state, viz. the sound speed
and the vectorial Alfvén speed:

c ≡
√

γ p0

ρ0
, b ≡ B0√

ρ0
, (5.26)

where |b| ≡ vA is the scalar Alfvén speed, already defined in Eq. (2.150) of Sec-
tion 2.4.2. Together, they govern the speed of propagation of magnetohydrody-
namic waves.

By trial and error, we construct dimensionless variables for the perturbations,

ρ̃ ≡ ρ1

γ ρ0
, ṽ ≡ v1

c
, ẽ ≡ e1

γ e0
, B̃ ≡ B1

c
√

ρ0
, (5.27)

such that the linearized MHD equations only involve the coefficients c and b
(and γ ):

γ
∂ρ̃

∂t
+ c ∇ · ṽ = 0, (5.28)

∂ ṽ
∂t

+ c ∇ρ̃ + c ∇ ẽ + (∇B̃) · b − b · ∇B̃ = 0, (5.29)

γ

γ − 1

∂ ẽ

∂t
+ c ∇ · ṽ = 0, (5.30)

∂B̃
∂t

+ b ∇ · ṽ − b · ∇ṽ = 0, ∇ · B̃ = 0. (5.31)

This form is most appropriate for at least one of our purposes, to be disclosed
below.



192 Waves and characteristics

Again, let us consider plane wave solutions,

ρ̃ = ρ̃(r, t) = ρ̂ ei(k·r−ωt), etc. (5.32)

We then obtain an algebraic system of eigenvalue equations:

c k · v̂ = γ ω ρ̂,

k c ρ̂ + k c ê + (kb · − k · b) B̂ = ω v̂,

c k · v̂ = γ

γ − 1
ω ê,

(bk · − b · k) v̂ = ω B̂, k · B̂ = 0. (5.33)

Ignoring the constraint k · B̂ = 0 for the moment, this system is solvable if the
determinant of the 8 × 8 matrix vanishes. Since the medium is now anisotropic,
through the presence of a preferred direction given by the background magnetic
field B0 (or b), we should not choose the vectors b and k parallel. However, there
is no loss of generality if we choose b along the z-axis and k in the x-z plane (like
in Fig. 5.1):

b = (0, 0, b), k = (k⊥, 0, k‖). (5.34)

This leads to the following matrix representation of the eigenvalue problem:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k⊥c 0 k‖c 0 0 0 0

k⊥c 0 0 0 k⊥c −k‖b 0 k⊥b

0 0 0 0 0 0 −k‖b 0

k‖c 0 0 0 k‖c 0 0 0

0 k⊥c 0 k‖c 0 0 0 0

0 −k‖b 0 0 0 0 0 0

0 0 −k‖b 0 0 0 0 0

0 k⊥b 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̂

v̂x

v̂y

v̂z

ê

B̂x

B̂y

B̂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ ρ̂

v̂x

v̂y

v̂z

γ
γ−1 ê

B̂x

B̂y

B̂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.35)

Except for a few shortcomings, to be addressed below, this expression is satisfac-
tory since it clearly identifies the two new features of MHD waves as compared
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to sound waves, viz. the occurrence of the Alfvén speed in addition to the sound
speed and the anisotropy expressed by the appearance of two components of the
wave vector. We could compute the dispersion equation from the determinant and
study the associated waves, but we have good reasons to postpone this to Sec-
tion 5.2.3.

In the formulation of Eq. (5.35), one purpose has been realized, viz. the demon-
stration of the symmetry of the operator describing the linearized system, which
is one of the most important properties of ideal magnetohydrodynamics. This
has been demonstrated now for the simplest case, that of homogeneous plasmas.
Its generalization to inhomogeneous plasmas will be an important issue in the
spectral theory of MHD, to be discussed in Chapter 6. The symmetry of the lin-
earized system is closely related to an analogous property of the original nonlin-
ear equations, viz. the nonlinear ideal MHD equations are symmetric hyperbolic
partial differential equations. This will be proved in Section 5.4.3. These sym-
metry properties were behind our preference for the representation in terms of
the variables ρ, v, e, B, corresponding to the variables of the moment expansion
of the kinetic equations (Chapter 3). This formulation lends itself most naturally
for extensions, e.g. with dissipative effects, so that it is frequently exploited in
large scale numerical programs for the solution of the MHD equations for practical
applications.

� Generalized eigenvalue problem. A minor shortcoming of the eigenvalue problem
(5.35) is that it still contains the factors γ and γ /(γ − 1) in the vector on the RHS. For-
mally, this implies that we are dealing with a generalized eigenvalue problem:

A · x = λB · x, (5.36)

where A denotes the 8 × 8 matrix and x is the 8-vector of unknowns on the LHS of
Eq. (5.35), λ ≡ ω is the eigenvalue, and B is a diagonal matrix which deviates from the
unit matrix by the two mentioned factors multiplying the variables ρ̂ and ê. An ordinary
eigenvalue problem

A′ · x′ = λ x′ (5.37)

is obtained by the transformation

A′ ≡ B−1/2 · A · B−1/2, x′ ≡ B1/2 x, (5.38)

so that

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
γ

kTc 0 0

1√
γ

k c 0
√

γ−1
γ

k c k bT − (k · b) I

0
√

γ−1
γ

kTc 0 0

0 b kT − (k · b) I 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
γ ρ̂

v̂√
γ

γ−1 ê

B̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.39)
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where the superscript ‘T’ indicates row vectors. The ‘cost’ of this transformation is the
appearance of odd square root factors in the matrix A′ as well as in the vector x′. These γ
factors are really spurious in the eigenvalue problem since they will not appear in the final
dispersion equation, as one can directly check from the present form (but much easier from
the one derived in Section 5.2.3). �

5.2.2 Entropy wave and magnetic field constraint

Before we transform to the more transparent velocity representation of Sec-
tion 5.2.3, in analogy with our exposition of Section 5.1.2 for sound waves, we
first have to account for two subtleties related to the presence of a genuine and
a spurious solution ω = 0 of the eigenvalue problem. Such solutions are called
marginal since the transition from stability to instability occurs at that value of
ω, as we will see in Chapter 6. The analysis of these modes will be facilitated
by means of the apparent detour of replacing the thermodynamic variables ρ and
e by the entropy s and the pressure p. As a bonus, the redundant factors γ will
disappear.

(a) Marginal entropy wave To that end, we linearize the expressions for the pres-
sure, p = (γ − 1)ρe , and the entropy function, S ≡ pρ−γ , and construct the
appropriate dimensionless variables:

p1 = (γ − 1)(ρ0e1 + e0ρ1) ⇒ p̃ ≡ p1

γ p0
= ẽ + ρ̃, (5.40)

S1 = S0

(
p1

p0
− γ

ρ1

ρ0

)
⇒ S̃ ≡ S1

γ S0
= p̃ − γ ρ̃ = ẽ − (γ − 1)ρ̃. (5.41)

Hence, in addition to Eqs. (5.28) and (5.33)(a) for the density ρ̃, and
Eqs. (5.30) and (5.33)(c) for the internal energy ẽ, we also get equations for p̃
and S̃:

∂ p̃

∂t
+ c ∇ · ṽ = 0 ⇒ −ω p̂ + c k · v̂ = 0, (5.42)

∂ S̃

∂t
= 0 ⇒ −ω Ŝ = 0. (5.43)

We may now choose any two of the four variables ρ̃, ẽ, p̃, S̃ together with ṽ and B̃
to express the eigenvalue problem. However, not every choice leads to a symmetric
eigenvalue problem!
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It turns out to be expedient to transform to the unusual (S̃, ṽ, p̃, B̃) representa-
tion for the eigenvalue problem:

−ω Ŝ = 0,

−ω v̂ + k c p̂ + (kb · − k · b) B̂ = 0,
(5.44)

−ω p̂ + c k · v̂ = 0,

−ω B̂ + (bk · − b · k) v̂ = 0, k · B̂ = 0.

This representation is more compact than the previous one, fully symmetric, and
free of redundant factors γ . More important for our present purpose is that it clearly
exhibits the peculiar marginal entropy wave, for which most of the physical vari-
ables (velocity, pressure, and magnetic field perturbations) vanish, except for the
entropy (and, hence, the internal energy and density) perturbations:

ω = 0, p̂ = ê + ρ̂ = 0, Ŝ = γ ê = −γ ρ̂ �= 0. (5.45)

Superposition of the different Fourier harmonics, like in Eq. (5.10) of
Section 5.1.2, gives a mode with a completely arbitrary spatial distribution of the
entropy. This may be realized, for example, by a local increase ê of the internal en-
ergy (or the temperature) and a decrease ρ̂ of the density such that there is no net
pressure change p̂. This marginal mode is genuine but does not represent impor-
tant physics, at least not in the context of the ideal MHD model. Since it does not
propagate and since the entropy does not couple to the other variables, not much
were lost if this part of the problem were dropped altogether so that, actually, a
7 × 7 representation would be obtained. This is effected by the transformation to
the velocity representation, to be discussed in the next section. In that transforma-
tion, also a spurious solution is removed, so that, effectively, a 6 × 6 representation
is obtained. This brings us to our next topic.

(b) Magnetic field constraint So far, we have ignored accounting for the constraint
k · B̂ = 0 , originating from the general condition ∇ · B = 0 on magnetic fields.
If one were to just solve the eigenvalue problem as it is, one would get eight so-
lutions with one spurious eigenvalue ω = 0 (to be distinguished from the genuine
eigenvalue ω = 0 of the entropy wave). This may be seen by operating with the
projector k· onto Eq. (5.33)(d), or (5.44)(d), which gives

ω k · B̂ = 0,

suggesting that ω = 0 is an eigenvalue with eigenvectors satisfying k · B̂ �= 0,
in glaring conflict with the constraint. The problem of spurious marginal
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eigenvalues is a more serious one than it appears at this stage. For example, in
numerical MHD programs calculating eigenvalues to determine whether a certain
plasma configuration is stable or not, due to truncation errors, a spurious eigen-
value ω = 0 may not be distinguishable from a genuine transition from stability to
instability.

To remove this spurious marginal eigenvalue, the constraint has to be incorpo-
rated in the eigenvalue problem by eliminating one of the magnetic field variables
to obtain a 7 × 7 matrix representation. For example, one could eliminate B̂z , by
simply substituting B̂z = −(k⊥/k‖) B̂x in the second row and dropping the last
row of Eq. (5.35). However, the symmetry of the matrix would then be lost. A
more satisfactory approach to eliminate the spurious eigenvalue is obtained by ex-
ploiting the wave vector projection, discussed below.

� Wave vector projection. In this approach we define new variables reflecting the physics
of the problem, e.g. by projecting the Fourier components of the vectors v̂ and B̂ on the
three directions associated with the wave vector k. This is equivalent to exploiting the two
components of the vorticity ∇ × v̂ and the compressibility ∇ · v̂ as velocity field variables,
and restricting the magnetic field variables to two components of the current density ∇ ×
B̂ (since ∇ · B̂ = 0 ):

v̂1,2 ≡ [(k/k) × v̂]x,y, v̂3 ≡ (k/k) · v̂, B̂1,2 ≡ [(k/k) × B̂]x,y . (5.46)

Operating with the projectors (k/k) · and (k/k) × on Eqs. (5.44)(b) and (5.44)(d) yields
the following 7 × 7 representation in terms of the variables Ŝ, v̂1, v̂2, v̂3, p̂, B̂1 and
B̂2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 0 0 0 0 −k‖b 0

0 0 0 0 0 0 −k‖b

0 0 0 0 kc −k⊥b 0

0 0 0 kc 0 0 0

0 −k‖b 0 −k⊥b 0 0 0

0 0 −k‖b 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ŝ

v̂1

v̂2

v̂3

p̂

B̂1

B̂2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ŝ

v̂1

v̂2

v̂3

p̂

B̂1

B̂2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.47)

Again, the representation is symmetric and even simpler than that of Eq. (5.35). Discarding
the entropy wave, by dropping the first row and first column, results in the 6 × 6 represen-
tation for the main MHD waves discussed in the next section. �
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� Numerical 8-wave scheme with ∇ · B wave. In numerical studies of the nonlinear MHD
equations, the constraint ∇ · B = 0 also poses a problem since it does not correspond to
a proper evolution equation. This problem has been addressed by Powell [188, 189], fol-
lowing an older idea of Godunov [80], by artificially extending the MHD system with a
‘∇ · B wave’. To that end, the RHSs of the conservation equations (4.59)–(4.62), or rather
(4.71)–(4.74) without gravity, are replaced by source terms proportional to ∇ · B (which
should become vanishingly small in the limit of vanishing step size):

∂ρ

∂t
+ ∇ · π = 0,

∂π

∂t
+ ∇ ·

[
πv + (p + 1

2 B2) I − BB
]

= −B ∇ · B (RHS ⇒ 0 in Ref. [118]),

∂H
∂t

+ ∇ ·
[
H+ (p + 1

2 B2)v − v · B B
]

= −v · B ∇ · B (RHS ⇒ 0 in Ref. [118]),

∂B
∂t

+ ∇ · (vB − Bv) = −v ∇ · B. (5.48)

This provides a numerical scheme of (near) conservation equations that is employed, for
example, for the construction of solutions of the interaction of the solar wind with the mag-
netosphere of the Earth.

Of course, the addition of ∇ · B terms in these equations implies that unphysical, nu-
merically created, magnetic monopoles are permitted [38]. It was noticed by Janhunen
[118] that the problem of possible non-positive numerical values of the pressure, calcu-
lated by using Eq. (4.75), is enlarged this way since the above modified momentum and
energy ‘conservation’ equations involve unbalanced forces on those monopoles. By means
of the modified Maxwell’s equations involving hypothetical magnetic monopoles, as given
in the textbook by Jackson [117], p. 252, he then shows that a more consistent set of mod-
ified MHD ‘conservation’ equations is obtained by restoring the momentum and energy
equations to have a vanishing RHS, so that only the induction equation keeps the ∇ · B
source term. Later, it was shown by Dellar [63] that this set is easily extended to a modified
set of relativistic, Lorentz invariant, MHD equations, which contain the earlier, Galilean
invariant, set in the limit v/c → 0.

Anyway, the modification of Faraday’s law, Eq. (4.62)(d), is the essential one. With
some algebra one obtains an evolution equation for ∇ · B from it,

∂

∂t
(∇ · B) + ∇ · (v ∇ · B) = 0, (5.49)

which replaces the constraint ∇ · B = 0 . This equation is in genuine conservation form
now: ∇ · B is convected with the fluid in the same way as the density ρ. This implies that
if ∇ · B is small enough initially and at the boundaries, it should remain small; numerical
errors ∇ · B �= 0 are simply convected with the flow and, hopefully, out of the computa-
tional domain. Clearly, since Maxwell’s equations are modified here, the physicist cannot
offer assistance to the accountant. All that matters for him is whether the books finally bal-
ance, i.e. whether the numerical scheme is accurate enough to keep ∇ · B small enough to
honestly qualify as zero. For more on computational aspects of the ∇ · B = 0 constraint:
see Tóth [230]. �
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5.2.3 Reduction to velocity representation: three waves

We now transform to the velocity representation since it is the more powerful one.
It gets rid of the entropy wave and absorbs the constraint k · B̂ = 0 so that the
associated spurious eigenvalue ω = 0 is eliminated as well. For the reduction to
the velocity variable, the perturbations ρ1, e1, B1 are expressed in terms of v1

by means of Eqs. (5.22), (5.24) and (5.25), and substituted into the momentum
equation (5.23). This yields the wave equation for MHD waves in a homogeneous
medium:

∂2v1

∂t2
−
[
(b · ∇)2 I + (b2 + c2) ∇ ∇ − b · ∇ (∇ b + b ∇)

]
· v1 = 0. (5.50)

Note that this equation contains the sound wave equation (5.8), with v0 = 0 , as the
special case b = 0 (as it should). Inserting plane wave solutions gives the required
eigenvalue equation:{[

ω2 − (k · b)2
]
I − (b2 + c2) k k + k · b (k b + b k)

}
· v̂ = 0, (5.51)

or, in components:⎛
⎜⎜⎜⎝

−k2
⊥(b2 + c2) − k2

‖b2 0 −k⊥k‖c2

0 −k2
‖b2 0

−k⊥k‖c2 0 −k2
‖c2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

v̂x

v̂y

v̂z

⎞
⎟⎟⎟⎠ = −ω2

⎛
⎜⎜⎜⎝

v̂x

v̂y

v̂z

⎞
⎟⎟⎟⎠ . (5.52)

Hence, a 3 × 3 symmetric matrix equation is obtained in terms of the variable v̂,
with quadratic eigenvalue ω2, corresponding to the original 6 × 6 representation
with eigenvalue ω.

The reduction to a description in terms of the velocity alone may be generalized
to inhomogeneous plasmas, where it leads to the very powerful force operator
formalism (Section 6.2). However, it should be kept in mind that this reduction is
only possible in ideal MHD, i.e. in the absence of dissipative effects like resistivity.
In the presence of dissipation, the basic equations (5.18)–(5.21) have additional
terms (see, e.g., Eq. (2.133)), spoiling the possibility of a reduction in terms of the
velocity alone. However, the analysis leading to Eq. (5.44) may be extended easily.
That is why we have presented both the representation in primitive variables and
the velocity representation.

With the description in terms of the velocity we have lost the marginal entropy
mode ω = 0. For the sake of completeness, we will include this mode again. This
is done by simply multiplying the determinant of Eq. (5.52) with the factor ω to
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yield the determinant of the original system (5.44), or rather (5.47):

det = ω (ω2 − k2
‖b2)

[
ω4 − k2(b2 + c2) ω2 + k2

‖k2b2c2
]

= 0, (5.53)

where k2 ≡ k2
⊥ + k2

‖ . This algebraic expression, with its solutions ω = ωi (k) (i =
1, . . . , 7), is called the dispersion equation for the MHD waves. Subsequently
putting each of the four factors equal to zero gives the eigenfrequencies of the
waves, and substituting that frequency back into Eq. (5.44) or (5.52) then gives the
relationships between the amplitudes ŝ, v̂, p̂, B̂ which characterize the eigenfunc-
tions.

The dispersion equation (5.53) admits four kinds of solutions.

(a) Entropy ‘waves’ As we have already seen in Section 5.2.2(a), the eigenfre-
quency of these waves vanishes:

ω = ωE ≡ 0, (5.54)

whereas the eigenfunctions just involve the entropy:

v̂ = B̂ = 0, p̂ = 0, but Ŝ �= 0. (5.55)

The entropy waves are quite degenerate: they do not propagate, they do not involve
flow, magnetic field, or pressure perturbations. They just constitute a perturbation
of the entropy (or density and internal energy) which would be carried with the
flow if there were a background velocity field. Now, they just sit there: not very
exciting. The use of such degenerate solutions is usually that they serve as a re-
minder for the possibility of new waves if additional physics is brought into the
model. For the present discussion, they do not serve any purpose. That is why the
formulation in terms of v̂ is so attractive: these marginal modes are automatically
eliminated from the analysis.

(b) Alfvén waves The eigenfrequency of these waves is determined by the parallel
wave vector and the Alfvén velocity:

ω = ±ωA, ωA ≡ k · b = k‖b = kb cos ϑ,[
ω2

A = k2b2 cos2 ϑ,

]
(5.56)

where ϑ is the angle between k and b , i.e. B0. There are two solutions, one for
ω = ωA corresponding to waves propagating in the direction of B0 , and another
one for ω = −ωA corresponding to waves propagating in the opposite direction.

The eigenfunctions of the Alfvén waves just involve the perpendicular velocity
and magnetic field (Fig. 5.1), whereas all other components and the perturbations
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Fig. 5.1. Velocity and magnetic field perturbations for Alfvén waves.

of all thermodynamic variables vanish:

B̂y = −v̂y �= 0, v̂x = v̂z = B̂x = B̂z = Ŝ = p̂ = 0. (5.57)

� Alternative variables for the wave vector projection:

v̂1 = −B̂1 = −(k‖/k) v̂y �= 0, v̂2 = v̂3 = B̂2 = 0. �

These are the waves already introduced in Section 2.4.2. They are incompressible
and purely transverse, as regards both v̂ and B̂. Alfvén waves are the most impor-
tant MHD waves since they are a direct result of flux conservation and magnetic
field lines frozen into the fluid: a perpendicular flow velocity v̂ results in a field
perturbation B̂ of opposite sign which just causes the field lines to follow the flow
(as illustrated in Fig. 2.7).

(c) Fast and slow magneto-acoustic waves The eigenfrequencies of these waves
are obtained from the quartic factor of the dispersion equation (5.53):

ω = ±ωs, f , ωs, f ≡ k

√
1
2(b2 + c2) ± 1

2

√
(b2 + c2)2 − 4(k2

‖/k2) b2c2,[
ω2

s, f = 1
2k2(b2 + c2)

(
1 ±

√
1 − σ cos2 ϑ

)
,

]
(5.58)

where the first ± sign refers to wave propagation to the right (+) and to the left
(−), and the second ± sign (under the square root) refers to the fast (+) and slow
(−) magneto-acoustic wave, respectively. The auxiliary parameter

σ ≡ 4b2c2

(b2 + c2)2
=
[

1
2(b/c + c/b)

]−2
(0 ≤ σ ≤ 1) (5.59)
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Fig. 5.2. Velocity and magnetic field perturbations for magneto-sonic waves.

is just a function of the ratio of the two characteristic speeds (b and c) in the
problem, where σ = 0 when b = 0 or c = 0 , and σ = 1 when b = c.

The eigenfunctions of the magneto-sonic waves exhibit a complicated depen-
dence on almost all of the variables (Fig. 5.2):

v̂z = αs, f (k‖/k⊥) v̂x �= 0, v̂y = 0,

B̂z = −(k⊥/k‖) B̂x = (k⊥b/ωs, f ) v̂x �= 0, B̂y = 0,

p̂ = [ αs, f ωs, f /(k⊥c) ] v̂x �= 0, Ŝ = 0, (5.60)

where the factor αs, f distinguishes between the fast and slow eigenfunctions:

αs, f ≡ 1 − k2b2

ω2
s, f

, so that αs ≤ 0 and α f ≥ 0. (5.61)

� Alternative variables for the wave vector projection:

v̂2 = [ k‖k⊥b2/(ω2
s, f − k2

‖b2) ] v̂3 = (k‖kb2/ω2
s, f ) v̂x �= 0, v̂1 = 0,

B̂2 = −(kb/ωs, f )v̂x �= 0, B̂1 = 0. �

The magneto-acoustic waves are composed of both magnetic (b) and acoustic (c)
constituents. The perturbations v̂ and B̂ are lying in the plane through k and B0, so
that the total perturbed field (B0 + B1) also lies in that plane. The fast and slow ve-
locity fields are orthogonal to each other, whereas the magnetic field perturbations
are both orthogonal to k (as a consequence of k · B̂ = 0). Since the normalization
of the waves is arbitrary, we have chosen B̂s = B̂ f in the picture for simplicity.



202 Waves and characteristics

5.2.4 Dispersion diagrams

From now on, we will ignore the entropy waves. We then notice two quite general
properties of the eigenfrequencies and eigenfunctions of the remaining three (slow,
Alfvén, and fast) MHD waves, viz.:

– the eigenfrequencies are well ordered,

0 ≤ ω2
s ≤ ω2

A ≤ ω2
f < ∞ ; (5.62)

– the eigenfunctions are mutually orthogonal,

v̂s ⊥ v̂A ⊥ v̂ f . (5.63)

The first property will turn out to play a crucial role in the spectral theory of
MHD waves, to be discussed in Chapter 6. The second property guarantees that
an arbitrary velocity field may be decomposed at all times (e.g. at t = 0) in the
three MHD waves. This implies that the initial value problem is a well-posed
problem.

The three MHD waves exhibit a strong anisotropy depending on the direction
of the wave vector k with respect to the magnetic field B0. This is most com-
pletely expressed by the two dispersion diagrams ω2 = ω2(k‖) and ω2 = ω2(k⊥)

shown in Fig. 5.3. They are obtained from the dispersion equations (5.56) for the
Alfvén waves and (5.58) for the magneto-sonic waves, where k⊥ is kept fixed in
the upper diagram and k‖ is kept fixed in the lower diagram. They clearly illus-
trate the ordering principle (5.62) for the three MHD waves. Note that the dia-
gram for ω2 = ω2(k⊥) , in particular for large values of k⊥, provides the most
distinctive representation of the three dispersion curves. We return to this point in
Section 5.3.3.

The behaviour of the magneto-sonic eigenfrequencies at small k‖ or small k⊥ is
obtained by expanding the square root factor in the second dispersion expression
(5.58). For approximately perpendicular propagation (ϑ ≈ π/2, i.e. k‖ � k), this
yields √

1 − σ cos2 ϑ ≈ 1 − 1
2σ (k‖/k)2, (5.64)

so that

ω2
s ≈ k2

‖
b2c2

b2 + c2
≤ ω2

A = k2
‖ b2 � ω2

f ≈ k2
⊥(b2 + c2). (5.65)

Hence, the slow and the Alfvén frequencies behave similarly for small k‖ and
even vanish when k‖ → 0. The importance of the latter property for stability can
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Fig. 5.3. Dispersion diagrams for three values of the ratio c/b of sound to Alfvén
speed: (a) ω2 = ω2(k‖) keeping k⊥ fixed, (b) ω2 = ω2(k⊥) keeping k‖ fixed.
Eigenvalues are normalized as ω̄2 ≡ ω2
2/ max(b2, c2) and wave vectors as k̄ ≡
k
, where 
 is a unit length.

hardly be overestimated. We will have plenty of opportunity to return to this in
later chapters. For purely parallel propagation (ϑ = 0, i.e. k⊥ = 0), the square
root factor becomes

√
1 − σ = |b2 − c2|

b2 + c2
, (5.66)
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so that

ω2
s = k2

‖ × min(b2, c2) ≤ ω2
A = k2

‖ b2 ≤ ω2
f = k2

‖ × max(b2, c2).

(5.67)

Hence, either the slow frequency coincides with the Alfvén frequency (if b2 <

c2) or the fast frequency coincides with ω2
A (if b2 > c2). Complete degeneracy

of the three MHD waves is obtained for k⊥ = 0 and b = c (middle frame of
Fig. 5.3(b)).

The dispersion diagrams shown in Fig. 5.3 depend qualitatively on the param-
eter c/b, measuring the relative contributions of hydrodynamic and magnetic ef-
fects. For later reference, we notice that the important parameter β which measures
the ratio of the plasma pressure and the magnetic pressure (defined in Eq. (4.34)),
is related to the square of this ratio of the sound and the Alfvén velocity:

β ≡ 2µ0 p0

B2
0

= 2

γ

c2

b2
. (5.68)

For γ = 5/3 , this implies the simple relation β = 1.2 (c2/b2). The assumption
β � 1, or c2 � b2, is valid for quite a number of relevant plasmas (like those in
tokamaks and in the solar corona) so that we may exploit this approximation for
those cases.

We will have many occasions to return to the dispersion diagrams of Fig. 5.3
when discussing wave propagation in inhomogeneous media. Already now, we
wish to draw the attention to some generic features.

(a) The Alfvén and slow frequencies ωA and ωs vanish for k‖ = 0. In that case, k ⊥ B0,
which implies that the waves do not bend the background magnetic field B0. This
condition has important consequences for stability, as we will see.

(b) The eigenfrequencies ω2 of the different waves depend monotonically on the value of
either one of the two components of the wave vector k. (In particular, notice the un-
usual decreasing dependence ω2 = ω2(k⊥) for the slow magneto-sonic waves.) This
property determines the general structure of the spectrum of MHD waves in plasmas.

(c) For large values of the wave vector the eigenfrequencies asymptotically tend to either
∞ or some finite value, which turns out to be very robust in the sense of being rather
independent of the assumption of homogeneity of the plasma. This has extremely im-
portant consequences for local wave propagation.

In one form or another, all of these properties survive in the more general inhomo-
geneous plasmas which we will investigate in later chapters.

� Exercise. Derive asymptotic expressions for the frequencies of the three MHD waves
in the limits k‖ → 0, k‖ → ∞, k⊥ → 0, k⊥ → ∞, and convince yourself that they corre-
spond with the diagrams shown in Fig. 5.3. �
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5.3 Phase and group diagrams

5.3.1 Basic concepts

We have discussed the peculiar properties of the MHD dispersion diagrams in
Section 5.2.4. We now analyse the more general implications of the dispersion
equation ω = ω(k) of wave phenomena, relating the angular frequency ω to the
wave vector k. For the ideal MHD waves this relation is implicitly expressed by
Eq. (5.53). From the dispersion equation two important quantities may be derived.
The first one is the phase velocity

vph ≡ (ω/k) n, n ≡ k/k, (5.69)

which gives the speed of propagation of a single plane wave in the direction of
k. The magnitude of the phase velocity of the three MHD waves depends on the
angle ϑ between k and the background magnetic field B0 , so that vph ≡ ω/k =
f (ϑ) , but it does not depend on the magnitude k of the wave vector. Such waves
are called non-dispersive because a wave packet, consisting of many components
with different wave numbers, may propagate without distortion (at least in one
direction). Such a packet propagates with the group velocity

vgr ≡ ∂ω

∂k

[
≡ ∂ω

∂kx
ex + ∂ω

∂ky
ey + ∂ω

∂kz
ez

]
, (5.70)

which also gives the direction of the flow of the energy carried by the wave packet;
see Braddick [39], Section 5.2.

The concept of group velocity deserves some further amplification; see Bitten-
court [31]. Consider a wave packet consisting of a superposition of plane waves
obeying a dispersion equation ω = ω(k):

�i (r, t) = 1

(2π)3/2

∫ ∞

−∞
Ai (k) ei(k·r−ω(k)t) d3k. (5.71)

This packet evolves from an initial shape, given by the Fourier synthesis

�i (r, 0) = 1

(2π)3/2

∫ ∞

−∞
Ai (k) eik·r d3k. (5.72)

Vice versa, the amplitudes Ai (k) are related to the initial values �i (r, 0) by Fourier
analysis:

Ai (k) = 1

(2π)3/2

∫ ∞

−∞
�i (r, 0) e−ik·r d3r. (5.73)

In our case, �i and Ai represent the perturbations ρ1, v1, e1, B1 and their Fourier
amplitudes, respectively, so that the index i = 1, 2, . . . , 8. (Alternatively, one
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could consider the representation (5.47), where i = 1, 2, . . . , 7, or the velocity rep-
resentation (5.51), where i = 1, 2, 3.) Furthermore, the pertinent dispersion equa-
tion ω = ωA(k) of the Alfvén waves, given by Eq. (5.56), or ω = ωs, f (k) of the
magneto-sonic waves, given by Eq. (5.58), should be inserted. It is to be noted that
only one of the amplitudes Ai (k) can be chosen freely as a normalization, whereas
the others should be chosen in agreement with the eigenfunction relations (5.57)
for the Alfvén waves, or (5.60) for the magneto-sonic waves.

Let us assume that the wave packet consists of harmonics with wave vectors
centred about some central value k0. A typical example is the Gaussian distribu-
tion,

Ai (k) = Âi e− 1
2 |(k−k0)·a|2, (5.74)

where the components of the auxiliary vector a measure the width of the distri-
bution in each of the three directions. This corresponds to an initial wave packet
consisting of a main harmonic, with wave vector k0 , and a modulated amplitude
centred at the origin r = 0 :

�i (r, 0) = eik0·r × Âi

ax ayaz
e− 1

2 [(x/ax )2+(y/ay)
2+(z/az)

2]. (5.75)

An extreme example is the δ-function distribution, Ai (k) = (2π)3/2 Âi δ(k − k0) ,
corresponding to a plane wave �i (r, 0) = Âi exp(ik0 · r) with a single wave vector
k0.

For an arbitrary wave packet with a reasonably localized range of wave vec-
tors (i.e. not infinitely narrow or infinitely wide), we may expand the dispersion
equation about the central value k0:

ω(k) ≈ ω0 + (k − k0) ·
(

∂ω

∂k

)
k0

, ω0 ≡ ω(k0). (5.76)

Inserting this approximation in the expression (5.71) for the wave packet gives

�i (r, t) ≈ ei(k0·r−ω0t) × 1

(2π)3/2

∫ ∞

−∞
Ai (k) ei(k−k0)·(r−(∂ω/∂k)k0 t) d3k, (5.77)

representing a carrier wave exp i(k0 · r − ω0t) with an amplitude-modulated en-
velope. Through constructive interference of the plane wave harmonics, the enve-
lope maintains its shape during an extended interval of time, whereas the surfaces
of constant phase of this envelope move precisely with the group velocity,

vgr =
(

dr
dt

)
const phase

=
(

∂ω

∂k

)
k0

, (5.78)

in agreement with the definition (5.70).
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5.3.2 Application to the MHD waves

The relation with the geometric construction of wave fronts by Huygens’ principle
is well known. For MHD waves, this is most strikingly illustrated for the case of
Alfvén waves. From Eq. (5.56), the phase velocity for Alfvén waves is given by

(vph)A ≡ (vph)A n, (vph)A = b cos ϑ, (5.79)

so that the locus of the endpoints of the vector (vph)A, i.e. the phase diagram,
consists of two circles touching the origin (one of which is shown in Fig. 5.4(a)).
The anisotropy of Alfvén wave propagation is even more strongly manifested by
a localized wave packet resulting from a point perturbation in the origin at t = 0.
This gives rise to the group diagram, which is the envelope at unit time of the wave
fronts of a superposition of plane waves having passed in all directions through
the origin at t = 0. Because the endpoints of the phase velocity vectors (vph)A of
plane Alfvén waves lie on a circle, these wave fronts all go through a single point
(Fig. 5.4(b)). Hence, the group diagram (or caustic) for Alfvén waves just consists
of the two points ±b along B0 (Fig. 5.4(c)), so that the group velocity of Alfvén
waves is given by

(vgr)A = b. (5.80)

ba

b

vph

ϑ

c

b- b

Fig. 5.4. Construction of the phase and group diagrams for Alfvén waves.
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This provides the most extreme example of anisotropy of plasma waves guided
by a magnetic field: Alfvén wave point disturbances, and their associated energy
flow, just propagate along single magnetic field lines. Of course, Eq. (5.80) is also
obtained algebraically from the dispersion equation (5.56).

For the magneto-acoustic waves similar geometrical constructions can be made,
but, in this case, it is easier to exploit the algebraic expressions for the phase and
group velocities following from the dispersion equation (5.58). It is expedient to
introduce unit vectors in the x-z plane, i.e. the plane of k and b:

n ≡ k/k = (sin ϑ, 0, cos ϑ),

t ≡ [
(b/b) × n

]× n = (cos ϑ, 0, − sin ϑ). (5.81)

The expression for the phase velocity of the magneto-acoustic waves then reads

(vph)s, f ≡ (vph)s, f n, (vph)s, f =
√

1
2 (b2 + c2)

√
1 ±

√
1 − σ cos2 ϑ,

(5.82)
whereas the expression for the group velocity becomes

(vgr)s, f = (vph)s, f

⎡
⎣ n ± σ sin ϑ cos ϑ

2
√

1 − σ cos2 ϑ
[

1 ± √
1 − σ cos2 ϑ

] t

⎤
⎦ . (5.83)

The derivation of the latter expression requires some straightforward algebra which
we leave as an exercise.

� Exercise. Carry this out. Hint: compute (vgr)⊥ = ∂ω/∂k⊥ = (sin ϑ/vph) ∂ω2/∂k2
⊥, and

similarly for (vgr)‖, and project on the unit vectors n and t. �

All of the above expressions are brought together in the phase and group dia-
grams shown in Fig. 5.5, which depict vph(ϑ) and vgr(ϑ) for the three MHD waves
for three different values of c/b . Pictures of this kind were first constructed by
K. O. Friedrichs [76] and, therefore, rightly named Friedrichs diagrams. The
strong anisotropy of the MHD waves is manifest. In particular, notice the very
different manner of fast and slow wave propagation: the fast magneto-sonic waves
may be considered as generalized sound waves with significant contributions of the
magnetic pressure. Not surprisingly, these contributions increase the perpendicu-
lar speed of propagation. In accordance with the orthogonality condition (5.63),
expressing a deep duality of the waves, the waves behave in exactly the opposite
manner: the slow magneto-sonic waves may be considered as sound waves with
strong magnetic guidance. Like the Alfvén waves, internal focusing by the mag-
netic field produces wave packages that propagate dominantly along the magnetic
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field. This leads to the interesting cusp-shaped caustics exhibited by the slow wave
group diagrams in the bottom part of Fig. 5.5.

Clearly, all MHD wave properties depend strongly on the value of the parameter
c/b , which we showed to be related to the usual parameter β in Eq. (5.68). In
Fig. 5.5, we have depicted three curves for values of c/b deviating little from
1, to show the interesting degeneracy at c = b , but also because the slow wave
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Fig. 5.5. (a) Phase diagrams and (b) group diagrams of the MHD waves for
three values of the ratio c/b of the sound speed to the Alfvén speed. The phase
and group velocities are normalized as v̄ ≡ v/ max(b, c).
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curves are still visible for this choice. For the important case of low β plasmas
(e.g. c/b = 0.1, so that β = 0.012 when γ = 5/3), the slow branches virtually
disappear in the origin. This wide separation from the Alfvén and fast branches
is an important property that is frequently exploited to simplify wave and stability
studies of, e.g., tokamaks. The theoretical framework is called the low β expansion
scheme.

� Question. What happens in the opposite limit (β � 1 or c/b � 1)? Also discuss the
limiting case of pure gas dynamics (β → ∞ or b = 0). �

The construction of the phase diagram is much easier than that of the group
diagram since vph and n have the same direction. However, the group diagram
has a wider validity since it represents the response to local disturbances, which
remains valid for inhomogeneous plasmas. The complicating factor, not visible in
Fig. 5.5, is that the direction of the group velocity vgr(ϑ) deviates significantly
from the direction n(ϑ) of the central wave vector. This is also evident from the
expressions (5.80) for the Alfvén waves and (5.83) for the magneto-sonic waves.
In particular, slow magneto-sonic wave packages behave quite oddly (see below in
the discussion of Fig. 5.6) so that one has to be very careful with the limiting values
of parallel and perpendicular propagation for these waves. From the dispersion
equations (5.56) and (5.58) one obtains the following limiting values for the phase
and group velocities:

ϑ = 0 :

(vph/gr)s = min (b, c) ≤ (vph/gr)A = b ≤ (vph/gr) f = max (b, c),

ϑ = π/2 :

(vph)s = 0 = (vph)A = 0 < (vph) f = √
b2 + c2,

(vgr)s = bc√
b2+c2

(cusp) ≤ (vgr)A = b ≤ (vgr) f = √
b2 + c2,

(5.84)

in agreement with the expressions (5.67) and (5.65), respectively.
Finally, we wish to present the peculiar differences of the relationship between

the directions of n(ϑ) and vgr(ϑ) for the three MHD waves. In Fig. 5.6 one of
the group diagrams is depicted once more with the central wave vector n lying in
the first quadrant and the three group velocities exhibiting their mutually exclusive
directions of propagation: when the direction of n changes from ϑ = 0 (parallel to
B) to ϑ = π/2 (perpendicular to B), the fast group velocity also changes from
parallel to perpendicular (though it does not remain parallel to n), the Alfvén
group velocity just remains purely parallel, but the slow group velocity initially
changes clockwise from parallel to some negative angle at ϑ = ϑm (computed
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Fig. 5.6. Group diagrams with the group velocity vectors relative to the normal
n of the three MHD waves in the first quadrant.

below) and then back again (i.e. anti-clockwise) to purely parallel. For the latter
direction, the value of the slow group velocity, called the cusp velocity, is indi-
cated on the last line of Eq. (5.84). It plays an important role in the analysis of
local waves in inhomogeneous plasmas. Notice that slow wave packages prop-
agate in the perpendicular direction opposite to the direction of n! Somehow,
magnetic focusing is perfect for Alfvén waves, but slightly overshoots for slow
waves.

� Computation of the return angle in the slow wave group diagram. The angle ϑm
between k and B0 where the slow wave group vector (vgr)s returns may be computed
from Eq. (5.83) by defining the square root expression R(ϑ) ≡ √

1 − σ cos2 ϑ . This
quantity increases monotonically with ϑ so that it can be used as a parameter measur-
ing the angle instead of ϑ itself. In terms of R, the magnitude of the slow group velocity is
given by

(v2
gr)s = 1

8
(b2 + c2)

−3R3 + 5R2 − (1 − σ)R − (1 − σ)

R2
. (5.85)

Its maximum is reached for Rm ≡ R(θm) satisfying the cubic equation

3R3
m − (1 − σ)Rm − 2(1 − σ) = 0, (5.86)



212 Waves and characteristics

which has only one physically acceptable solution:

Rm = 3τ 1/3
[
(1 + √

1 − τ)1/3 + (1 − √
1 − τ)1/3

]
, τ ≡ 1

81
(1 − σ), (5.87)

from which the required angle ϑm = arccos (
√

(1 − R2
m)/σ ) is obtained. The correspond-

ing magnitude of (vgr)s , and its angle with B0 (not to be confused with ϑm !), is obtained
from Eq. (5.83) by substituting ϑm . Check that (vgr)⊥ < 0 . �

5.3.3 Asymptotic properties

Clearly, the three MHD waves exhibit a distinct difference with respect to their
propagation properties in the different directions. This was already discussed in
Section 5.2.4 and illustrated by the dispersion diagrams of Fig. 5.3, plotting ω2 as
a function of k‖ with k⊥ fixed, and vice versa. In Fig. 5.7, we show the dispersion
diagrams for large values of k‖ and k⊥ once more, in a schematic fashion, in order
to highlight their asymptotic properties. In the left diagram (ω2 = ω2(k‖) for fixed
k⊥), the fast branch starts at ω2

1 ≡ k2
⊥(b2 + c2) and tends to ω2

2 ≡ k2
‖b2 ≡ ω2

A as

k‖ → ∞, whereas the slow branch starts at 0 and tends to ω2
3 ≡ k2

‖c2. In the right

diagram (ω2 = ω2(k⊥) for fixed k‖), the fast branch ranges from ω2
4 ≡ k2

‖b2 ≡ ω2
A

at k⊥ = 0 to ω2
7 ≡ k2

⊥(b2 + c2) → ∞, and the slow one ranges from ω2
5 ≡ k2

‖c2 to

ω2
6 ≡ k2

‖b2c2/(b2 + c2).
While the group velocity in the parallel direction is positive, ∂ω/∂k‖ > 0 , for

all three kinds of waves, the group velocity ∂ω/∂k⊥ in the perpendicular di-
rection and the asymptotic value of the frequency for k⊥ → ∞ display a very
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0

Fig. 5.7. Schematic dispersion diagrams and asymptotics for large wave num-
bers (b > c ): (a) ω2 = ω2(k‖) for fixed k⊥; (b) ω2 = ω2(k⊥) for fixed k‖.
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characteristic difference for the three waves:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ω/∂k⊥ > 0, ω2
f → ∞ for the fast waves,

∂ω/∂k⊥ = 0, ω2
A → k2

‖b2 for the Alfvén waves,

∂ω/∂k⊥ < 0, ω2
s → k2

‖
b2c2

b2 + c2 for the slow waves. (5.88)

Note that this implies that the energy propagation of slow wave packets is opposite
to that of fast wave packets in the perpendicular direction! This is caused by the
peculiar behaviour of the slow group velocity depicted in Fig. 5.6.

The group diagram has a much wider applicability than just wave propagation
in infinite homogeneous plasmas. This is so because the construction of a wave
packet involves the contributions of large k-vectors (small wavelengths) so that the
concept of group velocity is essentially a local one. This is one of the reasons why
it returns in the context of nonlinear MHD of inhomogeneous plasmas, where the
associated characteristics become the carriers of the information of disturbances
of the plasma. This is our next subject.

5.4 Characteristics�

5.4.1 The method of characteristics�

Consider the simple example of the linear advection equation in one spatial dimen-
sion,

∂�

∂t
+ u

∂�

∂x
= 0, (5.89)

where �(x, t) is the unknown and the advection velocity u is considered to be
given. If u = const, the solution is trivial:

� = f (x − ut), where f = �0 ≡ �(x, t = 0). (5.90)

Hence, the initial data �0 are simply propagated along the set of parallel straight
lines dx/dt = u, which are the characteristics for this case.

For our subject (the study of the MHD equations (5.18)–(5.21)), it is important
that this procedure may be generalized to systems of first order partial differential
equations (PDEs) in three spatial dimensions and time, so that � becomes a vector
and u a matrix. For example, the linearized equations for one-dimensional sound
waves, following from Eqs. (5.5)–(5.7), read:

∂

∂t

(
v1

p1

)
+
(

0 1/ρ0

γ p0 0

)
∂

∂x

(
v1

p1

)
= 0, (5.91)
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where we have omitted the redundant density equation. As we have seen in Sec-
tion 5.1.2, for constant values of ρ0 and p0, the solutions (5.10) represent plane
sound waves with frequencies ω = ±kc, where c ≡ √

γ p0/ρ0 is the sound speed.
Exploiting real notation, the general solution may be written as

v1(x, t) =
∑

k

[
αk sin k(x ± ct) + βk cos k(x ± ct)

]
, (5.92)

and a similar expression for p1. Here, the coefficients αk and βk follow from
Fourier decomposition of the initial data,

v1(x, 0) =
∑

k

(αk sin kx + βk cos kx), (5.93)

demonstrating that the initial data do, in fact, propagate along the two sets of
straight-line characteristics dx/dt = ±c .

Returning to the linear advection equation (5.89), but now assuming that u is not
constant, the characteristics become solutions of the ordinary differential equations
(ODEs)

dx

dt
= u(x, t). (5.94)

Along these curves, the solution �(x, t) is constant,

d�

dt
≡ ∂�

∂t
+ ∂�

∂x

dx

dt
= 0, (5.95)

as is evident by comparison with Eq. (5.89). As a result, for given initial data
�0(x), the solution can be determined at any time t1 > 0 by constructing the
characteristics through a suitable set of points {. . . , xi , xi+1, . . .} so that, e.g.,
�(x ′

i , t1) = �0(xi ) , where x ′
i lies on the characteristic through x = xi . This is

illustrated in Fig. 5.8 for the case that a weak discontinuity (a ‘tent’ function with
a discontinuous derivative) is applied at t = 0. The characteristic through x = xi

propagates this discontinuity forward in space-time.
Most important for the study of gas dynamics and magnetohydrodynamics,

in particular for modern developments in computational fluid dynamics (CFD)
and computational magneto-fluid dynamics (CMFD), is the fact that the method
of characteristics generalizes to nonlinear partial differential equations. Since it
lends itself naturally to numerical implementation, it is at the basis of many meth-
ods in CFD and CMFD. Following the clear exposition of LeVeque [143, 144] on
this topic, this may be illustrated again with the advection equation which becomes
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Fig. 5.8. Pointwise propagation of a solution along the characteristics.

quasi-linear when u is also a function of the unknown � itself. A particularly rel-
evant example is the case u = � which leads to Burgers’ equation:

∂�

∂t
+ �

∂�

∂x
= ν

∂2�

∂x2 , (5.96)

where a viscous term is added on the RHS to model the balance between nonlinear
and dissipative processes when gradients build up in the solutions. (This equation
may be obtained from Eqs. (4.136) and (4.137) for plane incompressible fluid flow
in one dimension, where � ≡ vx .) At first neglecting this small term, the charac-
teristics are the solutions of the ODE

dx

dt
= �

(
x(t), t

)
, (5.97)

which are just a set of straight lines with slopes determined by the initial data, like
in the first step of Fig. 5.8. For large times, the characteristics will cross, in general,
where build-up of large gradients of � is counteracted by smoothing through the
dissipative term on the RHS of Burgers’ equation. This will occur in a very narrow
region, so that effectively a valid solution with a shock is obtained in the limit
ν → 0, where the condition of increasing entropy across the shock is to be applied
to the ideal model to eliminate unphysical solutions, as we have already seen in
Section 4.5.1 and Fig. 4.12.

We will return to computational methods in the chapters on this subject in
Volume 2. For the present purpose, the essential issue connected with characteris-
tics is the fact that the equations of MHD are actually hyperbolic partial differen-
tial equations. This means that they possess a complete set of real characteristics
related to the eigenvalues of the linearized system. This will be demonstrated in
Section 5.4.3.
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5.4.2 Classification of partial differential equations�

Long before computational methods for solving PDEs became common tools, the
theory of second order partial differential equations was already a central subject
of mathematical physics, where the method of characteristics was applied exten-
sively; see Courant and Hilbert [60], Garabedian [78], or Morse and Feshbach
[159]. Therefore, it is useful to recall some of the concepts developed there before
we return to the study of the MHD equations proper. Consider the following second
order partial differential equation in two dimensions:

A�xx + 2B�xy + C�yy = D(�x , �y, x, y), (5.98)

where A, B, and C are functions of only x and y for the time being. These indepen-
dent variables may indicate two spatial dimensions as well as one space and one
time coordinate, or linear combinations. Subscripts x and y indicate differentiation
with respect to those variables: �x ≡ ∂�/∂x , etc. The Cauchy problem consists in
finding the solution � away from a boundary C (Fig. 5.9), when, e.g., both � and
its normal derivative �n ≡ n · ∇� are specified on it. Introducing new variables

�1 ≡ �x , �2 ≡ �y,

Eq. (5.98) is transformed into an equivalent system of first order equations

A�1x + B�1y + B�2x + C�2y = D(�1, �2, x, y),

(5.99)
�1y − �2x = 0.

The pertinent Cauchy problem is now to determine �1 and �2 away from the
boundary, when they are given on C .

y

x

C

η
1

η2

η-1

ξ2

ξ1

ξ0

η0

Fig. 5.9. Boundary curve C for 2D domain with coordinates ξ and η.
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To facilitate the solution of the Cauchy problem, let us replace the Cartesian
coordinates x, y by boundary fitted coordinates ξ, η , where the boundary curve
C is given by ξ(x, y) = ξ0. These coordinates may be chosen orthogonal, ∇ξ ·
∇η = 0 , but this is not essential for the discussion. The boundary data can then be
expressed as

�1(ξ0, η) = f1(η), �2(ξ0, η) = f2(η). (5.100)

We wish to investigate under which conditions �1(ξ, η) and �2(ξ, η) may be ob-
tained by means of a power series solution about a particular point (ξ0, η0) on the
boundary (the dot in Fig. 5.9):

�1(ξ, η) = �1(ξ0, η0) + (ξ − ξ0)

(
∂�1

∂ξ

)
0
+ (η − η0)

(
∂�1

∂η

)
0
+ · · · ,

�2(ξ, η) = �2(ξ0, η0) + (ξ − ξ0)

(
∂�2

∂ξ

)
0
+ (η − η0)

(
∂�2

∂η

)
0
+ · · · . (5.101)

Here, the expressions �i (ξ0, η0) ≡ fi (η0) and (∂�i/∂η)0 ≡ d fi/dη (η0) (i =
1, 2) are known from the boundary conditions (5.100), so that we need to inves-
tigate under which circumstances the remaining expressions (∂�i/∂ξ)0 (i = 1, 2)
can be calculated. Once the latter two derivatives are known, the higher derivatives
in the expansion (5.101) may be found by successive differentiations of the orig-
inal equations (5.99) so that the problem may be considered to be solved, i.e. in
the neighbourhood of ξ = ξ0. The process is then repeated by moving C to ξ = ξ1,
etc., until the solution is known everywhere.

We transform the partial differential equation (5.99) to ξ -η coordinates by
writing

�1x = ∂�1

∂ξ
ξx + ∂�1

∂η
ηx , etc.

This yields

(Aξx + Bξy)
∂�1

∂ξ
+ (Bξx + Cξy)

∂�2

∂ξ
= D − (Aηx + Bηy)

∂�1

∂η

−(Bηx + Cηy)
∂�2

∂η
,

ξy
∂�1

∂ξ
− ξx

∂�2

∂ξ
= −ηy

∂�1

∂η
+ ηx

∂�2

∂η
, (5.102)

where the LHS contains the unknown derivatives and the RHS the known ones.
The unknown derivatives ∂�1/∂ξ and ∂�2/∂ξ may then be determined from
Eqs. (5.103) if the determinant of the coefficients on the left hand side does not
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vanish. On the other hand, the condition that the determinant vanishes,∣∣∣∣∣∣∣
Aξx + Bξy Bξx + Cξy

ξy −ξx

∣∣∣∣∣∣∣ = −Aξ 2
x − 2Bξxξy − Cξ 2

y = 0, (5.103)

defines two directions in every point of the plane, the characteristic directions,
along which posing Cauchy boundary conditions does not determine the solution.
The characteristics are the curves in the x-y plane that are everywhere tangent
to these characteristic directions. Since ξ(x, y) = ξ0 ⇒ dξ = ξx dx + ξydy = 0
along C , those characteristic directions (to be avoided for a proper Cauchy bound-
ary) are given by

dy

dx

∣∣∣∣
char

= −ξx

ξy
= B ± √

B2 − AC

A
. (5.104)

Three cases may be distinguished:

(a) B2 > AC – the characteristics are real and the equation is called hyperbolic
(example: the wave equation �xx − (1/c2)�t t = 0 );

(b) B2 = AC – the characteristics are real but coincide and the equation is parabolic
(example: the heat equation �xx − (1/λ)�t = 0 );

(c) B2 < AC – the characteristics are complex and the equation is elliptic
(example: Laplace’s equation �xx + �yy = 0 ).

In the following, we will be concerned mainly with hyperbolic equations.
Cauchy initial conditions (the variable y then becomes t) may be considered ap-
propriate if the boundary (in x-t now) is not a characteristic. For the example of
the wave equation

�xx − 1

c2
�t t = 0,

the characteristic directions are given by dx/dt = ±c (Fig. 5.10). The initial data
propagate along those characteristics. In spaces of higher dimension than 2, for the
Cauchy problem to be well posed, it is not sufficient that the boundaries are not
coincident with a characteristic. One has to demand in addition that they are space-
like, as in Fig. 5.10. The reason is that the spatial part by itself is generally elliptic,
so that Cauchy’s problem is ill-posed if we consider time-independent solutions.
In physical problems initial data are usually given along space-directions,1 so that
this does not really present a restriction.

1 An exception is the excitation of waves by time-dependent forcing terms at the boundary of the plasma. In that
case data are given on time-like boundaries.
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x

t

time-like

space-like

Fig. 5.10. Characteristic directions for the wave equation.

Fig. 5.11. Domains for hyperbolic equations.

Finally, it is expedient to distinguish two useful concepts for hyperbolic partial
differential equations, viz. the domain of influence of I , which is the region in
the x-t plane where the influence of the initial data I is felt, and the domain of
dependence of the space–time point P , which is the region which influences the
behaviour at P . These concepts are illustrated in Fig. 5.11.

Notice that the analysis above is unchanged when the coefficients A, B, and C
depend on �1 and �2 as well, so that the method of characteristics also works for
nonlinear equations, specifically quasi-linear partial differential equations.

5.4.3 Characteristics in ideal MHD�

We generalize the preceding discussion to partial differential equations in more
than two independent variables and also more than two dependent variables, in
particular the ideal MHD equations (5.18)–(5.21) for the variables ρ, v, e, B as a
function of r and t . Now, instead of a 2-vector (�1, �2), the unknowns will be rep-
resented by an 8-vector �i (i = 1, . . . , 8). We will show that the MHD equations
are symmetric hyperbolic partial differential equations, where the nonlinearity is
only of a quasi-linear nature.
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The equations of ideal MHD are partial differential equations with respect to the
independent variables r, t . Consequently, characteristics will be three-dimensional
manifolds

ξ(r, t) = ξ0, (5.105)

in four-dimensional space–time r, t . These manifolds may be visualized as being
swept out by the motion of surfaces in ordinary three-dimensional space (r) when
time t progresses. We apply the same techniques as in the previous section to
determine when ξ(r, t) = ξ0 is a characteristic manifold.

Assume that boundary data for ρ(r, t), v(r, t), e(r, t), B(r, t) are given on the
manifold ξ(r, t) = ξ0 . (Notice that the initial value problem corresponds to giving
ρ(r, 0), v(r, 0), e(r, 0), B(r, 0) on the domain of interest in ordinary three-space.
In order for this problem to be well posed, ordinary three-space should not be a
characteristic. Here, we consider the opposite case that data are given on a char-
acteristic, so that the Cauchy problem is not well posed.) As in Section 5.4.2, we
consider ξ as a coordinate and introduce additional coordinates η, ζ , and τ , such
that four-space (r, t) is covered by the coordinates ξ , η, ζ , and τ . The boundary
data may then be written as

ρ(ξ0, η, ζ, τ ) = ρ0(η, ζ, τ ), etc., (5.106)

where η, ζ , and τ parameterize the boundary manifold ξ(r, t) = ξ0. Since
ρ0(η, ζ, τ ) is a known function, the derivatives ∂ρ0/∂η, ∂ρ0/∂ζ , and ∂ρ0/∂τ may
also be considered to be known. Similarly, for the other variables v0, e0 and B0.

We want to find out under which conditions the solutions ρ(ξ, η, ζ, τ ), v(ξ, η,

ζ, τ ), e(ξ, η, ζ, τ ), and B(ξ, η, ζ, τ ) may be obtained away from the boundary
ξ = ξ0 or, rather, may not be obtained since then ξ = ξ0 is a characteristic. To that
end, we write the variables in terms of a power series:

ρ(ξ, η, ζ, τ ) = ρ0(η0, ζ0, τ0) + (ξ − ξ0)

(
∂ρ

∂ξ

)
0

+ (η − η0)

(
∂ρ

∂η

)
0
+ (ζ −ζ0)

(
∂ρ

∂ζ

)
0
+ (τ − τ0)

(
∂ρ

∂τ

)
0
+ · · · ,

(5.107)

and likewise for v, e, and B. As in the previous section, we may consider the prob-
lem to be solvable if (∂ρ/∂ξ)0, (∂v/∂ξ)0, (∂e/∂ξ)0 and (∂B/∂ξ)0 can be con-
structed, since the other first order derivatives are found from the boundary data
(5.106), whereas the higher order ones may be obtained by subsequent differenti-
ations of the original partial differential equations.
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For convenience, we denote the unknown derivatives with respect to ξ with a
prime:

ρ ′ ≡ ∂ρ

∂ξ
, v′ ≡ ∂v

∂ξ
, e′ ≡ ∂e

∂ξ
, B′ ≡ ∂B

∂ξ
. (5.108)

The derivatives in the MHD equations (5.18)–(5.20) may then be written as:

∇ρ = ∇ξ ρ′ + ∇η
∂ρ

∂η
+ ∇ζ

∂ρ

∂ζ
+ ∇τ

∂ρ

∂τ
,

Dρ

Dt
= (ξt + v · ∇ξ) ρ′ + (ηt + v · ∇η)

∂ρ

∂η
+ (ζt + v · ∇ζ )

∂ρ

∂ζ

+(τt + v · ∇τ)
∂ρ

∂τ
, (5.109)

and similarly for the other variables. Hence, with respect to the primed variables,
the coordinate transformation amounts to the replacements

∇ f → n f ′ + · · · , n ≡ ∇ξ,

D f

Dt
→ −u f ′ + · · · , −u ≡ ξt + v · ∇ξ. (5.110)

Here, n is the normal to the space-part of the characteristic (where ξ has been
chosen such that |∇ξ | = 1 , so that n has unit length), and u is the characteris-
tic speed, i.e. the normal velocity of the characteristic ξ measured with respect to
the fluid velocity v. (We just note the correspondence between these transforma-
tions for the characteristics (weak discontinuities) and the transformations (4.145)
for the shocks (strong discontinuities). Further discussion of this intriguing corre-
spondence has to await the analysis of transonic flows in Volume 2.)

Inserting the expressions (5.109) in Eqs. (5.18)–(5.21), and keeping the primed
(unknown) variables on the left hand side but moving the known variables to the
right hand side of the equation, we obtain the following set of algebraic equations:

−uρ ′ + ρ n · v′ = · · · ,
−ρuv′ + (γ − 1) n (eρ ′ + ρe′) + (n B · −n · B) B′ = · · · ,

−ue′ + (γ − 1)e n · v′ = · · · ,
−uB′ + (B n · −n · B) v′ = · · · , n · B′ = · · · .

(5.111)

Here, the dots on the RHS indicate the known derivatives with respect to η, ζ ,
and τ . In order to get equations of the same dimension we multiply the four
lines of Eq. (5.111) by c/ρ, 1/ρ, γ /c, and 1/

√
ρ, resp., where we recall that



222 Waves and characteristics

c2 = γ (γ − 1)e. By now, the reader will have noted that we have virtually re-
duced the algebra to that of Section 5.2, Eqs. (5.33), where n has taken the place
of the wave vector k and u that of the frequency ω (or, rather, the Doppler shifted
frequency ω − k · v). Hence, we again choose B along the z-axis and n in the x-z
plane,

B = (0, 0, B), n = (nx , 0, nz), (5.112)

and introduce the Alfvén speed and the sound speed,

b ≡ B/
√

ρ, c ≡
√

γ p/ρ. (5.113)

The system of equations (5.111) then becomes⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− γ u nx c 0 nzc 0 0 0 0

nx c −u 0 0 nx c −nzb 0 nx b

0 0 −u 0 0 0 −nzb 0

nzc 0 0 −u nzc 0 0 0

0 nx c 0 nzc − γ
γ−1 u 0 0 0

0 −nzb 0 0 0 −u 0 0

0 0 −nzb 0 0 0 −u 0

0 nx b 0 0 0 0 0 −u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
γρ

ρ′

v′
x

v′
y

v′
z

γ−1
c e′

1√
ρ

B′
x

1√
ρ

B′
y

1√
ρ

B ′
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=· · · ,

(5.114)

where nz = Bn/B , and nx = [1 − (Bn/B)2]1/2 , and the constraint on n · B′ is
ignored for the time being. Not surprising any more, the homogeneous (LHS) part
of this equation corresponds to the eigenvalue problem (5.35) for the MHD waves.
And, if the algebra is the same, the physics probably is also the same. We will now
show this to be the case.

The characteristics are obtained when the determinant of the LHS of Eq. (5.114)
vanishes so that the full inhomogeneous problem cannot be solved. The solutions
cannot be propagated away from the manifold ξ = ξ0 in that case. This condition
may be written as

� = γ 2

γ − 1
u2(u2 − b2

n

) [
u4 − (b2 + c2)u2 + b2

nc2
]

= 0, (5.115)

where bn is the normal Alfvén speed, bn ≡ n · B/
√

ρ. Comparison with Eq. (5.53)
shows that we have recovered the dispersion equation for the linear MHD waves
in the disguise of an equation for the characteristic speeds u. From the analysis
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of Sections 5.2.1 and 5.2.2, we immediately conclude that a spurious root u = 0
has been introduced from the condition u n · B′ = 0 , following from the
homogeneous part of the first equation (5.111)(d), which should be eliminated on
account of the second equation. Hence, seven real characteristics are obtained,
corresponding to the eight variables minus the redundant one needed to describe
the system. The matrix on the LHS of Eq. (5.114) is real, symmetric, and has
only real eigenvalues. Consequently, the equations of ideal MHD are symmetric
hyperbolic equations and the initial value problem, where values are assigned to
the variables v, B, e, and ρ in ordinary three-dimensional space at t = 0, is well
posed. This important result is due to Friedrichs [76].

Disregarding the redundant root, Eq. (5.115) yields seven characteristic speeds:

u = uE ≡ 0, (5.116)

u = u A ≡ ±bn, (5.117)

u = us ≡ ±
[

1
2 (b2 + c2) − 1

2

√
(b2 + c2)2 − 4b2

nc2
]1/2

, (5.118)

u = u f ≡ ±
[

1
2(b2 + c2) + 1

2

√
(b2 + c2)2 − 4b2

nc2
]1/2

. (5.119)

The solution (5.116) corresponds to entropy disturbances that just follow the
stream-lines of the flow. The pair of solutions (5.117) corresponds to Alfvén dis-
turbances moving forward (+) or backward (−) with respect to the flow. The
pair of solutions (5.118) are forward and backward slow magneto-acoustic dis-
turbances, whereas the solutions (5.119) constitute forward and backward fast
magneto-acoustic disturbances. The characteristic speeds are ordered according
to the sequence of inequalities

0 = |uE | ≤ |us | ≤ |u A| ≤ |u f | < ∞. (5.120)

Degeneracies occur for n ‖ B:

|us | = min(b, c), |u A| = b, |u f | = max(b, c), (5.121)

and for n ⊥ B:

|us | = |u A| = 0, |u f | = (b2 + c2)1/2. (5.122)

The equations of gas dynamics are obtained in the limit b → 0 , when the slow
and Alfvén waves disappear in the origin (u → 0) and the fast magneto-acoustic
waves degenerate into ordinary sound waves (u f → ±c). Another limit of interest
is the case of incompressible plasma (c → ∞). In that case the speed of the
fast magneto-acoustic wave disappears at infinity (instantaneous propagation),
whereas the slow magneto-acoustic speed and the Alfvén speed coincide. The
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Fig. 5.12. Characteristic manifold for the 2D wave equation.

waves themselves do not coincide, of course, because their physical properties
(e.g. polarization) are different.

Let us now consider the spatial part of a characteristic manifold at a certain
time t = t0. This is called the ray surface. It may be considered as a wave front,
i.e. a surface across which weak discontinuities (as illustrated in Fig. 5.8) occur,
emitted at time t = 0 from the origin x = y = z = 0. For example, in the absence
of a magnetic field, a characteristic manifold would just be the spherical sound
front x2 + y2 + z2 = c2t2 so that the ray surface would be the sphere with radius
ct0. Dropping the z-dependence, the characteristic in x, y, t space then becomes a
cone through the point x = y = t = 0 (Fig. 5.12), whereas the circular intersec-
tion of this cone with the plane t = t0 constitutes the ray surface. Of course, MHD
gives much more complicated figures because the medium is anisotropic and the
coefficients of the partial differential equations are not constant.

To get the ray surface we first of all compute from Eqs. (5.116)–(5.119) the dis-
tance ut0 which a plane wave front travels along n after having passed the origin
at t = 0. The collection of these points gives Fig. 5.13(a) (which is a schematic
rendering of the computed phase diagram of Fig. 5.5(a)). However, this is not the
ray surface, but the so-called reciprocal normal surface. (Of course, everything
is symmetric around the direction of B so that the three-dimensional pictures are
obtained by just rotating the figure around the B-axis.) To get the ray surface de-
picted in Fig. 5.13(b) (which is again a schematic rendering, but now of the group
diagram of Fig. 5.5(b)) we have to take the envelope of the plane wave fronts
since the ray surface corresponds to a wave front due to a point disturbance at
the origin at t = 0. Taking the envelope of the fronts indicated by s, A and f in
Fig. 5.13(a) results in the completely different and, in particular, more singular
picture of Fig. 5.13(b). As we have seen in Section 5.3.2, the reciprocal normal
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Fig. 5.13. Friedrichs diagrams: schematic representation of (a) reciprocal nor-
mal surface (or phase diagram) and (b) ray surface (or group diagram) of the
MHD waves for b < c.
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Fig. 5.14. The seven characteristic directions for MHD (when the x-axis is not
perpendicular or parallel to B).

surface for the Alfvén wave consists of two spheres touching the origin. Corre-
spondingly, the Alfvén ray surface just consists of the two points z = ±b, so that
Alfvén waves travel as point disturbances along the magnetic field. The ray surface
for the slow magneto-acoustic wave also exhibits a quite anisotropic character: it
consists of two cusped figures. The fast magneto-acoustic waves exhibit the least
degree of anisotropy. In that respect, they resemble ordinary sound waves most.

A simple representation of the MHD characteristics is obtained by dropping
one more spatial dimension and exploiting the expressions (5.116)–(5.119) for
the seven speeds to compute the x-t cross-sections of the characteristics. This
yields Fig. 5.14. Recall that the characteristic speed u is measured with respect
to the background velocity v, dr/dt |char = u + v · n , so that the inclination of the
entropy characteristic indicates that the plasma is assumed to stream to the right
here.

On a characteristic manifold, � = 0 , so that the homogeneous counterpart
of Eq. (5.114) has a solution with fixed relations between the values ρ ′, v′, e′
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and B′ on that manifold. A physical interpretation of the characteristics is to
consider those primed variables as discontinuities of the derivative across the
characteristic, so that ρ ′ ≡ ∂ρ/∂ξ � ∂ρ/∂η , etc., justifying the neglect of the
RHS of Eq. (5.114). The meaning of this is that we may consider these quan-
tities as weak discontinuities of the flow that are propagated along with the
characteristics. We then find the following relationships for the different char-
acteristics which, of course, reproduce the relationships found for the waves in
Section 5.2.3:

(a) Entropy characteristics (u = 0):

S′/S = −γρ′/ρ = γ e′/e �= 0, v′ = 0, B′ = 0. (5.123)

Only the thermodynamic variables are perturbed, in particular the entropy.

(b) Alfvén characteristics (u = u A):

B′
y = −√

ρ v′
y �= 0, ρ ′ = 0, e′ = 0, v′

x = v′
z = 0, B ′

x = B ′
z = 0.

(5.124)

These are purely transverse disturbances where v′ and B′ are perpendicular to the
plane through n and B (Fig. 5.1). The thermodynamic variables are not perturbed.

(c) Magneto-acoustic characteristics (u = us, f ):

v′
x = nx

nz

u2

u2 − b2
v′

z �= 0, B ′
z = −nx

nz
B ′

x = nx b

u

√
ρ v′

x �= 0,

(5.125)

ρ′ = γρ

c2
e′ = ρu

nzc2
v′

z �= 0, v′
y = 0, B ′

y = 0.

These disturbances are polarized in the plane through n and B, with the fast and
slow polarizations perpendicular to each other (Fig. 5.2). This difference arises
through the factor u2 − b2 which is positive for the fast characteristic and nega-
tive for the slow one. The thermodynamic variables are perturbed, except for the
entropy.

For characteristic directions n · B = 0 (i.e. the magnetic field is tangential to
the space-part of the characteristic), the root u = 0 is fivefold degenerate. The
homogeneous version of Eqs. (5.111) then reduces to the following two conditions:

n · v′ = 0, (5.126)

p′ + B · B′ = (p + 1
2 B2)′ = 0, (5.127)
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whereas we now also have to include the separate condition

n · B′ = 0. (5.128)

All other components of the variables are arbitrary. These disturbances are called
tangential discontinuities. An example would be an equilibrium of two adjacent
plasmas with different pressure, density, tangential magnetic field, tangential ve-
locity, but satisfying the relations (5.126)–(5.128). At the interface, a surface cur-
rent j�′ = n × B′ and a surface vorticity ω�′ = n × v′ produce disturbances of
the tangential field and velocity. Hence, quite unexpectedly, we recover the inter-
face conditions of Section 4.5.2 and the circle is closed: boundary value problem
and initial value problem are interwoven in MHD.

The fivefold degeneracy for vanishing characteristic speed (u = 0 for n · B =
0) corresponds to the degeneracy of marginal entropy, Alfvén, and slow magneto-
sonic waves (ω = 0 for k · B = 0). In general, degeneracies like that signal the
need to extend the theory with more sophisticated assumptions on the model. The
present degeneracies originate from the assumption of locality on the group dia-
grams and the characteristics, which neglect the global plasma properties associ-
ated with inhomogeneity. Hence, in order to make progress, we now have to enter
the vast territory of waves and instabilities in inhomogeneous plasmas. This is the
subject where MHD acquires its particular strength and beauty. It will occupy us
for the rest of this book.

5.5 Literature and exercises

Notes on literature

Phase and group diagrams:

– Bittencourt, Fundamentals of Plasma Physics [31], Section 14.6 and Chapter 15.

Characteristics:

– Courant & Hilbert, Methods of Mathematical Physics II [60], Chapter VI.
– Garabedian, Partial Differential Equations [78], Chapters 2, 3, 4, 6, 14.

Computational fluid dynamics:

– LeVeque, Numerical Methods for Conservation Laws [143], and his contributions to
LeVeque, Mihalas, Dorfi & Müller, Computational Methods for Astrophysical Fluid
Flow [144].

Characteristics in MHD:

– The demonstration that the MHD equations are symmetric hyperbolic equations is
due to Friedrichs. It probably appeared for the first time in print in the Courant Insti-
tute lecture notes [76], which is somewhat hard to find nowadays but still very well
worth reading.

– Akhiezer et al., Plasma Electrodynamics, Vol. 1 [4], Chapter 3.
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Exercises

[ 5.1 ] Sound waves

We start with a plasma without magnetic field and neglect gravity.
– Which three variables are involved? Write down the equations governing their evolu-

tion.
– We assume a time-independent, infinite and homogeneous background and perturb it.

Derive the equations for the linear perturbations. Do all three variables still couple?
– Derive the dispersion equation for plane waves from the wave equation for the per-

turbed velocity, using the sound speed c ≡ (γ p0/ρ0)
1/2. Since there is no preferred

direction in the plasma (why not?), we may choose a direction of wave propagation.
Do that and solve the dispersion equation. How many solutions are there? What do
they represent?

[ 5.2 ] Towards MHD waves

We now introduce a magnetic field into the problem and rewrite the vector products in
terms of inner products by means of the vector identities of Appendix A.

– Express the MHD equations in terms of the variables ρ, v, e = p/[(γ − 1)ρ] and B.
– Again perturb the quantities and derive the linearized MHD equations in terms of

dimensionless variables ρ̃, ṽ, ẽ, B̃, using γ , c, and the vectorial Alfvén speed b ≡
B0/

√
ρ0.

– Is there a preferred direction in the plasma now? Choose general directions for B0 and
k (can one choose them parallel?), and derive the matrix representation of the eigen-
value problem. What are the dimensions of this matrix? Is it symmetric, or should it
be?

[ 5.3 ] The marginal entropy wave

To isolate this wave, we exploit the entropy function S ≡ pρ−γ and the pressure p as
variables.

– Perturb these two quantities, construct dimensionless variables S̃ and p̃, and derive
the evolution equations for them. Combine these equations with those of problem
[5.2] to obtain the linearized MHD equations in terms of S̃, ṽ, p̃ and B̃.

– Show that these equations have a special solution, called the marginal entropy wave,
where ω = 0 and most of the variables, except S̃, vanish. What is the physical inter-
pretation of this solution?

[ 5.4 ] The velocity representation

When the constraint ∇ · B̃ = 0 is not observed, a spurious marginal ‘solution’ is intro-
duced. To get rid of this solution, we reduce the MHD equations to the velocity represen-
tation.

– From the linearized MHD equations for ρ̃, ṽ, ẽ and B̃, derive the second order wave
equation for the velocity ṽ. Are the sound waves included in this equation?

– Again insert plane wave solutions and construct the matrix representation of the
eigenvalue problem. What is the dimension of this matrix? Explain the counting of
unknowns!

– What is the general condition for an equation like A · x = λ x to have a solution
where x �= 0? Give this equation for the matrix representation you derived.
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[ 5.5 ] The three MHD waves

The dispersion equation just derived has three genuine (ω �= 0) wave solutions: Alfvén
waves (with frequency ±ωA), slow and fast magneto-sonic waves (with frequencies
±ωs, f ).

– Derive ωA of the Alfvén waves. Are these waves longitudinal or transverse? In what
direction do they propagate? Could they exist in a plasma without magnetic field?

– Derive the frequencies ωs, f of the magneto-sonic waves. Which of these waves can
be present in a plasma without a magnetic field? What are their frequencies in that
case?

– Show that 0 ≤ ω2
s ≤ ω2

A ≤ ω2
f < ∞.

[ 5.6 ] � Phase and group velocities

There are two important velocities in the propagation of wave trains. One is the phase
velocity, vph ≡ (ω/k) k/k , and the other is the group velocity, vgr ≡ ∂ω/∂k.

– Derive the equations for these velocities for the three kinds of MHD waves. Give
explicit expressions for propagation parallel and perpendicular to the magnetic field.

– Show that a wave packet with wave vectors localized about a central value k0 propa-
gates with the group velocity vgr(k0).

[ 5.7 ] Characteristics in alternative representations

In the text, the characteristics were obtained from the matrix representation Eq. (5.114) in
terms of the variables ρ, v, e, B. It is instructive to see what happens if s, v, p, B are chosen
as basic variables. Show that the representative matrix is again symmetric. Of course, the
same characteristics should be obtained from this matrix. Show that this is also true for the
system (4.12)–(4.15) for ρ, v, p, B, or the one obtained from it for the variables ρ, v, s, B.
Notice that in these representations the matrix is no longer symmetric, so that the first two
representations should be considered as the more adequate ones. (Friedrichs’ analysis [76]
makes use of the ρ, v, s, B representation. His conclusion that this system is symmetric is
based on the fact that he considers isentropic processes, where ∇s = 0.)
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Spectral theory

6.1 Stability: intuitive approach

6.1.1 Two viewpoints

How does one know whether a dynamical system is stable or not? Consider the
well-known example of a ball at rest at the bottom of a trough or on the top of a
hill (Fig. 6.1). There is a position (indicated by the full circle) where the potential
energy W due to gravity has an extremum W0. Displacing the ball slightly to a
neighbouring position (at the open circle) results in either a higher or a lower
potential energy W1. This corresponds to a stable system in the first case (W1 >

W0) and an unstable system in the second case (W1 < W0).
Already at this stage some important observations can be made, viz.:

(a) We have tacitly assumed that the constraining surface is curved, i.e. either convex or
concave, so that there is a position of rest, which is called the equilibrium position. In
this case, one may rescale the potential energy such that the equilibrium state corre-
sponds to W0 = 0 , and W1 becomes the potential energy of the displacement, which is
called the perturbation.

(b) If the constraining surface is flat and inclined, the system is not in equilibrium and the
ball simply rolls along the plane. This lack of equilibrium, when W has no extremum,
should be well distinguished from neutral or marginal stability, when W1 = W0 . The
latter situation occurs when the surface is horizontal, so that the value W = 0 may be
assigned to both W0 and W1.

This simple example illustrates the general theoretical approach to linear sta-
bility, where the study of the original nonlinear equations is simplified by means
of a split in equilibrium and perturbations. First, a time-independent equilibrium
state is to be found. This still involves the solution of the nonlinear equations, but
with the simplifying condition that the time dependence of the variables vanishes
and, usually, that the equilibrium is (translationally and/or rotationally) symmetric.

230
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Fig. 6.1. Two viewpoints: energy and force in (a) linearly stable and (b) unstable
situations.

An additional simplification, which is usually made for MHD and which is quite
pertinent for fusion machines (not for astrophysical plasmas!), is the assumption
of static equilibrium, not involving flow (v = 0). Next, this equilibrium is sub-
jected to small, i.e. linear, perturbations. This involves the study of the linearized,
time-dependent equations.

Such a study may be conducted by means of two broad classes of methods,
viz. by using variational principles involving quadratic forms (like the energy)
or by solving the (partial) differential equations themselves. These methods are
just a generalization of the two intuitive approaches illustrated in Fig. 6.1. The
upper part illustrates the investigation of stability by itself by means of the so-
called energy principle, i.e. a study of the sign of the potential energy W1 of the
perturbations (W1 > 0: stable, W1 = 0: marginally stable, W1 < 0: unstable). The
full dynamics of the system may be obtained from a variational principle which not
only involves the potential energy but also the kinetic energy of the perturbations.
The more usual approach is the solution of differential equations, in particular
the equation of motion, which involves a study of the forces acting on the system.
With respect to stability, this method is illustrated in the bottom part of Fig. 6.1. If a
displacement ξ creates a force F in the opposite direction, the state of equilibrium
tends to be restored and the system is stable. On the other hand, if the resulting
force is in the same direction as the displacement, the motion will be away from
equilibrium and the system is unstable.

These intuitive notions on displacements, forces, and energies may be general-
ized to continuous media, in particular magneto-fluids. This leads to the two alter-
native representations by means of the equation of motion, involving the plasma
displacement vector field ξ(r, t) and the linear force operator F(ξ) acting on that
field, on the one hand (Section 6.2), and by means of variational quadratic forms,
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Fig. 6.2. (a) Linearly stable, nonlinearly unstable, (b) linearly unstable, non-
linearly ‘stable’.

Fig. 6.3. Violating constraints.

involving the potential energy functional W [ξ] and the kinetic energy functional
K [ξ̇] , on the other hand (Section 6.4).

� Question. When a glass of water is turned upside down the contents will drop out, as is
generally known (first situation). However, if the glass is filled to the rim and covered by a
piece of paper the water will not drop out when the glass is turned over (second situation).
Discuss these facts in terms of equilibrium and stability properties of the configuration. Is
the first situation lack of equilibrium or instability? How about the second one? What is
the function of the piece of paper? �

Nonlinear stability or instability concerns the behaviour of dynamical systems
with respect to finite (non-infinitesimal) amplitudes of the displacements. Some
examples are shown in Fig. 6.2. On the left a system is shown which is stable when
subjected to small perturbations, but which becomes unstable when the amplitude
of the perturbation is big enough. Vice versa, a system may be unstable with re-
spect to small perturbations (Fig. 6.2(b)) but may possess neighbouring equili-
brium states (indicated by the labels 1 and 2) which are stable. If those states are
accessible, the system may turn out to be nonlinearly ‘stable’. (Quotation marks
since the original system is unstable but it evolves towards another state, which is
stable.) This subject is quite relevant for the properties of confined plasmas, but
too complicated to be covered in this chapter.

� Subtlety: Consider the situation of Fig. 6.3. The potential energy of the ball has been
lowered by taking it outside the cup. Is this situation unstable? Of course, this is cheating:
we had tacitly agreed upon the constraint that the ball should stay on the surface of the
cup. However, such subtleties turn out to be relevant for our study of plasma instabilities,
as we will see later (end of Section 6.1.2) for the constraint of ‘frozen’ field lines. For the
moment it suffices to say that it is important to make constraints explicit, and to observe
them. �



6.1 Stability: intuitive approach 233

6.1.2 Linearization and Lagrangian reduction

Let us now carry out the mentioned program on force and energy for plasmas. The
starting point is again the ideal MHD equations, which we write in the following
peculiar order (which will become clear in a moment) in terms of the variables v,
p, B and ρ:

ρ
(∂v

∂t
+ v · ∇v

)
= −∇ p + j × B − ρ∇� , j = ∇ × B , (6.1)

∂p

∂t
= −v · ∇ p − γ p∇ · v , (6.2)

∂B
∂t

= ∇ × (v × B) , ∇ · B = 0 , (6.3)

∂ρ

∂t
= −∇ · (ρv) . (6.4)

For the time being, we restrict the analysis to model I, i.e. application of the b.c.s

n · v = 0 , (6.5)

n · B = 0 , (6.6)

at the wall. These b.c.s do not need to be linearized since they are already linear.
(That is so because n is fixed; the complications arising for interface plasmas,
when n is not fixed, will be discussed in Section 6.6.1.)

Linearization proceeds by first defining a background equilibrium state about
which the dynamics is supposed to take place. The simplest and most relevant
choice is that of a static equilibrium (v0 = 0):

j0 × B0 = ∇ p0 + ρ0∇� , j0 = ∇ × B0 , ∇ · B0 = 0 , (6.7)

n · B0 = 0 (at the wall) . (6.8)

These equations only partly determine the equilibrium functions ρ0(r), p0(r),
j0(r) and B0(r). Clearly, a lot of freedom is left in the choice of the equilibrium
profiles. In particular, in the absence of gravity, the density ρ0(r) is completely
arbitrary.

� Example: freedom in circular cylinder equilibria. We drop the gravity term and mo-
mentarily omit the subscript 0 on the equilibrium quantities. Introducing cylinder coordi-
nates r, θ, z, with ∂/∂θ = 0 and ∂/∂z = 0, Eq. (6.7)(b) yields ∇ · j = (1/r) d(r jr )/dr =
0, so that jr = 0. Similarly, Eq. (6.7)(c) yields Br = 0. Hence, the physical variables p(r),
B = Bθ (r) eθ + Bz(r) ez , and j = jθ (r) eθ + jz(r) ez involve five scalar functions which
depend only on r . In that case, the magnetic surfaces, which are tangent to j and B and
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orthogonal to ∇ p, are nested circular cylinders. The five radial equilibrium functions are
further restricted by the remaining relations of Eqs. (6.7), viz.

p′ = jθ Bz − jz Bθ , jθ = −B ′
z , jz = 1

r
(r Bθ )

′ , (6.9)

so that

(p + 1
2 B2)′ = −B2

θ /r , (6.10)

where the primes denote derivatives with respect to r . Consequently, Eq. (6.10) is the
only restriction on the three basic functions p(r), Bθ (r), Bz(r), so that two of them may
be chosen arbitrarily. Note that this freedom comes in addition to the arbitrariness of the
density profile ρ(r). For example, choosing p = p0(1 − r2) and Bz = B0, we get Bθ =√

p0r , jθ = 0 and jz = 2
√

p0, which is a slight generalization (permitting a constant Bz
field) of the z-pinch equilibrium considered in Section 2.4.3. �

We return to the general discussion. Time enters into the problem with the per-
turbation of the equilibrium:

v(r, t) = v1(r, t) ,

p(r, t) = p0(r) + p1(r, t) ,

B(r, t) = B0(r) + B1(r, t) ,

ρ(r, t) = ρ0(r) + ρ1(r, t) , (6.11)

where p0, B0, and ρ0 now correspond to an inhomogeneous equilibrium, satisfy-
ing Eqs. (6.7) and (6.8), and the perturbations should satisfy | f1(r, t)| � | f0(r)|
(except for the velocity v). The resulting first order equations for the perturbations
of Eqs. (6.1)–(6.4) then read:

ρ0
∂v1

∂t
= −∇ p1 + j1 × B0 + j0 × B1 − ρ1∇� , j1 = ∇ × B1 , (6.12)

∂p1

∂t
= −v1 · ∇ p0 − γ p0∇ · v1 , (6.13)

∂B1

∂t
= ∇ × (v1 × B0) , ∇ · B1 = 0 , (6.14)

∂ρ1

∂t
= −∇ · (ρ0v1) , (6.15)

whereas the b.c.s (6.5) and (6.6) for the perturbations require

n · v1 = 0 , n · B1 = 0 (at the wall). (6.16)

At this stage, p0, j0, B0, and ρ0 are considered to be known from the zeroth order
equilibrium equations (the unperturbed system) and v1, p1, B1, and ρ1 are un-
known. Note that a lot of nasty terms have been eliminated by the assumption
v0 = 0.
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ξ (r,t)ξ

Fig. 6.4. Plasma displacement vector field.

We are now ready for an extremely useful further reduction, due to Bernstein
et al. (1958) [26]. We have promoted the momentum conservation equation (6.12)
to the first place since it describes the evolution of the velocity v1, whereas the
perturbations p1, B1 and ρ1 may be considered as secondary, i.e. determined by
v1 as expressed by the right hand sides of Eqs. (6.13)–(6.15). Elimination of the
latter equations is straightforward if the momentum equation is differentiated with
respect to time. (This procedure was followed in Section 5.2.3 to derive the wave
equation (5.50) for homogeneous plasmas.) However, the opposite procedure of in-
tegrating the equations (6.13)–(6.15) is more powerful. This is effected by means
of a new variable, viz. the Lagrangian displacement vector field ξ(r, t) of a plasma
element away from the equilibrium state (see Fig. 6.4). The velocity is just the
Lagrangian time derivative (i.e. the variation in time experienced in a local coor-
dinate system co-moving with the fluid) of this variable:

v = Dξ

Dt
≡ ∂ξ

∂t
+ v · ∇ξ , (6.17)

which is an exact, but highly nonlinear, expression. However, for the linearized
problem, we only need the first order, Eulerian, part of the time derivative:

v ≈ v1 = ∂ξ

∂t
. (6.18)

Inserting this expression, the equations (6.13)–(6.15) for p1, B1 and ρ1 can be
integrated immediately:

p1 = −ξ · ∇ p0 − γ p0∇ · ξ , (6.19)

B1 = ∇ × (ξ × B0) , (6.20)

ρ1 = −∇ · (ρ0ξ) . (6.21)

Note that the equation ∇ · B1 = 0 can be dropped now since it is automatically
satisfied by Eq. (6.20). Inserting these expressions into Eq. (6.12) leads to the
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desired result, viz. an equation of motion of the form

ρ0
∂2ξ

∂t2
= F

(
p1(ξ), B1(ξ), ρ1(ξ)

)
, (6.22)

where p1, B1 and ρ1 are determined by Eqs. (6.19)–(6.21). We will continue with
this formulation in Section 6.2, where we will give the explicit form of the opera-
tor F.

In the absence of gravity, the expression (6.21) for ρ1 is actually not needed
since it does not occur in the equation of motion. Hence, we could forget about this
relation in that case. This changes when gravitational forces are taken into account,
as needed in astrophysical plasmas. We will restrict the analysis to gravitational
potentials that are external, i.e. not caused by self-gravitation of the plasma but by
some external massive object.

� Subtleties on the initial data. So far, we have not mentioned initial conditions. In par-
ticular, we have omitted explicit terms for p1(r, 0), B1(r, 0) and ρ1(r, 0) in Eqs. (6.19)–
(6.21). This implies that we have tacitly assumed that finite initial values for these quan-
tities only appear as a result of a finite initial displacement ξ(r, 0). Since the ultimate
equation (6.22) is of second order in time, we should consider both ξ(r, 0) and ξ̇(r, 0)

as independent initial data. The following possibilities arise: (1) ξ(r, 0) = 0 , ξ̇(r, 0) 	= 0;
(2) ξ(r, 0) 	= 0, ξ̇(r, 0) = 0; and (3) combinations.

Consider case (2). Should we consider p1(r, 0), B1(r, 0), ρ1(r, 0) as additional inde-
pendent initial data, together with ξ(r, 0)? NO! If we start off with a finite displacement
of the plasma, we had better make sure that we got there by means of a motion consistent
with the ideal MHD conservation laws. Otherwise, something could happen as illustrated
in Fig. 6.5. At t = 0 the fluid has been displaced, but simultaneously a perturbation in B
has been allowed that corresponds to broken field lines: not a meaningful operation in ideal
MHD. Such a perturbation, not satisfying the constraints, should be considered as the ana-
logue of taking the ball out of the cup (Fig. 6.3).

A similar story holds for case (1), where we should assume that p1(r, 0) = 0,
B1(r, 0) = 0, ρ1(r, 0) = 0 because ξ(r, 0) = 0 . Hence, on the basis of physical arguments,
we tacitly impose an additional condition, viz. that the initial data on p1, B1 and ρ1 should
be consistent with ideal MHD. This implies that the equations (6.19)–(6.21) are considered
to be valid at all times. Consequently, all perturbations are expressed in terms of ξ(r, t)
alone and the possibility of Fig. 6.5 is eliminated. �

B (r,0)

B (r,0) ξ (r,0)ξ

Fig. 6.5. Cheating on the initial data.
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6.2 Force operator formalism

6.2.1 Equation of motion

We complete the discussion of the equation of motion (6.22). The right hand side
of this equation defines the ideal MHD force operator F(ξ) . Exploiting the ex-
pressions of Section 6.1.2, the explicit form of the linearized equation of motion
may be written as

F(ξ) ≡ −∇π − B × (∇ × Q) + (∇ × B) × Q + (∇�) ∇ · (ρξ) = ρ
∂2ξ

∂t2
,

(6.23)

where

π ≡ p1 = −γ p∇ · ξ − ξ · ∇ p, (6.24)

Q ≡ B1 = ∇ × (ξ × B). (6.25)

The symbols π (not to be confused with the earlier use of π in Chapter 3) and
Q are introduced here for no other reason than to be able to drop the subscripts 0

and 1 on the equilibrium and perturbation variables. This we will do from now on.
For model I (wall on the plasma), the only boundary condition needed to close the
system is obtained from Eq. (6.16)(a) for v1:

n · ξ = 0 (at the wall) . (6.26)

Once the geometry of the plasma has been specified (see Section 4.6), the equation
of motion (6.23) and the boundary condition (6.26) completely determine the lin-
earized dynamics of the plasma. Consequently, introducing the plasma displace-
ment vector ξ has enabled us to cast the linear equations of ideal MHD in the
compact form (6.23), which may be considered to be Newton’s law for a plasma
element. This is the physical basis of the very powerful spectral methods that can
be applied to these problems.

� Magnetic field boundary condition. The boundary condition (6.16)(b) for B1, lead-
ing to n · ∇ × (ξ × B) = 0, is automatically satisfied since n · ξ = 0 and n · B = 0 . This
is proved by noting that the latter two conditions imply that ξ × B = f n, with f some
scalar function. Hence, n · ∇ × (ξ × B) = n · [ (∇ f ) × n + f ∇ × n ] = f n · ∇ × n = 0 .
The last equality is easily obtained from the general expression (A.34) for the curl of a vec-
tor in curvilinear coordinates by choosing one of the coordinates along n, so that n1 = 1
and n2 = n3 = 0 . �

It is always important to count unknowns and equations. In linearized ideal
MHD only one vector field ξ(r, t) appears, whereas in the nonlinear theory the
variables v, B, p and ρ are needed. This is a substantial simplification (in addition
to the linearization). However, the order of the system should be independent of the
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choice of the variables exploited. Equation (6.23), with the definitions (6.24) and
(6.25) substituted, constitutes a sixth order system1 of three second order PDEs
for the three components of ξ. On the other hand, the equations (6.12)–(6.14) also
constitute a sixth order system, viz. of six first order PDEs for the three components
of v, the scalar p, and two of the three components of B1. The third component of
B1 is redundant because of the condition ∇ · B1 = 0, which is an initial condition
for Eq. (6.14), but automatically satisfied in Eq. (6.25). In the absence of gravity,
the equation for ρ1 is redundant in both representations since it does not couple
to the rest of the equations. The presence of a gravity field does not raise the
order of the system either since gradients of the variable ρ1 do not appear in the
equations (6.12) and (6.15).

Recall the similar reduction from representation in primitive variables to ve-
locity representation in Section 5.2.3, which we showed to be equivalent if the
marginal entropy mode given by ωE S1 = 0 , or ωEρ1 = 0 , was ignored. We
conclude that the ξ-representation, also called the Lagrangian representation, is
only equivalent to the original Eulerian representation in primitive variables if the
Eulerian entropy mode ωE = 0 is neglected. This is why the subscript E has been
put on this mode.

Since the equilibrium quantities p(r), B(r) and ρ(r) appearing in Eq. (6.23) do
not depend on time we may consider solutions in the form of normal modes:

ξ(r, t) = ξ̂(r)e−iωt . (6.27)

This transforms Eq. (6.23) into the eigenvalue problem

F(ξ̂) = −ρω2ξ̂, (6.28)

involving the linear operator F (or rather ρ−1F) and its eigenvalues ω2. As well
as discrete eigenvalues, ideal MHD also allows for continuous (or ‘improper’)
eigenvalues, as we will see in Chapter 7. The collection {ω2} of these two kinds
of eigenvalues is called the spectrum of ideal MHD. The central property, which
puts this subject on an equal mathematical footing to quantum mechanics, is that
the operator ρ−1F is self-adjoint so that the eigenvalues ω2 are real. This will be
proved in Section 6.2.3. Consequently, the eigenvalues ω themselves are either real
or purely imaginary.

1 The attentive reader may be puzzled by the appearance of only one boundary condition, viz. Eq. (6.26). Actu-
ally, in order not to slow down the exposition by too much detail, we had to be a little cavalier here. This will be
remedied in later explicit calculations where additional regularity and periodicity conditions appear, dictated by
the specific geometry which is chosen. Yet, it should be stressed already at this point that the general statement
about the sixth order character of the problem only holds with respect to two of the three spatial coordinates.
Due to the extreme anisotropy of magnetically confined systems, the dependence on the coordinate normal to
the magnetic surfaces turns out to reduce to a second order system in terms of n · ξ alone. Hence, regularity at
the magnetic axis and the condition (6.26) suffice to fix the solutions.
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Fig. 6.6. (a) Stable waves and (b) instabilities in ideal MHD.

Writing ω = σ + iν, this implies that two quite different classes of solution
occur, viz. stable waves for ω2 > 0, so that ν = 0 and the temporal dependence is
given by exp(∓iσ t) (Fig. 6.6(a)), and instabilities for ω2 < 0, so that σ = 0 and
the temporal dependence exp(±νt) represents exponential growth (Fig. 6.6(b)).
For eigenmodes, we already see the connection with the bottom part of the pic-
tures of Fig. 6.1 on the relationship between displacements and forces. Accord-
ing to Eq. (6.28), F(ξ) ∼ −ξ̂ for stable waves with ω2 > 0 and F(ξ) ∼ ξ̂ for
instabilities with ω2 < 0 . For general motions, consisting of a superposition of
eigenmodes, such a simple relationship does not hold. In that case, the sign of the
potential energy (corresponding to the upper parts of Fig. 6.1) will provide the test
for stability (see Section 6.4.4).

In dissipative (e.g. resistive) MHD, different eigenmodes are possible. In par-
ticular, since ω2 need not be real then, complex values of ω may occur. This may
give rise to the kind of modes depicted in Fig. 6.7: stable, but damped, modes if
Im(ω) < 0 and so-called ‘overstable’ modes if Im(ω) > 0 . The term ‘overstable’
expresses the fact that the direction of the restoring force is opposite to the dis-
placement, as in Fig. 6.1(a), but it is too big so that the resulting motion over-
shoots and the net result is again an instability. These additional possibilities are
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Fig. 6.7. (a) Damped stable and (b) overstable waves in dissipative MHD.

associated with the fact that the waves are non-conservative in dissipative MHD:
energy may be dissipated or accumulated.

Clearly, ideal, conservative MHD of static equilibria presents a significant sim-
plification for stability problems. Since ω2 is real, the transition from stability to
instability occurs only through the value ω2 = 0 , or ω = 0 , i.e. through marginal
stability. Consequently, to study the problem of stability one could study the
marginal equation of motion

F(ξ̂) = 0 , (6.29)

subject to the boundary condition (6.26). In general, this equation does not have
a solution because it is obtained from the eigenvalue problem (6.28) and ω2 = 0
does not have to be an eigenvalue. In order to get genuine solutions one should
arrange the equilibrium parameters such that ω2 = 0 becomes an eigenvalue. For
example, a typical tokamak stability study would involve the variation of global
equilibrium parameters like the value of β ≡ 2µ0 p/B2 and the ‘safety factor’ at
the plasma boundary, q1 ∼ 1/Ip , while keeping other variables fixed. For a par-
ticular value of the plasma current Ip one would push the value of β until the
marginal equation of motion Eq. (6.29) is satisfied, subject to the boundary con-
dition (6.26). In this manner one would calculate one value βcrit where marginal
stability is obtained. By varying the value of Ip one would trace out marginal
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Fig. 6.8. Schematic stability diagram for tokamaks.

stability curves in the β–q1 diagram, as shown schematically in Fig. 6.8. Physical
arguments usually indicate on which side of the curve the stable states are to be
found. (For example, in Fig. 6.8, this would be on the low β side.) This is the most
general, though not the easiest, method of studying stability problems.

Since F now contains all information on MHD waves and instabilities, let us
rearrange the terms slightly to see what we have:

F(ξ) = ∇(γ p∇ · ξ) − B × (∇ × Q) + ∇(ξ · ∇ p) + j × Q + ∇� ∇ · (ρξ).

(6.30)

One recognizes, successively, an isotropic force due to plasma compressibility,
associated with sound waves, and an anisotropic force (⊥ B) due to bending of
field lines, which is responsible for Alfvén waves. These terms are always present,
even in an infinitely homogeneous plasma (∇ p = 0, j = 0), which has been shown
(Chapter 5) to give rise to stable waves only. The third and fourth terms only oc-
cur in inhomogeneous plasmas, e.g. those encountered in confined plasmas for
thermonuclear research or magnetic flux tubes in astrophysical plasmas. In those
plasmas, the effect of equilibrium pressure gradients and currents, which are in-
trinsically associated with confinement, may give rise to instabilities. Of course,
the art of designing thermonuclear confinement machines is to find regions in pa-
rameter space (as exemplified by Fig. 6.8) where these potentially unstable effects
are counterbalanced by the stabilizing contributions. Finally, the gravitational term
is also associated with inhomogeneity. It gives rise to confinement as well as grav-
itational instabilities in astrophysical plasmas.

For homogeneous plasmas, the spectral equation (6.28) may be written as

ρ−1F(ξ̂) = c2∇∇ · ξ̂ + b × (∇ × (∇ × (b × ξ̂))) = −ω2ξ̂ , (6.31)

where c ≡ √
γ p/ρ and b ≡ B/

√
ρ are constants. In that case, plane wave solutions

ξ̂ ∼ exp(ik · r) give rise to the algebraic eigenvalue problem

ρ−1F(ξ̂) = −c2k k · ξ̂ − b × (k × (k × (b × ξ̂)))

= [ − (k · b)2 I − (b2 + c2) kk + k · b (kb + bk)
] · ξ̂ = −ω2ξ̂.

(6.32)
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This equation for ξ̂ is the same as Eq. (5.51) for v̂, which produced the disper-
sion equation (5.53) (without the marginal entropy wave), so that the three stable
MHD waves of Section 5.2.3 are recovered. Hence, analogous to Eq. (5.63), the
slow, Alfvén, and fast eigenvectors ξ̂s , ξ̂A, and ξ̂ f form an orthogonal triad. This
guarantees that arbitrary vectors ξ̂ may be decomposed into the three MHD eigen-
vectors so that the eigenspaces of the force operator span the whole space. We will
show that this space is a Hilbert space.

Finally, before turning to mathematical techniques, it is important to note that
the eigenvalue problem (6.28), with F given by either Eq. (6.30) or (6.31), contains
Alfvén waves as the dynamical centrepiece. Thus, Eq. (6.32), with B and k in the
z-direction (see Fig. 5.1) and transverse incompressible motion (k · ξ = 0), yields
the Alfvén wave equation

ρ−1 F̂y = b2 ∂2ξ̂y

∂z2
= −k2

z b2ξ̂y = ∂2ξ̂y

∂t2
= −ω2ξ̂y , (6.33)

with ω2 = ω2
A ≡ k2

z b2 as eigenvalue. The formidable analysis that follows is, in a
sense, just the machinery needed to trace this wave in inhomogeneous plasmas.

6.2.2 Hilbert space

We have cast the ideal MHD equations in a form which is general enough to ben-
efit from comparison with another area of physics where linear operators play an
important role, viz. quantum mechanics. Consider a plasma volume V enclosed by
a wall W . Define two plasma displacement fields:

ξ = ξ(r, t) (on V ) , where n · ξ = 0 (at W ) ,

η = η(r, t) (on V ) , where n · η = 0 (at W ). (6.34)

An inner product may be defined with the plasma equilibrium density ρ(r) acting
as a weight function:

〈ξ, η〉 ≡ 1
2

∫
ρ ξ∗ · η dV . (6.35)

By means of this definition, one may also define the norm of the vector field ξ(r, t):

‖ξ‖ ≡ 〈ξ, ξ〉1/2 . (6.36)

For functions ξ with a finite norm, ‖ξ‖ < ∞ , a special linear function space is
obtained, viz. a Hilbert space. At this stage, certain additional properties of this
space with respect to completeness and separability are assumed to be true. For a
more complete discussion of the mathematical aspects of MHD spectral theory see
Lifschitz [146].
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E = 0 

continuous

discrete

Fig. 6.9. Schematic spectrum of a quantum mechanical system.

The analogy with quantum mechanics is obvious. The Schrödinger equation for
the wave function ψ ,

Hψ = Eψ , (6.37)

is an eigenvalue equation for the self-adjoint linear operator H (the Hamilto-
nian) with eigenvalues E (the energy levels). This eigenvalue problem leads to
a spectrum of eigenvalues (Fig. 6.9), which may be discrete (for bound states with
E < 0) or continuous (for free particles with E > 0). Ideal MHD also has a spec-
trum of eigenvalues ω2, which may be discrete or continuous, with very special
properties depending on the magnitude of ω2, as we will see. It is useful to learn
from another field what the relevant methods are.

The inner product in quantum mechanics,

〈ψ1, ψ2〉 ≡ 1
2

∫
ψ∗

1 ψ2 dV , (6.38)

permits one to define the norm

‖ψ‖ ≡ 〈ψ, ψ〉1/2, (6.39)

which defines the probability of finding the particle in the volume considered. In
general, one chooses ‖ψ‖ = 1 to express the certainty that the particle is located
somewhere. Clearly, normalization and Hilbert space have a very clear-cut physical
background in quantum mechanics.

What is the physical background for considering vector fields ξ(r, t) with a
finite norm ‖ξ‖ in ideal MHD? To answer that question, consider the kinetic energy
of the plasma:

K ≡ 1
2

∫
ρv2 dV ≈ 1

2

∫
ρξ̇

2
dV = 〈ξ̇, ξ̇〉 ≡ ‖ξ̇‖2 . (6.40)

As far as the spatial dependence is concerned, ξ̇(r, t) belongs to the same class of
functions as ξ(r, t) (t is simply a parameter). Hence, a bounded norm implies fi-
nite kinetic energy of the perturbations. Because the total energy is conserved, this
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also implies finite potential energy: a very reasonable assumption, which justifies
the use of Hilbert space as the mathematical device for our investigations.

Hence, in quantum mechanics, we encounter linear operators acting on the wave
function ψ , and in magnetohydrodynamics, we encounter linear operators acting
on the displacement vector field ξ. We also have defined an inner product and
a norm for the MHD displacements. Finally, the analogy would be perfect if we
could also show that there is a counterpart in MHD for the important role played
by self-adjoint operators L , defined by

〈ψ1, Lψ2〉 = 〈Lψ1, ψ2〉 (6.41)

in quantum mechanics. In fact, one of the central results of linearized ideal MHD
turns out to be that the force operator F, or rather ρ−1F, is a self-adjoint linear
operator in the Hilbert space of plasma displacement vectors:

〈η, ρ−1F(ξ)〉 ≡ 1
2

∫
η∗ · F(ξ) dV = 1

2

∫
ξ · F(η∗) dV ≡ 〈ρ−1F(η), ξ〉 .

(6.42)
This provides linear MHD with a mathematical foundation that is the same as that
of quantum mechanics, viz. linear operators in Hilbert space: a very solid ground
indeed! On this basis, many analogies between MHD and quantum mechanical
spectral theory should be expected.

6.2.3 Proof of self-adjointness of the force operator

Of course, after the excitement about a beautiful analogy, the dirty job of proving
the self-adjointness property (6.42) remains; see Bernstein et al. [27]. This consists
of a lot of cumbersome vector manipulations with little beauty, but it does belong
to the craft of MHD. Also, we need some of the intermediate steps in later sections.
Hence, we just reproduce the proof here, putting some of the more technical details
in small print.

For convenience, we repeat the expression (6.30) for the force operator:

F(ξ) = ∇(γ p∇ · ξ) − B × (∇ × Q) + ∇(ξ · ∇ p) + j × Q + ∇� ∇ · (ρξ) .

(6.43)

Here, p and B should satisfy the equilibrium relations j × B = ∇ p + ρ∇� ,
j = ∇ × B , ∇ · B = 0 . The first two terms of F(ξ) are already present in homo-
geneous plasmas, but the last three terms are associated with inhomogeneity. We
will first rework these three inhomogeneity terms to show that, in the absence of
gravity, they give rise to a force that is purely perpendicular to B (like the second
term of Eq. (6.43)).
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� Transformation 1 of the inhomogeneity terms. The transformation of the last three
terms of the expression (6.43) for the force operator involves extensive use of the vector
identities of Appendix A.1. They are indicated above the equal signs:

∇(ξ · ∇ p)
(A.10)= (∇ξ) · ∇ p + ξ · ∇∇ p

(A.9)= (∇ p × ∇) × ξ + ∇ p ∇ · ξ + ξ · ∇∇ p

equilibrium= ((j × B) × ∇) × ξ − ρ(∇� × ∇) × ξ + ∇ p ∇ · ξ + ξ · ∇∇ p

(A.2) on j, B,∇= (B j · ∇ − jB · ∇)×ξ − ρ(∇�×∇) × ξ + ∇ p∇ · ξ + ξ · ∇∇ p

(A.9) on ∇�, ∇,ξ= B × (j · ∇ξ) − j × (B · ∇ξ) − ρ(∇ξ) · ∇� + ρ∇� ∇ · ξ

+ ∇ p ∇ · ξ + ξ · ∇∇ p, (6.44)

j × Q
(A.13)= j × (B · ∇ξ − B ∇ · ξ − ξ · ∇B)

= j × (B · ∇ξ) − j × B ∇ · ξ − ξ · ∇(j × B) − B × (ξ · ∇j), (6.45)

∇� ∇ · (ρξ)
(A.6)= ρ∇� ∇ · ξ + ∇� ∇ρ · ξ , (6.46)

where the equality ∇(a × b) = (∇a) × b − (∇b) × a has been used in the last step of the
derivation of Eq. (6.45).2 Hence, the three inhomogeneity terms may be written as

∇(ξ · ∇ p) + j × Q + ∇� ∇ · (ρξ)

= B × (j · ∇ξ − ξ · ∇j) + (∇ p − j × B + 2ρ∇�) ∇ · ξ

− ρ(∇ξ) · ∇� + ξ · ∇∇ p − ξ · ∇(j × B) + ∇�∇ρ · ξ

(A.13), ∇·j=0= −B × (∇ × (j × ξ)) − j × B ∇ · ξ + (∇ p − j × B + 2ρ∇�) ∇ · ξ

− ρ(∇ξ) · ∇� + ξ · ∇∇ p − ξ · ∇(j × B) + ∇� ∇ρ · ξ

equilibrium, (A.10)= −B × (∇ × (j × ξ)) − ∇ p ∇ · ξ − ρ∇(ξ · ∇�). (6.47)

This proves our assertion: in the absence of gravity, when the last term vanishes and ∇ p
may be replaced by j × B, the remaining two terms represent a force ⊥ B. �

Using this expression, Eq. (6.43) may be rewritten in the form

F(ξ) = ∇(γ p∇ · ξ) − B × [ ∇ × Q + ∇ × (j × ξ) ] − ∇ p ∇ · ξ − ρ∇(ξ · ∇�).

(6.48)

2 The brackets are used here to delimit the range of the gradient operator. For example, the expression (∇ξ) ·
∇ p means that ∇ acts on ξ only, and contraction occurs between the components of ξ and ∇ p, so that we
get  j (∂i ξ j ) ∂ j p in Cartesian coordinates. Note that, in curvilinear coordinates, ξ =  j ξ j a j so that the

derivatives of the basis vectors a j also have to be taken into account.
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In the absence of gravity (using the equilibrium relation ∇ p = j × B), the force
operator reduces to

Fg=0(ξ) = ∇(γ p∇ · ξ) − B × [ ∇ × Q + ∇ × (j × ξ) − j ∇ · ξ ] , (6.49)

and, in the absence of a magnetic field (using the equilibrium relation ∇ p = ρg),
to

FB=0(ξ) = ∇(γ p∇ · ξ) − ρg ∇ · ξ + ρ∇(g · ξ). (6.50)

These very useful intermediate results in our derivation give an exposition, alter-
native to that of Eq. (6.43), of the different forces at work in an inhomogeneous
plasma: isotropic (sound) contribution from the pressure and anisotropic (mag-
netic) contributions orthogonal to the background equilibrium magnetic field B .
Gravity, g = −∇�, introduces a direction additional to B, j, and ∇ p. This contri-
bution lifts the degeneracy implicit in the identification of ∇ p and j × B (i.e., the
identification of pressure and magnetic surfaces), which is at the heart of calcula-
tions on stability of thermonuclear plasmas. Hence, astrophysical plasmas exhibit
a richer variety of waves and instabilities. It belongs to the intricacies of linear
MHD theory that so many equivalent forms of the force operator (and the asso-
ciated potential energy, see Section 6.4) may be given. This betrays the nonlinear
origin which remains present in the equilibrium equations coupling the three inho-
mogeneity ingredients j, ∇ p and ∇�.

With respect to the proof of self-adjointness, we still have quite a way to go. We
first establish two notational conveniences.
(1) Except for the two vector fields ξ and η defined in Eq. (6.34), we define their
associated magnetic field perturbations:

Q(r) ≡ ∇ × (ξ × B) (on V ) ,
(6.51)

R(r) ≡ ∇ × (η × B) (on V ) .

(2) Considering the integrand η∗ · F(ξ) of the quadratic expression on the left
hand side of Eq. (6.42), we will drop the asterisk on the variables and temporarily
return to a real type inner product, so that we do not have to write ‘η∗ · F(ξ) +
complex conjugate’ all the time.

The proof of self-adjointness of the force operator basically consists of rewrit-
ing η · F(ξ) , with F given by the expression (6.48), into a symmetric part and a
remainder which should be cast in the form of a divergence. The latter part then
disappears upon integration over the volume and application of the b.c.s (6.34).
For example, by straightforward application of the vector identity (A.6) for the
divergence, the first term of Eq. (6.48) produces the following expression:

η · ∇(γ p∇ · ξ)
(A.6)= −γ p∇ · ξ ∇ · η + ∇ · (η γ p∇ · ξ) , (6.52)
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which obviously has the required form. Similarly, the second term may be reduced
by means of the vector identities (A.1) and (A.12) and the definition (6.51) for the
magnetic perturbation R associated with the displacement vector field η:

−η · B × (∇ × Q)
(A.1)= −(∇ × Q) · (η × B)

(A.12)= −Q · ∇ × (η × B) + ∇ · [ (η × B) × Q ]
(6.51)= −Q · R + ∇ · [ (η × B) × Q ]
(A.2)= −Q · R + ∇ · [ B η · Q − η B · Q ] . (6.53)

Again, the required form of a symmetric expression and a divergence is obtained.
These terms, which correspond to the homogeneous plasma part, are still relatively
simple. The transformation of the next three terms, which are due to plasma inho-
mogeneity, is much more complicated.

� Transformation 2 of the inhomogeneity terms. We take the three inhomogeneity terms
together, exploiting the expression (6.47) (for reasons that will soon become clear):

η · [ ∇(ξ · ∇ p) + j × Q + ∇� ∇ · (ρξ) ]
(6.47)= −η · B × [ ∇ × (j × ξ) ]︸ ︷︷ ︸

reduce as (6.53) with
Q replaced by j × ξ

− (η · ∇ p) ∇ · ξ − ρη · ∇(ξ · ∇�)

=
︷ ︸︸ ︷
−j × ξ · R + ∇ · [ (η × B) × ( j × ξ) ] − (η · ∇ p) ∇ · ξ − ρη · ∇(ξ · ∇�)

(A.2), (A.1)= ξ · j × R + ∇ · [ j B · (ξ × η) + ξ η · (j × B) ]

− (η · ∇ p) ∇ · ξ − ρη · ∇(ξ · ∇�)

equil., (A.6)= ξ · j × R + ∇ · [ j B · (ξ × η)] + ξ · ∇(η · ∇ p)

+ ∇ · [ ξη · ρ∇�] − ρη · ∇(ξ · ∇�)︸ ︷︷ ︸
⇓ (A.6)︷ ︸︸ ︷

∇ · [ ρ∇� · (ηξ − ξη) ] + (ξ · ∇�)∇ · (ρη)

rearrange= ξ · [ ∇(η · ∇ p) + j × R + ∇� ∇ · (ρη) ]
+ ∇ · [ j B · (ξ × η) − ρ∇� · (ξη − ηξ) ] .

Now, the first term on the right hand side is not symmetric in ξ and η. However, this term
is the exact mirror image of the left hand side. Hence, it is very easy to symmetrize the
latter expression:

η · [ ∇(ξ · ∇ p) + j × Q + ∇� ∇ · (ρξ) ]

= 1
2η · [ ∇(ξ · ∇ p) + j × Q + ∇� ∇ · (ρξ) ]

+ 1
2ξ · [ ∇(η · ∇ p) + j × R + ∇� ∇ · (ρη) ]

+ 1
2∇ · [ j B · (ξ × η) − ρ∇� · (ξη − ηξ) ]
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(A.6), equil.= 1
2∇ · [∇ p · (ξη + ηξ)] − 1

2∇ p · (ξ∇ · η + η∇ · ξ)

− 1
2∇ · [(j × B − ∇ p) · (ξη − ηξ)]

− 1
2 j · (ξ × R + η × Q) + 1

2∇� · [ξ∇ · (ρη) + η∇ · (ρξ)]

+ ∇ · [ 1
2 j B · (ξ × η) ]

= − 1
2∇ p · (ξ∇ · η + η∇ · ξ) − 1

2 j · (ξ × R + η × Q)

+ 1
2∇� · [ ξ∇ · (ρη) + η∇ · (ρξ) ]

+∇ · [ η(ξ · ∇ p) − 1
2 ( j × B) · (ξη − ηξ) + 1

2 j B · (ξ × η) ] . (6.54)

Again, a symmetric expression and a divergence is obtained! �

Finally, adding up the expressions (6.52), (6.53), and (6.54) gives the required
symmetric form

η · F(ξ) = −γ p ∇ · ξ ∇ · η − Q · R − 1
2∇ p · (ξ ∇ · η + η ∇ · ξ)

−1
2 j · (ξ × R + η × Q) + 1

2∇� · [ ξ ∇ · (ρη) + η ∇ · (ρξ) ]

+ ∇ ·
[
η (γ p ∇ · ξ + ξ · ∇ p − B · Q)

+ B η · Q + 1
2 j B · (ξ × η) − 1

2(j × B) · (ξη − ηξ)
]
. (6.55)

Integration over the plasma volume and application of Gauss’ theorem (A.14) on
the divergence term then yields the following very important result:∫

η · F(ξ) dV = −
∫ {

γ p ∇ · ξ ∇ · η + Q · R + 1
2∇ p · (ξ ∇ · η + η ∇ · ξ)

+ 1
2 j · (ξ × R + η × Q) − 1

2∇� · [ξ ∇ · (ρη) + η ∇ · (ρξ)]
}

dV

+
∫

n · η [ γ p ∇ · ξ + ξ · ∇ p − B · Q ] d S . (6.56)

Here, the three last terms of Eq. (6.55) did not give a contribution to the surface
integral since n · B = 0 and n · j = 0 on the plasma surface, whereas j × B ∼ n,
for the plasma-wall and plasma interface models I–III of Section 4.6. For the line-
tying magnetic loop models IV and V, there is also a boundary intersecting the
magnetic field and current lines so that the given argument does not apply. How-
ever, in that case, the line-tying boundary condition (4.189) translates into the
conditions η = ξ = 0 at the photospheric boundary so that the three terms do not
contribute there either. We conclude that the expression (6.56) is a very general
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one, applying to all of the laboratory and astrophysical problems I–V formulated in
Section 4.6.

The surface integral in Eq. (6.56) is just the perturbation of the total pressure
(apart from the sign). In plasmas with a free boundary (models II and III), this
term couples to the external variables Q̂ and R̂ through the boundary conditions
at the plasma interface so that a further analysis is needed to properly represent
the contributions of the outer regions. This we leave for later (Section 6.6.2). For
our present concern (wall on the plasma: model I), the term does not contribute.
Consequently,∫ {

η · F(ξ) − ξ · F(η)
}

dV =
∫ {

n · η [ γ p ∇ · ξ + ξ · ∇ p − B · Q ]

−n · ξ [ γ p ∇ · η + η · ∇ p − B · R ]
}

d S = 0 ,

(6.57)

by virtue of the b.c.s n · η = n · ξ = 0 on the normal components of the displace-
ment vector. ⇒ F is a self-adjoint operator in model I; QED.

� Challenge. More than 40 years after the original derivation of the force operator for
linear ideal MHD we still do not have a more elegant proof of the self-adjointness. Find
one that is more in line with its basic character! �

At this point we will revert to the original complex type scalar product (6.35).
We will prove that the eigenvalues of the operator ρ−1F are real. This follows
directly from the self-adjointness property (6.57). Let ξn be the eigenfunction be-
longing to an eigenvalue −ω2

n ,

ρ−1F(ξn) = −ω2
n ξn .

Then, the complex conjugate equation reads

ρ−1F∗(ξn) = ρ−1F(ξ∗
n) = −ω2∗

n ξ∗
n .

Multiplying the first equation with ξ∗
n and the second with ξn , subtracting and

integrating over the plasma volume yields

0 = (ω2
n − ω2∗

n ) ‖ξ‖2 ,

by virtue of the self-adjointness property, so that

ω2
n = ω2∗

n . (6.58)

Hence, the eigenvalues ω2
n of the operator ρ−1F are real, so that the spectrum is

confined to the real and imaginary axes of the complex ω-plane; QED. Recall from
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the discussion of Section 6.2.1 that this implies that the eigenvalues correspond to
either waves (ω2 > 0) or exponential instabilities (ω2 < 0).

6.3 Spectral alternatives�

6.3.1 Mathematical intermezzo�

Recapitulating: we have seen in Section 6.2 that the spectral problem of linear ideal
MHD arises from a study of the dynamics, described by the equation of motion

ρ−1F(ξ) = ∂2ξ

∂t2
, (6.59)

where normal mode solutions with an exponential time-dependence lead to the
spectral equation

ρ−1F(ξ̂) = −ω2ξ̂ , (6.60)

whereas the stability problem reduces to a study of the marginal equation

ρ−1F(ξ̂) = 0 . (6.61)

Before we proceed to analyse these three main physical problems again from
the second point of view, that of quadratic forms and variational principles (Sec-
tion 6.4), it is useful to put them into a mathematical context since other alternative
formulations are encountered there.

The spectral problem of partial differential equations like Eq. (6.60) is just a
generalization of the methods used in linear algebra of finite-dimensional vector
spaces. In that context, three alternatives appear.

(1) The eigenvalue problem arises in the study of finite N × N matrices Li j (i, j =
1, 2, . . . , N ),

N∑
j=1

Li j x j = λ xi , or L · x = λ x , (6.62)

where the eigenvalues are found from the condition

det (Li j − λδi j ) = 0 , (6.63)

and substitution back into Eq. (6.62) yields the eigenvectors xn .
(2) Another formulation of the same problem is obtained by constructing the quadratic

forms, as e.g. entering the Rayleigh quotient

� ≡
N∑

i=1

N∑
j=1

x∗
i Li j x j

/
N∑

i=1

x2
i , (6.64)

where the eigenvalues λ are the stationary values of �.
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(3) A third formulation arises from the consideration of the inhomogeneous equation

(L − λ I) · x = a , (6.65)

where a is a known vector. Here, the Fredholm alternative states that either the homo-
geneous equation (6.62) has a solution, so that λ coincides with one of the eigenvalues,
or the inhomogeneous equation (6.65) has a solution, so that λ is outside the spectrum
of eigenvalues of the matrix L.

Clearly, whereas our two physical viewpoints correspond to the first two spectral
alternatives, the third alternative admits yet another class of physical applications.
See Section 6.3.2.

In the generalization of these ideas to the infinite-dimensional Hilbert space
associated with the operator ρ−1F, two kinds of mathematical problem are en-
countered. The first one is the fact that the operator ρ−1F is a differential operator
and, therefore, unbounded. In contrast, bounded operators B have the property
that

‖Bx‖ ≤ M‖x‖ for all x ∈ H , (6.66)

where H is the Hilbert space and M is some constant. Differential operators
do not have this property. Operating on a bounded (square integrable) sequence
of functions in Hilbert space they may produce a sequence that is unbounded
and, therefore, leads outside Hilbert space. (For example, the differential opera-
tor d/dx transforms the bounded sequence sin (nπx) into the diverging sequence
nπ sin (nπx) .) One usually tries to avoid this problem by transforming it into one
that involves completely continuous or compact operators. These operators have
the opposite property: they transform a sequence of bounded functions into one
that converges in the mean. For these operators, the theory of infinite-dimensional
Hilbert space is completely analogous to that of the finite-dimensional vector
spaces of linear algebra. In the case of differential operators, this implies that
one tries to invert them, which leads to the study of integral operators involv-
ing Green’s functions. Those operators frequently do have the required property of
compactness.

Another, more serious, problem is the existence of a third class of operators
where the above trick does not work, viz. that of bounded operators that are not
compact. (Example: the operator of multiplication by x .) Those operators may
give rise to a continuous spectrum, which is roughly speaking the collection of
‘improper eigenvalues’, for which the eigenvalue equation is solved, but not by
functions that belong to Hilbert space. In the mathematical description, one then
has the option of either sticking to the notion of Hilbert space by introducing the
concept of approximate spectrum, where sequences are considered that do not
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converge (this is the approach of von Neumann [240] in his treatment of spectral
theory for quantum mechanics), or one may consider wider classes of elements
than those that belong to Hilbert space, viz. distributions (this is the approach of
Dirac [67], perfected by Schwartz [205]). Loosely speaking, one could say that
the diverging sequences of functions, that are considered in the first approach,
converge to elements outside Hilbert space, which are the distributions considered
in the second approach.

Using this terminology, the following generalization of the ideas of linear al-
gebra expressed in the equations (6.62)–(6.65) may be formulated. The spec-
trum of a linear operator L is obtained from the study of the inhomogeneous
equation

(L − λ) x = a , (6.67)

where a is a given element in Hilbert space and we look for solutions

x = (L − λ)−1a . (6.68)

For complex values of λ, three possibilities arise (see Friedman [74], p. 125):

(a) (L − λ)−1 does not exist because (L − λ) x = 0 has a solution
⇒ λ belongs to the point or discrete spectrum of L ;

(b) (L − λ)−1 exists but is unbounded
⇒ λ belongs to the continuous spectrum of L ;

(c) (L − λ)−1 exists and is bounded
⇒ λ belongs to the resolvent set of L .

Thus, a complex value of λ either belongs to the spectrum or to the resolvent set,
so that one may say that the spectrum of L consists of the collection of λs where
the so-called resolvent operator Rλ ≡ (L − λ)−1 misbehaves.

Finally, it is useful to anticipate the exposition on computational MHD in
the companion Volume 2 on Advanced Magnetohydrodynamics where the cir-
cle will be closed by the consideration of the discretized problem, which leads
back to finite-dimensional vector spaces. It will be shown that extremely powerful
numerical methods exist which provide the construction of solutions of the three
basic linear problems of physical interest, viz.

– determining the temporal evolution,

L · x = ∂x
∂t

, (6.69)
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– determining the spectrum,

L · x = λ x , (6.70)

– and determining the stationary state of a driven plasma,

(L − λd I) · x = f , (6.71)

where f represents the driving force with fixed frequency λd .

Clearly, the last problem corresponds again with the third spectral problem (6.65).
It should be mentioned that the relevant computational methods are not restricted
to ideal MHD, with the associated displacement vector description, but they may
be generalized to dissipative MHD with an arbitrary number of unknowns.

6.3.2 Initial value problem in MHD�

To give the reader some feeling of what is yet in store, we digress on an ad-
vanced topic. According to the exposition given in the previous subsection, in
particular in connection with Eqs. (6.67) and (6.68), the third, and most general,
approach to the spectrum of a linear operator is to consider the inhomogeneous
problem, i.e. the generalization of Eq. (6.65) to infinite-dimensional spaces. For
the MHD operator ρ−1F, this approach leads to the following inhomogeneous
problem:

(ρ−1F + ω2I) ξ̂ = iωX , (6.72)

where I is the unit operator, I(ξ̂) ≡ ξ̂, and X is a known vector. Our task is then
to construct the resolvent operator (ρ−1F + ω2I)−1, and to study its behaviour for
complex values of ω2.

In order to see how this is connected with physics, we consider the initial value
problem. (Also notice that Eq. (6.71), obtained from model III excitation, closely
corresponds to this problem.) We define the Laplace transform of ξ(r; t) in the
complex ω-plane:

ξ̂(r; ω) ≡
∫ ∞

0
ξ(r; t) eiωt dt, (6.73)

so that the equation of motion (6.59) takes the form

ρ−1F(ξ̂) =
∫ ∞

0

∂2ξ

∂t2
eiωt dt

= −ω2ξ̂ +
[(

∂ξ

∂t
− iωξ

)
eiωt

]t→∞

t=0
. (6.74)



254 Spectral theory

σ

C

ωiν

iνC

Fig. 6.10. Strip of convergence for the inverse Laplace transformation.

Writing ω = σ + iν, we then get for ν > 0 :

(ρ−1F + ω2I) ξ̂(r; ω) = iωξi (r) − ξ̇i (r) ≡ iωX , (6.75)

where the vector X of Eq. (6.72) turns out to be the function of initial displacement
ξi (r) and initial velocity ξ̇i (r) defined in the RHS of Eq. (6.75). In order to find
the response ξ(r; t) to a certain initial perturbation X , one then first has to invert
Eq. (6.75) to find the Laplace transformed variable ξ̂ in terms of X ,

ξ̂(r; ω) = (ρ−1F + ω2I)−1iωX(r; ω) , (6.76)

and next perform the inverse Laplace transformation:

ξ(r; t) = 1

2π

∫ iνC+∞

iνC−∞
ξ̂(r; ω) e−iωt dω

= 1

2π

∫
C

(ρ−1F + ω2I)−1 [
iωξi (r) − ξ̇i (r)

]
e−iωt dω . (6.77)

Here, according to the theory of Laplace transforms, the contour C has to be placed
in the strip of convergence (Fig. 6.10). The essential point is that, for the inverse
transform, more is needed than just νC > 0 because ξ̂(r; ω) may not exist for
certain values of ω, or may be singular.

According to the discussion above, it is precisely when ω belongs to the spec-
trum of the operator ρ−1F that we may expect trouble with Eq. (6.76). If ω is
a point eigenvalue the operator (ρ−1F + ω2I)−1 simply does not exist, whereas
for improper eigenvalues (i.e. ω in the continuum) the operator (ρ−1F + ω2I)−1

is unbounded. Before we know where to place the integration contour C for the
inverse Laplace transform we, therefore, have to know the spectrum. Here, we get
substantial help from the fact that ρ−1F is Hermitian (self-adjoint) so that the
eigenvalues (including the improper ones) have to be real, so that the spectrum is
confined to the real and imaginary axes of the complex ω-plane. In fact, we would
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Fig. 6.11. Contour for the inverse Laplace transformation.

be in severe trouble if the operator F were not self-adjoint because a general theory
of non-Hermitian operators does not exist.

We then conclude that the integration contour must be placed above the largest
(most unstable) point eigenvalue νmax of ρ−1F : νC > νmax (Fig. 6.11). (Because
Landau’s solution of the initial value problem of the Vlasov equation was also ob-
tained by means of Laplace transforms, the similarity with the discussion of Lan-
dau damping in Section 2.3.3 (Fig. 2.7) is obvious.) In other words, the class of per-
missible functions ξ(r; t) is restricted to functions of exponential order exp(νC t)
where νC is larger than the largest growth rate of the system. In Fig. 6.11 we
have schematically indicated our knowledge so far of the spectrum of ideal MHD,
which will be analysed in more detail in a later chapter. One finds two pairs of
continua on the real axis, whereas point eigenvalues can occur almost everywhere
on the real σ -axis and also on a bounded part −νmax ≤ ν ≤ νmax of the imaginary
ν-axis.

Of course, it is extremely difficult to obtain the explicit time-dependence of
ξ(r; t) in situations of practical interest, so that one usually restricts the study
to time-asymptotic solutions. It is clear that for t → ∞ one wishes to deform
the integration contour in the inverse Laplace transform to the lower half of the
ω-plane in order to exploit the smallness of the exponential factor exp(−iωt) in
Eq. (6.77). For this advantage one must pay in the form of a study of the analytic
continuation of ξ̂ about the occurring poles (point eigenvalues) and branch points
of ξ̂ (associated with the continuous spectrum). The branch point singularities lead
to different branches of the complex function ξ̂(r; ω) so that the inverse Laplace
transform contour may be moved to another Riemann sheet, where it could pick
up poles. Such poles could not correspond to point eigenvalues since these are
confined to the real and imaginary axes of the principal branch of ξ̂ , but they may
have physical significance anyway.

Thus, we have sketched some of the intricacies of spectral theory even be-
fore having demonstrated that they actually occur in MHD. We will continue the
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analysis of the initial value problem in Chapter 10, where we consider the explicit
example of an inhomogeneous slab. To appreciate the portent of the present sec-
tion, the reader is advised to reread it after he has studied that example.

6.4 Quadratic forms and variational principles

6.4.1 Expressions for the potential energy

In Section 6.2, we have completed the description of linearized ideal MHD in
terms of differential equations by deriving the equation of motion (6.23) with the
force operator F(ξ), which we have proven to be self-adjoint. This property ex-
presses the basic fact of energy conservation: H = W + K = const, where W is
the potential energy and K is the kinetic energy of the perturbations (see Sec-
tion 4.3.2). Accordingly, we now turn to the alternative description, viz. the one
exploiting these quadratic forms. First of all, we need to derive expressions for
these energies for the linearized dynamics, corresponding to the first order expres-
sion for F. The direct derivation, discussed first, is put in small print since it turns
out to be complicated, whereas the indirect one, that we discuss next, is much
simpler.

� Derivation from the nonlinear expression for the potential energy. The most obvious
procedure is to start from the nonlinear expressions for W and K derived in Section 4.3.2,
and to exploit the energy conservation law (4.86):

H =
∫ (

1
2ρv2

︸ ︷︷ ︸
K

+ p

γ − 1
+ 1

2 B2

︸ ︷︷ ︸
W

)
dV = const . (6.78)

We have already derived in Eq. (6.40) the linearized expression for the kinetic energy,
corresponding to the first part of Eq. (6.78), which is a second order quantity in ξ̇ :

K = 1
2

∫
ρ ξ̇ · ξ̇ dV + third and higher order terms . (6.79)

Similarly, we could work out the expression for the potential energy W , starting from the
second part of Eq. (6.78):

W =
∫ [ p

γ − 1
+ 1

2 B2

︸ ︷︷ ︸
W0

+ π

γ − 1
+ B · Q︸ ︷︷ ︸
W1

+ · · · · · ·︸ ︷︷ ︸
W2

]
dV . (6.80)

Here, the zeroth order term corresponds to the energy of the background equilibrium, de-
scribed by the pressure p and the magnetic field B. (Note that the interpretation of p and B
changes from Eq. (6.78), where they indicate the full nonlinear expressions, to Eq. (6.80),
where they only indicate the equilibrium parts.) The first order term corresponds with the
energy change produced by the plasma displacement ξ, resulting in the pressure and mag-
netic field perturbations π and Q given by Eqs. (6.24) and (6.25). However, how could
this term be balanced in the energy conservation law by the expression for the kinetic
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energy K , which is a second order quantity only? To see what goes on, work out the
perturbations:

π

γ − 1
= 1

γ − 1
(−ξ · ∇ p − γ p∇ · ξ) = ξ · ∇ p − γ

γ − 1
∇ · (p ξ) ,

B · Q = B · ∇ × (ξ × B)
(A.12)= (ξ × B) · ∇ × B + ∇ · [(ξ × B) × B]

(A.1), (A.2)= −ξ · [ j × B ] + ∇ · [ ξ · B B − B2ξ ] ,
so that

W1 =
∫

ξ · (∇ p − j × B)︸ ︷︷ ︸
= 0 (equil.)

dV +
∫

∇ ·
[

− γ

γ − 1
p ξ + ξ · B B − B2ξ

]
dV︸ ︷︷ ︸

= 0 (Gauss + b.c.s)

= 0 .

(6.81)
(Note that we have neglected gravity in this paragraph.) Consequently, in order to get
relevant, non-vanishing, expressions for the potential energy W one should compute the
next order contribution W2 (also indicated as δW in the literature, although δ2W would be
a better notation):

W2 =
∫ ( p2

γ − 1
+ 1

2 Q2 + B · B2

)
dV . (6.82)

Hence, we should compute p and B to second order in ξ . This can be done but it is
a complicated procedure, which we will not pursue further since there is a much easier
method to derive the quadratic expression for the potential energy. �

The easier method to derive the expression for the potential energy is to exploit
Eq. (6.40) for the linearized kinetic energy and to construct the linearized potential
energy from energy conservation. (We now drop again the subscripts 1 and 2 on first
and second order expressions since the interpretation is obvious from the context.)
This is done by taking the inner product of ξ̇∗ with the equation of motion (6.23)
and integrating over the plasma volume:∫

ξ̇∗ · F(ξ) dV =
∫

ρ ξ̇∗ · ξ̈ dV = d

dt

[
1
2

∫
ρ |ξ̇|2 dV

]
= d K

dt
. (6.83)

From energy conservation and the self-adjointness of F one then easily derives that

dW

dt
= −d K

dt
= −1

2

∫
ξ̇∗ · F(ξ) dV − 1

2

∫
ξ∗ · F(ξ̇) dV

= d

dt

[
− 1

2

∫
ξ∗ · F(ξ) dV

]
,

so that

W = −1
2

∫
ξ∗ · F(ξ) dV, (6.84)

which is the expression for the linearized potential energy we were looking
for. The intuitive meaning of Eq. (6.84) is clear. The increase of the potential
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energy due to the perturbation is just the work done against the force F to dis-
place the plasma by an amount ξ. The factor 1

2 represents the averaging in-
volved as the work builds up when the plasma is displaced from 0 to its actual
value ξ.

We can now specify the loose remark made in Section 6.1.1 that a perturbation
is stable (W > 0), or unstable (W < 0), if ξ and F are pointing in the opposite,
or in the same direction. Clearly, this has to be interpreted in the integrated sense
given by the definition of the potential energy in Eq. (6.84). We will prove that W
is a variational expression. This implies that a test function ξ can be substituted
in W to check for the sign of that expression only. If some trial function ξ is
found such that W [ξ] < 0 , the system is certainly unstable. In many cases, this
is a much quicker way to establish instability of a particular configuration than to
study the marginal equation of motion F(ξ) = 0 . We will return to this topic in
Section 6.4.4.

A bonus of the awful proof in Section 6.2.3 of the self-adjointness of F is the
intermediate expression (6.56) which, upon identification of ξ and η, immediately
yields a more useful form of W than that of Eq. (6.84):

W = 1
2

∫ [
γ p |∇ · ξ|2 + |Q|2 + (ξ∗ · ∇ p)∇ · ξ + j · ξ∗Q

− (ξ∗ · ∇�) ∇ · (ρξ)
]

dV . (6.85)

The five terms represent, successively, the acoustic and magnetic energy, which
are positive definite so that homogeneous plasmas are always stable, and the ad-
ditional energies due to the pressure gradient, current density and gravity, which
may have either sign so that inhomogeneous plasmas may be unstable.

The expression (6.85) for W is only valid for model I (wall on the plasma),
since we have discarded the divergence term appearing in Eq. (6.56) by applying
the boundary condition

n · ξ = 0 (at the wall) . (6.86)

The wall may be put at ∞ if one wishes to consider the limit of an infinitely
extended plasma. If one wishes to incorporate the influence of an external vacuum,
model II (plasma–vacuum system) should be studied and the divergence term in
Eq. (6.56) then gives a further contribution to W . This contribution represents the
energy of the moving boundary and of the external vacuum magnetic field region.
The proof of self-adjointness and the derivation of the extended expression for W
for that case is left for later (Section 6.6.2).
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6.4.2 Hamilton’s principle

We continue with our program to derive the variational counterparts of the differ-
ential equations (6.23), (6.28) and (6.29), describing the dynamics, spectrum and
stability. The most general way of describing the motion of a dynamical system is
through Hamilton’s principle, which may be generalized to continuous systems;
see Goldstein [91]. The Lagrangian and Hamiltonian formulation of nonlinear
MHD has been given in a classical paper by Newcomb [166], discussed in the
companion Volume 2. In the same manner as above, we could linearize the ex-
pressions given by him to obtain the linearized Lagrangian. However, this labour
is superfluous since we have the ingredients already: the linearized kinetic energy
K is given by Eq. (6.40) and the linearized potential energy W by Eq. (6.84).

Hence, we may state the linearized version of Hamilton’s principle at once:
The evolution of the system from time t1 to time t2 through the perturbation ξ(r, t)
is such that the variation of the integral of the Lagrangian vanishes,

δ

∫ t2

t1
L dt = 0, (6.87)

where L ≡ K − W , with

K = K [ξ̇] = 1
2

∫
ρ ξ̇∗ · ξ̇ dV,

W = W [ξ] = −1
2

∫
ξ∗ · F(ξ) dV .

Carrying out the minimization of this expression (see Exercise [6.6]) directly leads
to the following Euler–Lagrange equation:

F(ξ) = ρ
∂2ξ

∂t2
, (6.88)

which reproduces the equation of motion (6.23). Clearly, the variational formula-
tion for the dynamics is fully equivalent to the differential equation formulation.

6.4.3 Rayleigh–Ritz spectral variational principle

In the differential equations approach, we obtained the spectral eigenvalue equa-
tion (6.28) by considering the normal modes (6.27). Let us also consider the
quadratic forms for normal modes, obtained by inserting (6.27) into the expres-
sions for K and W . However, since these expressions have to be real whereas ω

may be either real or imaginary, the result of this substitution is obtained much
more easily by dropping the time-dependence and starting from the eigenvalue

Igor A. Kotelnikov
Highlight



260 Spectral theory

equation (6.28), F(ξ̂) = −ρω2ξ̂ , with complex ξ̂(r). Dotting this equation with
ξ̂∗ gives

−1
2

∫
ξ̂∗ · F(ξ̂) dV︸ ︷︷ ︸
≡ W [ξ̂]

= ω2 1
2

∫
ρξ̂∗ξ̂ dV︸ ︷︷ ︸

≡ I [ξ̂]

,

where I [ξ̂] ≡ ‖ξ̂‖2 is the square of the norm, defined in Eq. (6.36), so that

ω2 = W [ξ̂]

I [ξ̂]
for normal modes. (6.89)

This is a nice expression but rather useless, as it stands, since it is just a conclusion
a posteriori, after the normal modes have been obtained, and it does not provide a
recipe for actually finding the eigenvalues ω2 and the eigenfunctions ξ̂.

Such a recipe is obtained by considering the right hand side of Eq. (6.89) to
be a variational expression for arbitrary trial functions ξ(r). Here, we drop the hat
not only for simplicity of notation (time does not enter any more) but also because
these functions need not be eigenfunctions. Nevertheless, they do produce them,
as we will prove now.

Spectral variational principle: Eigenfunctions ξ of the operator ρ−1F make the
Rayleigh quotient

�[ξ] ≡ W [ξ]

I [ξ]
(6.90)

stationary; the eigenvalues ω2 are the stationary values of �. Here, the quadratic
forms

W [ξ] ≡ −〈ξ, ρ−1F(ξ)〉 and I [ξ] ≡ 〈ξ, ξ〉 (6.91)

are the potential energy and the square of the norm, respectively.

� Proof. Let ω2 be a stationary value of �[ξ], i.e. δ� = 0 . Then

δ� = δW

I
− W

I 2
δ I

= −2
〈δξ, ρ−1F(ξ)〉 + ω2〈δξ, ξ〉

〈ξ, ξ〉 = −2
〈δξ, ρ−1F(ξ) + ω2ξ〉

〈ξ, ξ〉 = 0 ,

where we used the self-adjointness (giving the factor 2) and substituted the value ω2 for
�. Since δξ is an arbitrary variation of ξ, it follows that ρ−1F(ξ) = −ω2ξ , which is the
eigenvalue equation; QED. �

The Rayleigh–Ritz principle is extremely useful for the approximation
of eigenvalues by means of finite-dimensional subspaces of the complete,
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infinite-dimensional, Hilbert space. Here, one selects a suitable class of functions
(η1, η2, . . . , ηN ), with finite norm ‖ηn‖, which are used as trial functions in the
Rayleigh quotient (6.90). The linear combination of these functions that mini-
mizes the functional � constitutes an approximation for the lowest eigenvalue
ω2

0 , where the minimum value of � is always larger than the actual value of ω2
0 .

An approximation to the N lowest eigenvalues may be obtained by choosing
the ηns to be orthonormal,

〈ηm, ηn〉 = δmn . (6.92)

Since these functions are supposed to be known, one may compute the matrix
elements

Wmn = 〈ηm, ρ−1F(ηn)〉 . (6.93)

Writing

η =
N∑

n=1

anηn , (6.94)

one then obtains the following approximation:

�[ξ] ≈ �[η] =
∑N

m=1
∑N

n=1 a∗
mWmnan∑N

n=1 |an|2
. (6.95)

Hence, the problem boils down to Eq. (6.64) of Section 6.3.1, i.e. the simultaneous
diagonalization of the two finite-dimensional quadratic forms W [η] and I [η] .
In this case, since the ηs have been chosen to be orthonormal, only W [η] needs
to be diagonalized. Consequently, the eigenvalues ω

2(i)
η and eigenfunctions η(i)

of the matrix Wmn are approximations to the lowest N eigenvalues ω2(i) and
corresponding eigenfunctions ξ(i) of the operator ρ−1F . Of course, the accuracy
of this approximation depends on the choice of the basis functions {ηn} .

6.4.4 Energy principle

The above proof demonstrates the equivalence of the Rayleigh–Ritz variational
principle with the eigenvalue equation. It also provides a formulation for stabil-
ity problems that is one step more useful than the force operator equation. Since
I [ξ] ≡ ‖ξ‖2 ≥ 0 , one may insert trial functions in W . If W [ξ] > 0 for all possi-
ble trial functions ξ, one may conclude that eigenvalues ω2 < 0 do not exist and
that the system is stable. On the other hand, if one can find a single ξ for which
W [ξ] < 0, at least one eigenvalue ω2 < 0 exists and the system is unstable. This
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is summarized in the following powerful statement, due to Bernstein, Frieman,
Kruskal and Kulsrud [26] and, independently, Hain, Lüst and Schlüter [101].

Energy principle for stability An equilibrium is stable if (sufficient) and only if
(necessary)

W [ξ] > 0 (6.96)

for all displacements ξ(r) that are bound in norm and satisfy the boundary condi-
tions. Here, W [ξ] is defined by Eq. (6.85) and the appropriate boundary condition
is given in Eq. (6.86).

In conclusion, the variational approach offers three different methods for deter-
mining the question of stability:

(1) By physical intuition one may guess a trial function ξ(r) that picks up the unstable part
of the potential energy, so that W [ξ] < 0 . This provides a direct demonstration of the
instability of a certain system: necessary stability (≡ sufficient instability) criteria are
obtained this way.

(2) More systematically, one may investigate the sign of W by exploiting a complete set of
trial functions that are normalized in any convenient way (which need not be by means
of I itself): necessary + sufficient criteria for stability are obtained.

(3) Finally, by considering a complete set of trial functions that are properly normalized
with the correct physical norm I [ξ], corresponding to the kinetic energy, the complete
spectrum of eigenvalues {ω2} is obtained.

Comparing these different variational methods with their differential equation
counterparts, we notice that:

– Method (1) has no counterpart in the equation of motion approach (unless one is ex-
tremely clever and knows how to guess forces, i.e. complete vector fields, that should
on average be parallel to the displacements associated with them). It is the most direct
method to investigate stability problems. Thus, if one has a good physical intuition,
one may be able to design a trial function that shows right away that the system is un-
stable by picking up the dominant part of the driving energy of the instability. Also,
one may formalize this approach by testing with a finite class of trial functions that
may be considered as a subspace of the complete Hilbert space of the system.

– Method (2) is equivalent to solving the marginal equation of motion F(ξ) = 0 , but
much simpler to apply since one may use any normalization of the trial functions
in the expression (6.96) for W to test for stability. For example, one could exploit
a normalization involving only the component of the perturbation perpendicular to
the magnetic surfaces,

∫
ρ(n · ξ)2 dV ; see Bernstein et al. [27]. (Applications will

be given in later chapters.) The only limitation in the choice of the normalization of
the trial functions is that the original norm ‖ξ‖ should remain finite. Of course, in
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the process of dropping the proper normalization of the Hilbert space, one loses the
possibility of calculating the actual growth rates of the instabilities.

– Method (3) is equivalent to solving the spectral equation F(ξ) = −ρω2ξ , i.e. to a
full-blown normal mode analysis: variational method and differential equation are
equivalent.

Although the above discussion of the energy principle appears to be rather solid,
i.e. in no need of further proof, this turns out to be deceptive since the tacit assump-
tion has been made that the spectrum consists of discrete eigenvalues only. In gen-
eral, this is not the case in MHD, where the existence of a continuous spectrum is
a rule rather than an exception, as we will see in the next chapter. For stability ana-
lysis, this presents a substantial complication. This problem will be addressed in
Section 6.5, where we first discuss the lost kingdom of stability analysis with nor-
mal modes only (Section 6.5.1), and next show that the energy principle can still
be proved avoiding the subtleties of the continuous spectrum (Section 6.5.2). This
will also facilitate a practical modification of the energy principle (Section 6.5.3).
Having settled these more advanced issues, we will return to our starting point and
put the spotlight on the structural beauty and applicability of MHD spectral theory
(Section 6.5.4).

6.5 Further spectral issues

6.5.1 Normal modes and the energy principle�

Consider a pair of discrete normal modes exp(−iωnt) and exp(iωnt) belonging to
the same eigenvalue ω2 = ω2

n . If we neglect all other modes, e.g. by preferentially
exciting this one pair of modes, the solution (6.77) of the initial value problem
(with the contour C as in Fig. 6.10) easily may be completed. Since

ρ−1F(ξ) = −ω2
n ξ , (6.97)

the resolvent operator would simply be given by

(ρ−1F + ω2I)−1 = [
(ω2 − ω2

n)I
]−1

. (6.98)

Hence, the discrete eigenvalue ω2
n gives rise to two poles ω = ±ωn which, by

virtue of the reality condition (6.58), are situated on either the real or the imag-
inary axis of the complex ω-plane. Clearly, for ω2 = ω2

n the resolvent operator
does not exist, but everywhere else in the complex ω-plane it is now defined (of
course, when we ignore the rest of the spectrum). We may now complete the inte-
gration (6.77) by deforming the contour around the two poles ω2 = ±ωn . Shift-
ing the straight part of the contour to ν = −∞ , so that exp(−iωt) vanishes faster
than everything else, the only contribution that survives for large t will be the two
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Fig. 6.12. Integration contours in the complex ω-plane for (a) stable oscilla-
tion and (b) exponential instability (corresponding to the eigenfunctions shown in
Fig. 6.6).

residues picked up at the poles. As is well known (see, e.g., Churchill [57]), these
residues may be computed one by one by means of Cauchy’s integral formula∮

f (z)

z − z0
dz = 2πi f (z0) , (6.99)

where f (z) should be an analytic function inside a closed contour encircling the
point z = z0. We then find for the asymptotic time-dependence of the normal
modes:

ξ(r; t) = 1

2π

∫
C

iωξi (r) − ξ̇i (r)
(ω + ωn)(ω − ωn)

e−iωt dω

= [iωnξi (r) + ξ̇i (r)]e
iωnt + [iωnξi (r) − ξ̇i (r)]e

−iωnt

2iωn
(6.100)

(where one should notice that the contour C deformed around a pole has just the
opposite sense of a Cauchy contour).

Specifically, writing ωn = σn + iνn , we either have νn = 0 or σn = 0 . If
νn = 0 , the poles are situated on the real axis (Fig. 6.12(a)) so that

ξ(r; t) = ξi (r) cos σnt + ξ̇i (r)σ
−1
n sin σnt , (6.101)

which is a stable undamped oscillation excited by an initial displacement ξi (r), or
by an initial velocity ξ̇i (r), or by a combination of both. If σn = 0, the poles are
situated on the imaginary axis (Fig. 6.12(b)) and we have

ξ(r; t) = ξi (r) cosh νnt + ξ̇i (r)ν
−1
n sinh νnt . (6.102)

Since both cosh(νnt) and sinh(νnt) eventually grow as exp(νnt) this is called
an exponential instability, which again may be excited by initial displacements as
well as initial velocities.
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The important feature is that, here, true normal modes, i.e. discrete eigenvalues,
are either oscillatory or exponentially growing, but never damped. This is the real
simplifying feature of ideal, i.e. conservative, MHD perturbations of static equi-
libria expressed by the self-adjointness of the force operator. As a consequence,
stability studies may be simplified considerably as compared to the analysis of dis-
sipative or stationary (v0 	= 0) systems, to be discussed in Volume 2. If the equilib-
rium is described by a set of parameters α1, . . . , αN (expressing the background
equilibrium distributions), the marginal states for non-self-adjoint systems will be
defined by the condition

Im ωκ(α1, . . . , αN ) = 0 , (6.103)

where κ indicates parameters analogous to wave numbers labelling the different
modes. This condition, called the principle of exchange of stabilities, determines
the transition from stability to instability; see Chandrasekhar [51], reviewed by
Goedbloed [81](III). Such a transition may take place at any point on the line
Im ω = 0 . For example, modifying an exponentially unstable static equilibrium
by just adding a constant background flow v0 will produce a stationary equilibrium
with an overstable mode, due to the Doppler shift (5.13). However, for self-adjoint
systems (like in ideal MHD of static equilibria), the condition (6.103) may be
replaced by the much simpler one

ω2
κ(α1, . . . , αN ) = 0 , (6.104)

i.e. transfer of stability to instability always takes place via the same point, viz. the
origin ω = 0 of the complex ω-plane. Stability may then be studied by means of
either a marginal mode analysis, which seeks to establish the locus in parameter
space (α1, . . . , αN ) where the marginal equation of motion (6.29) is satisfied, or
the variational counterpart expressed by the energy principle (6.96).

Intuitively clear as the energy principle may seem now, its proof is actually not
quite straightforward, not even for the self-adjoint systems we are dealing with. If
the force operator F would only allow for discrete eigenvalues satisfying

ρ−1F(ξn) = −ω2
nξn , (6.105)

it would be reasonable to assume that the set {ξn} constitutes a complete basis
for the Hilbert space. In that case, the eigenfunctions ξn could be chosen to be
orthonormal:

〈ξm, ξn〉 = δmn . (6.106)
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An arbitrary ξ could then be expanded in eigenfunctions:

ξ =
∞∑

n=1

anξn , (6.107)

so that

W = −〈ξ, ρ−1F(ξ)〉 =
∞∑

n=1

a2
nω2

n . (6.108)

Hence, if one could find a ξ for which W < 0 at least one eigenvalue ω2
n < 0

should exist. Such an eigenvalue would correspond with an exponential instabil-
ity. This ‘proof’ was given in the original paper by Bernstein et al. [26], before
it was known that ideal MHD systems usually have a continuous spectrum (see
Chapter 7) extending to the origin ω2 = 0 . This fact implies that the simplic-
ity of the marginal stability analysis is spoiled and that more care is needed to
establish necessity of the energy principle. This will be the subject of the next
subsection.

6.5.2 Proof of the energy principle�

A correct proof of both necessity and sufficiency of the energy principle with-
out invoking the assumption of a complete basis of discrete eigenvalues, but also
avoiding analysis of the continuous spectrum, has been given by Laval, Mercier
and Pellat in 1965 [139]. That proof is based on energy conservation,

Ḣ = 0 , H ≡ K + W , (6.109)

and the so-called virial equation

Ï ≡ 〈ξ, ξ〉̈ = 2〈ξ̇, ξ̇〉 + 2〈ξ, ξ̈〉 = 2K − 2W . (6.110)

The proof of sufficiency is actually quite simple, but the proof of necessity is some-
what more involved.

Sufficiency If W [η] > 0 for all trial functions η , one cannot find a motion ξ(t)
such that the kinetic energy K [ξ(t)] grows without bound.

Proof Since W ≡ H − K > 0 and H is finite, unbounded growth for K would
violate energy conservation; QED. (Notice that we here exclude the class of lin-
early growing instabilities, where ξ ∼ t and K is constant.)

Necessity If a function η exists such that W [η] < 0 , the system will exhibit an
unbounded motion ξ(t) .
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Fig. 6.13. Bounds on exponential growth.

(First proof ) Start from W [η] < 0 and choose initial data ξ(0) = η , ξ̇(0) = 0 .
From Eq. (6.109),

H(t) = H(0) = K (0) + W (0) = W [η] < 0 ,

so that

Ï (t) = 2K − 2W = 4K − 2H ≥ −2H(t) > 0 .

Hence, İ grows without limit as t → ∞ and I grows at least like −Ht2. As a
result, ξ grows at least linearly in t ; QED. This simplified version of the proof is
due to Kruskal.

� Estimates of growth rates (Second proof ) Laval, Mercier and Pellat [139] also gave a
sharper version of the proof by estimating the growth rate. Again, start from W [η] < 0
and define

λ ≡ −W [η]/I [η] > 0 . (6.111)

We then prove that there exists a ξ(t) growing at least as exp(
√

λ t) (Fig. 6.13, lower
curve). Choose as initial data ξ(0) = η , ξ̇(0) = √

λ η (i.e., in contrast to the first case,
we excite the motion with the proper relationship between ξ and ξ̇ for an exponentially
growing normal mode). Consequently,

H(t) = H(0) = K [ξ̇(0)] + W [ξ(0)] = λI [η] + W [η] = 0 .

From Eq. (6.110) we then have

Ï (t) = 2K − 2W = 4K − 2H = 4K (t) > 0 , (6.112)

whereas the Schwartz inequality gives

İ 2(t) = 4〈ξ, ξ̇〉2 ≤ 4〈ξ, ξ〉〈ξ̇, ξ̇〉 = 4I (t)K (t) = I (t) Ï (t) . (6.113)

Since

İ (0) = 2
√

λ 〈η, η〉 = 2
√

λ I (0) > 0 , (6.114)

we have from Eq. (6.112) that İ (t) > 0 for t > 0 , so that we may divide the inequality
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(6.113) by İ (t)I (t), giving the following sequence of inequalities:

İ (t)

I (t)
≤ Ï (t)

İ (t)
⇒ ln

I (t)

I (0)
≤ ln

İ (t)

İ (0)
= ln

İ (t)

2
√

λI (0)
⇒ I (t)

I (0)
≤ İ (t)

2
√

λI (0)

⇒ İ (t)

I (t)
≥ 2

√
λ ⇒ ln

I (t)

I (0)
≥ 2

√
λ t ⇒ I (t) ≥ I (0) exp(2

√
λ t) .

Consequently, ξ grows at least as exp(
√

λ t); QED.

One may also prove the following theorem, which gives an upper bound on the growth
rate (Fig. 6.13, upper curve):

Theorem If the ratio −W [ξ]/I [ξ] has a smallest upper bound

� ≥ λ[ξ] ≡ −W [ξ]/I [ξ] for all ξ ,

then ξ(t) cannot grow faster than exp(
√

� t) .

Proof Start again from the virial expression (6.110):

Ï (t) = 2K (t) − 2W (t) = 2H(t) − 4W (t) ≤ 2H(t) + 4�I (t) .

Hence,

Ï (t) − 4�I (t) ≤ 2H(t) = 2H(0) .

Consequently, I (t) grows at most like exp(2
√

� t), so that ξ(t) cannot grow faster than
exp(

√
� t); QED.

We have given all these proofs here because they naturally lead to the extension of the
stability concept introduced in the next section. �

6.5.3 σ -stability

For thermonuclear confinement of plasma, the stability concept used above may
be relaxed. One is not really interested in whether the plasma is stable, one is in-
terested in whether or not one can confine it long enough to obtain fusion. For
example, if the worst instability of a particular configuration were to grow as illus-
trated in Fig. 6.14, where a is the radial dimension of the plasma vessel and τ is
the characteristic confinement time needed for fusion, one would call this configu-
ration stable for all practical purposes. One could also choose τ to be another time
scale, e.g. the time scale for which one accepts the ideal MHD model as a valid
description, or one may choose τ to be the time scale of an actual experiment de-
termined by the decay of external currents, or τ could correspond to the limit posed
by the accuracy of a certain numerical stability program. For all these purposes,
one may allow perturbations that grow at most like exp(σ t) , where σ ≡ 1/τ . We
will call equilibria σ -stable if they do not manifest growth faster than this. This
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Fig. 6.14. Tolerable exponential instability.
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Fig. 6.15. (a) Marginal stability analysis encounters singularities at the origin of
the complex ω-plane; (b) σ -stability analysis avoids them by staying away from
the origin.

extension of the stability concept was introduced by Goedbloed and Sakanaka in
1974 [89], and applied to the experimental devices in use at that time [199].

As well as for practical purposes, the concept of σ -stability is also useful for
analysis. We will show in Chapter 7 that the continuous spectrum nearly always
reaches the origin ω = 0 and that it frequently carries with it infinitely many point
eigenvalues that accumulate at the edge of the continuum. Hence, the marginal
point ω = 0 is a highly singular point in the spectrum (Fig. 6.15(a)) so that
the supposed simplicity of a marginal stability analysis, as compared to calcu-
lating actual growth rates, often turns out to be illusory. In contrast, a σ -stability
analysis avoids these difficulties by staying on the unstable side of the spectrum
(Fig. 6.15(b)) which consists of point eigenvalues only. At least, that is a conjecture
by Grad [99] to which no exceptions have been found yet.3 This is of particular
importance for numerical stability studies where one wishes to avoid singularities
as much as possible.

Since we are dealing now with point eigenvalues only, we may define an equi-
librium to be σ -stable if no point eigenvalues ω2 < −σ 2 exist, and σ -unstable if
such eigenvalues do exist. A σ -marginal stability analysis then seeks to find the

3 One should actually exclude perturbations with infinitely large mode numbers since they may lead to dense
sets of unstable point eigenvalues. The closure of those sets formally contains a continuous spectrum; see
Spies [211] and Spies and Tataronis [212].
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σ -stability boundary in parameter space, replacing the marginal stability condition
(6.104) by

ω2
κ(α1, α2, . . . , αN ) = −σ 2 . (6.115)

This problem may be studied by means of the σ -marginal equation of motion:

Fσ (ξ) ≡ F(ξ) − ρσ 2ξ = 0 , (6.116)

where the force Fσ available to drive a σ -instability is reduced by the amount ρσ 2ξ

with respect to the force F for driving an instability under the original definition.
The variational form of this problem is the following modification of the energy
principle.

Modified energy principle for stability An equilibrium is σ -stable if and only if

Wσ [ξ] ≡ W [ξ] + σ 2 I [ξ] > 0 (6.117)

for all displacements ξ that are bound in norm and satisfy the boundary conditions.
Hence, the amount of negative potential energy available for driving a σ -instability
is reduced by the amount σ 2 I [ξ] as compared to that available for driving an
instability under the original definition.

Comparing Eq. (6.116) with the normal mode equation (6.28), and Eq. (6.117)
with the energy principle (6.96), one observes that their formal structure is the
same. One might even wonder whether the whole concept of σ -stability does not
boil down to a normal-mode analysis. This is not the case, the important differ-
ence being that in a normal-mode analysis the eigenvalue ω has to be determined,
whereas in a σ -stability analysis σ is simply a pre-fixed parameter. Hence, the
problem is of the same nature as a stability analysis by means of the energy princi-
ple, although the equations are more complicated (i.e., they have more terms). The
latter complication, which is unimportant for numerical applications anyway, is
more than offset by the absence of the singularities associated with the continuum
at ω2 = 0 .

� Proof of the modified energy principle This proof can be given in complete analogy
with that of the ordinary energy principle given in the previous section. Sufficiency is
proved by writing

W σ [η] = H − (K − σ 2 I ) > 0 for all η , H finite ,

so that for a σ -instability, where K − σ 2 I grows without bound, energy conservation
would be violated. The necessity of the modified energy principle implies that a σ -unstable
motion ξ(t) can be found if one knows a function η such that W σ [η] < 0 . This is an im-
mediate consequence of the proof of necessity of the ordinary energy principle. Analogous
to Eq. (6.111), define

µ ≡ −W σ [η]/I [η] = −W [η]/I [η] − σ 2 ≡ λ − σ 2 > 0 .



6.5 Further spectral issues 271

Then,

λ ≡ −W [η]/I [η] = µ + σ 2 > σ 2 ,

so that ξ(t) grows at least as exp(
√

λ t) = exp(
√

µ + σ 2 t) and the equilibrium is, there-
fore, σ -unstable. �

6.5.4 Returning to the two viewpoints

We have seen how the two intuitive viewpoints of stability, illustrated in Fig. 6.1,
lead to two alternative approaches of the linearized MHD equations, viz. one in
terms of differential equations (the equation of motion) and another one in terms
of the quadratic forms of the potential and kinetic energy. Since this duality is
also present in the formalism of quantum mechanics, expressed in the language of
linear operators in Hilbert space, it is expedient to highlight the analogy.

Analogy with quantum mechanics As far as spectral theory is concerned, the ana-
logy between linearized MHD and quantum mechanics is complete. In the termino-
logy of Dirac [67], we have obtained two ‘pictures’ of ideal MHD spectral theory
(summarized in Fig. 6.16), viz. that of the equation of motion in terms of ξ and that
of the variational principles in terms of the potential and kinetic energies. They
correspond to the ‘Schrödinger picture’ of wave mechanics (with a description
in terms of the wave equation Hψ = Eψ), exploiting differential equations, and

Fig. 6.16. The two ‘pictures’ of ideal MHD spectral theory.
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the ‘Heisenberg picture’ of matrix mechanics (with a description in terms of the
representative matrix elements 〈n|H |m〉 of the Hamiltonian), exploiting quadratic
forms.

Of course, this analogy is mathematical, not physical. The physical systems
are totally different. For example, in the spectrum, the transition from bound to
free states in quantum mechanics corresponds to the completely different physical
problem of transition from stable to unstable modes in magnetohydrodynamics.
More important, whereas the wave function ψ in quantum mechanics is a complex
quantity that requires a physical interpretation to connect it to observable proper-
ties of the atomic system, the displacement vector ξ in MHD is a real quantity that
refers directly to the observable macroscopic displacement of the classical plasma
fluid (using complex notation here is no more than a matter of convenience). (We
do not pay much attention to the difference between a scalar ψ in quantum me-
chanics and a vector ξ in MHD since this appears to be of minor interest; quantum
mechanical systems with wave functions with more components also occur, e.g. in
quantum electrodynamics of S = 1 particles.)

An important reason to dwell on the analogy with quantum mechanical spec-
tral theory is the need to disentangle useful mathematical techniques that can be
transferred to another field from concepts that are essential to the physical formu-
lation. In this respect, it should be clear (but frequently is not for physics students
because of their over-exposition to quantum mechanical problems as compared
to classical ones) that linear operators in Hilbert space as such have nothing to
do with quantum mechanics. In fact, the mathematical formulation by Hilbert in
1912 preceded the advent of quantum mechanics by more than a decade. Essen-
tially, the two ‘pictures’ illustrated in Fig. 6.16 are nothing but a translation to
physics of the generalization of linear algebra concepts to infinite-dimensional vec-
tor spaces. (We are indebted to J. Moser (1973) for enlightening discussions on this
topic.)

There is yet another hurdle to be taken. Whereas quantum mechanics of atomic
and sub-atomic particles applies to a rich arsenal of relevant spherically symmet-
ric systems, with the attraction of symmetry with respect to the rotation groups,
MHD spectral theory refers to magnetically confined plasmas where the constraint
of ∇ · B = 0 forbids spherical symmetry (as we saw in Section 1.3.4) and de-
mands the consideration of extended magnetic structures with symmetries that are
much less obvious than rotations. In fact, the application of symmetry groups to
MHD spectral theory is really in its infancy, as should be evident from the more
complex structure of the MHD equations compared to the quantum mechanical
ones and the relatively insignificant effort in MHD compared to the impressive
accomplishments of the great physicists of the twentieth century who created the
quantum mechanical picture of the atomic world.
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Why does the water fall out of the glass? We now show how the machinery of
spectral theory and energy principle works to solve the practical problem posed
in Section 6.1.1. We consider a simple fluid (no magnetic field) with a varying
density in an external gravitational field. For equilibrium, the pressure and density
distributions should satisfy

∇ p = −ρ∇� = ρg . (6.118)

The expression (6.85) for the energy W then simplifies to

W f = 1
2

∫ [
γ p |∇ · ξ|2 + (ξ∗ · ∇ p)∇ · ξ − (ξ∗ · ∇�) ∇ · (ρξ)

]
dV

= 1
2

∫ [
γ p |∇ · ξ|2 + g · ξ∗(2ρ∇ · ξ + (∇ρ) · ξ)

]
dV . (6.119)

Clearly, without gravity, the fluid is stable since only the positive definite first term,
corresponding to compressive sound motions, remains. With gravity, the sign of W
depends on the density gradient in a way that we now have to determine.

Let us specify to plane slab geometry so that pressure and density are functions
of the vertical coordinate x alone: p = p(x), ρ = ρ(x), and gravity points in the
negative x-direction: g = −gex . The equilibrium condition (6.118) then becomes

p′ = −ρg , (6.120)

where the prime denotes differentiation with respect to x . The expression for W f

now simplifies to

W f = 1
2

∫ [
γ p |∇ · ξ|2 − 2ρgξ∗

x ∇ · ξ − ρ ′g|ξx |2
]

dV . (6.121)

The energy principle according to method (1) of Section 6.4.4 is illustrated by the
immediate guess suggested by this expression, viz. to exploit incompressible trial
functions, ∇ · ξ = 0, so that

W f = −1
2

∫
ρ′g|ξx |2 dV ≥ 0 ⇒ ρ′g ≤ 0 (everywhere) , (6.122)

which is a necessary criterion for stability. This already more or less explains our
glass of water experiment since this criterion clearly shows that lighter fluid should
be on top of heavier fluid for stability. Actually, we here have derived the condition
for stability inside the fluid, with respect to internal modes, whereas the water–
air system requires an extended form of the extended principle with a two-fluid
interface (model II*), permitting the description of external modes. This problem
will be considered in Section 6.6.4. It is already clear that the physics will be the
same: the density gradient then becomes a density jump that should be negative at
the interface (light fluid above) for stability.
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The expression (6.121) also permits the derivation of a much sharper stability
condition, with respect to all possible perturbations (compressible as well as in-
compressible ones), according to method (2) of Section 6.4.4. In this case, it just
implies rearranging terms such that two definite terms are obtained:

W f = 1
2

∫ [
γ p

∣∣∣∇ · ξ − ρg

γ p
ξx

∣∣∣2 −
(
ρ ′g + ρ2g2

γ p

)
|ξx |2

]
dV . (6.123)

Since the components ξy and ξz only appear in the compressibility term ∇ · ξ,
minimization with respect to those components is trivial:

∇ · ξ = ρg

γ p
ξx . (6.124)

Consequently,

ρ ′g + ρ2g2

γ p
≤ 0 (everywhere) (6.125)

is a necessary and sufficient criterion for stability.
Finally, questions like ‘How long does it take for the instability to develop?’ or

‘What do the perturbations look like?’ require a complete normal mode analysis
of the spectrum and eigenfunctions, according to method (3) of Section 6.4.4. This
will be one of the topics covered in Chapter 7.

6.6 Extension to interface plasmas

So far, we have been concerned with spectral theory of plasmas surrounded by a
rigid wall (model I). For many applications, it is useful to be able to treat plas-
mas with an interface by the same techniques. For example, in laboratory fusion
research it is appropriate to model the very low density region close to the wall
(created by a limiter) as a vacuum so that effectively a plasma–vacuum system is
obtained (model II). In astrophysical plasmas it is frequently expedient to model
plasmas with a jump in the density (e.g. to a low density force-free plasma) as a
plasma–plasma system (model II*).

Recall the different steps of the spectral analysis of model I plasmas. The non-
linear equations (6.1)–(6.4) for the plasma variables v, p, B, and ρ were linearized
about a static equilibrium, prescribed by Eqs. (6.7)–(6.8), with perturbations satis-
fying the differential equations (6.12)–(6.15) and the boundary conditions (6.16).
We then defined the plasma displacement vector ξ(r, t), and cast the dynamical
problem in the form of the equation of motion (6.23) involving the force opera-
tor F(ξ). Next, F was proved to be self-adjoint in Section 6.2.3, and the quadratic
form (6.85) for the associated potential energy W was derived in Section 6.4.1.
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These steps will now be generalized to plasmas with an interface, following the
original paper on the energy principle by Bernstein et al. [26] and the presentation
by Kadomtsev [119].

To that end, the original nonlinear equations for model II and model II* interface
plasmas of Section 4.6.1 need to be subjected to the same procedure. This implies
that the vacuum magnetic field splits into an equilibrium part B̂ (suppressing the
subscript 0 again) and a perturbation Q̂. The equilibrium vacuum magnetic field B̂
satisfies

∇ × B̂ = 0 , ∇ · B̂ = 0 , (6.126)

subject to the boundary conditions

n · B = n · B̂ = 0 ,
[[

p + 1
2 B2

]]
= 0 (at the interface S) , (6.127)

which imply surface currents j� = n × [[B]] , and to the boundary condition

n · B̂ = 0 (at the conducting wall Ŵ ) . (6.128)

For model II*, the outer region is also a plasma so that the vacuum equa-
tions (6.126) should be replaced by plasma equations, like Eqs. (6.7), for B̂, p̂,
and ρ̂, whereas the jump conditions and the outer b.c. remain the same.

The vacuum magnetic field perturbations Q̂ are described by

∇ × Q̂ = 0 , ∇ · Q̂ = 0 , (6.129)

subject to two entirely non-trivial boundary conditions (see below) connecting Q̂ to
the plasma variable ξ at the plasma–vacuum interface, and one boundary condition

n · Q̂ = 0 (at Ŵ ) . (6.130)

Of course, for model II* plasmas, Eqs. (6.129) should be replaced by equations
analogous to Eqs. (6.23)–(6.25) for the displacement vector ξ̂ of the outer plasma,
whereas the outer b.c. (6.130) is to be replaced by

n · ξ̂ = 0 (at Ŵ ) . (6.131)

The two mentioned boundary conditions at the interface, connecting ξ in the
plasma to Q̂ in the vacuum (model II) or to ξ̂ in the outer plasma (model II*),
are obtained after a rather laborious derivation that deserves separate treatment.
This will be given in Section 6.6.1.

Note that, in model II*, the limit of a very tenuous plasma with p̂ = 0 , ρ̂ = 0 ,
ĵ = 0 still implies very different dynamics from that of a vacuum because the
MHD magnetic field equation (6.3) implies the picture of frozen field lines,
whereas such a condition does not hold for a vacuum magnetic field.
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� Vector potential formulation for the vacuum field perturbations For some of the
derivations in the present section, it is useful to exploit the alternative representation of the
vacuum perturbations in terms of the vector potential. To that end, recall the pre-Maxwell
equations (4.171) and (4.172) given in Section 4.6.1. They yield the following expressions
for the vacuum field perturbations Q̂ and Ê in terms of the vector potential Â and the scalar
potential �̂:

Q̂ = ∇ × Â , ∇ × ∇ × Â = 0 , (6.132)

Ê = −∂Â
∂t

− ∇�̂ , ∇2�̂ = − ∂

∂t
(∇ · Â) . (6.133)

With the choice of the Coulomb gauge condition �̂ = 0 , which implies that ∇ · Â = 0 as
well, the vector potential Â becomes the only variable needed to describe the vacuum. The
basic equations for Â then become

∇2Â = 0 , ∇ · Â = 0 , (6.134)

from which the vacuum field variables Q̂ and Ê are obtained by

Q̂ = ∇ × Â , Ê = −∂Â
∂t

. (6.135)

The appropriate boundary condition at the perfectly conducting wall is obtained from the
condition that the tangential electric field has to vanish there (cf. Eq. (4.174)):

n × Â = 0 (at Ŵ ) . (6.136)

One easily demonstrates that satisfaction of this boundary condition also implies satisfac-
tion of the boundary condition n · Q̂ = n · (∇ × Â) = 0 at the conducting wall. �

6.6.1 Boundary conditions at the interface

The linearization of the two boundary conditions (4.175) and (4.176), for the nor-
mal magnetic field and the total pressure, provides the necessary connection be-
tween the plasma variable ξ and the vacuum variable Q̂ at the interface. The deriva-
tion is rather involved since we need to evaluate the physical variables at the per-
turbed boundary and we also need an expression for the perturbation of the normal
to that boundary. Because of the importance of the interface boundary conditions
for applications, we give their derivation in full and point out some pitfalls in pass-
ing. At this point, we temporarily revert to writing again the subscripts 0 and 1 for
equilibrium and perturbations.

An expression for the perturbation of the normal is most easily obtained by
integrating the Lagrangian time derivative of a line element (4.88), derived in Sec-
tion 4.3.3, to give the perturbation of a line element moving with the fluid:

dl ≈ dl0 · (I + ∇ξ) . (6.137)
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Fig. 6.17. Perturbation of the normal to the boundary.

This relation is correct to first order since the difference between the Eulerian and
Lagrangian time derivative is of higher order. From this expression we obtain the
following identity for a line element dl lying in the boundary surface (Fig. 6.17):

0 = n · dl ≈ dl0 · (I + ∇ξ) · (n0 + n1L)

≈ dl0 · n0 + dl0 · (∇ξ) · n0 + dl0 · n1L = dl0 · [ (∇ξ) · n0 + n1L ] ,

where we have put an index L on n1L to indicate that this is a Lagrangian pertur-
bation. Hence, n1L = −(∇ξ) · n0 + λ , where the vector λ ⊥ dl0 . But dl0 may
have any direction in the unperturbed surface so that λ must be parallel to n0 : λ =
µn0 . Since |n| = |n0| = 1 , we have n0 · n1L = 0 so that µ = n0 · (∇ξ) · n0 .
This provides us with the required Lagrangian perturbation of the normal:

n1L = −(∇ξ) · n0 + n0 n0 · (∇ξ) · n0
(A.2)= n0 ×

{
n0 × [ (∇ξ) · n0 ]

}
. (6.138)

Note that the brackets in (∇ξ) are absolutely essential since they indicate that the
derivative is to be taken on ξ alone and not on any quantity appearing after this
expression. In fact, in the first investigation of the Rayleigh–Taylor and kink insta-
bilities of plasmas with a vacuum interface by Kruskal and Schwarzschild [130],
the expression for the Lagrangian perturbation of the normal was incorrect in this
respect. It was corrected later by Kruskal and Tuck [131] to the above form.

(a) Model II boundary conditions The evaluation of the boundary condi-
tions (4.175) and (4.176) for the normal magnetic field and the total pressure
requires the Lagrangian expressions for the perturbed magnetic field B and the
pressure p at the perturbed position r of the boundary, evaluated to first order:

B|r ≈ (B0 + Q + ξ · ∇B0)|r0 ,
(6.139)

p|r ≈ (p0 + π + ξ · ∇ p0)|r0 = (p0 − γ p0∇ · ξ)|r0 .
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Here, Q and π are the Eulerian perturbations, defined in Eqs. (6.25) and (6.24),
and the terms ξ · ∇B0 and ξ · ∇ p0 are due to the shift of the boundary.

Inserting Eqs. (6.138) and (6.139) into the first part of the boundary condition
(4.175) for the normal magnetic field gives

0 = n · B = [ n0 − (∇ξ) · n0 + n0 n0 · (∇ξ) · n0 ] · (B0 + Q + ξ · ∇B0)

≈ −B0 · (∇ξ) · n0 + n0 · Q + ξ · (∇B0) · n0

(A.13)= −n0 · ∇ × (ξ × B0) + n0 · Q .

Interestingly, this condition is automatically satisfied by virtue of the definition
(6.25) for Q. However, exactly the same derivation applies to the second part of
the boundary condition (4.175) giving the required first interface condition relating
ξ and Q̂:

n · ∇ × (ξ × B̂) = n · Q̂ (at the plasma–vacuum interface S) , (6.140)

where we now definitively drop the 0s on the equilibrium quantities since confu-
sion is no longer possible.

� Alternative expressions for the first interface condition That this boundary condition
in fact only depends on the normal components of ξ and Q̂ may be shown by one of those
tedious vector manipulations that abound in this field (see Freidberg and Haas [73]), giving:

B̂ · ∇(n · ξ) − n · (∇B̂) · n n · ξ = n · Q̂ (at S) . (6.141)

This form is actually to be preferred over (6.140) as it directly gives the relation between
n · ξ and n · Q̂ .

Another alternative expression for the first interface condition is obtained by exploit-
ing the vector potential Â instead of Q̂. To that end, recall the exact model II boundary
condition (4.178) in terms of the vacuum electric field Ê and the plasma velocity v that
was derived in Section 4.6.1. Expressing Ê in terms of Â by means of Eq. (6.135), and
v in terms of ξ, this condition may be integrated to first order to yield the first interface
condition in terms of the vector potential:

n · ξ B̂ = −n × Â (at S) . (6.142)

This form will be exploited in Section 6.6.2. �
Inserting Eqs. (6.139) into the boundary condition (4.176) for the total pres-

sure, and exploiting the equilibrium equation (6.127) to remove the equilib-
rium boundary contributions, leads to the second interface condition relating
ξ and Q̂:

−γ p∇ · ξ + B · Q + ξ · ∇(1
2 B2) = B̂ · Q̂ + ξ · ∇(1

2 B̂2) (at S) . (6.143)

Note that the left hand side is just the Lagrangian perturbation of the total plasma
pressure.
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Fig. 6.18. Discontinuity of the tangential displacement.

For model II plasma–vacuum interface systems, the formulation of the spectral
problem is now complete. The equation of motion (6.23) for ξ , the Eqs. (6.129)
and (6.130) for Q̂, and the boundary conditions (6.140) and (6.143) connecting ξ

and Q̂ at the plasma–vacuum interface constitute a complete set of equations for
the investigation of waves and stability properties of these systems.

(b) Model II* boundary conditions For plasma–plasma interface systems, extra
care is needed in the derivation of the boundary conditions. In that case, ξ̂ is also
defined for the outer plasma and Q̂ ≡ ∇ × (ξ̂ × B̂) there so that the condition
(6.140) is superseded by the first interface condition on ξ and ξ̂:

n · ξ = n · ξ̂ (at the plasma–plasma interface S) , (6.144)

which is obtained directly from linearization of Eq. (4.165).
For the pressure balance equation one has to add the pressure terms of the ex-

terior fluid to the boundary condition (6.143). One may then be tempted to in-
fer from the continuity of the Lagrangian perturbation of the total pressure that
the RHS of the boundary condition should be just the same expression as the
LHS of Eq. (6.143) with ξ, Q, p, and B replaced by ξ̂, Q̂, p̂, and B̂. In fact,
such a regrettable mistake has been made in the literature (Goedbloed [81](I), cor-
rected in [81](IV)). The point is that the two mentioned expressions do not refer
to the same position on the interface since the tangential components of ξ are not
continuous in general (Fig. 6.18). For the sake of symmetry between inner and
exterior fluid it is, therefore, to be preferred to express the perturbation on the
perturbed boundary at the position r0 + (n · ξ)n , since the normal component of
ξ is continuous. The expressions for the perturbations of the plasma pressure and
the magnetic field pressure at that position read:

�p = π + n · ξ n · ∇ p ,
(6.145)

�(1
2 B2) = B · Q + n · ξ n · ∇(1

2 B2) ,
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so that

�(p + 1
2 B2) = −γ p∇ · ξ − ξ · ∇ p + B · Q + n · ξ n · ∇(p + 1

2 B2) . (6.146)

The second interface condition on ξ and ξ̂ then becomes nicely symmetric:

−γ p∇ · ξ + B · Q − ξt · ∇ p + n · ξ n · ∇(1
2 B2)

= −γ p̂∇ · ξ̂ + B̂ · Q̂ − ξ̂t · ∇ p̂ + n · ξ̂ n · ∇(1
2 B̂2) (at S) ,

(6.147)

where ξt ≡ ξ − n · ξ n , and similarly for ξ̂t .
Note that the difference between the correct boundary condition (6.147) and the

incorrect one, obtained by assuming continuity of the Lagrangian total pressure
perturbation −γ p∇ · ξ + B · Q + ξ · ∇( 1

2 B2) , is a jump −[[ξt · ∇(p + 1
2 B2)]] .

Although [[ξt ]] 	= 0 , this term would still vanish if p + 1
2 B2 were constant on

the interface. For the simple 1D geometries considered in the first part of this
book, this is the case. However, for toroidal geometries of laboratory plasmas
and oblique gravitational acceleration of astrophysical plasmas, the term does not
disappear. This completes the formulation of the spectral problem for model II*
interface plasmas.

6.6.2 Self-adjointness for interface plasmas

We will now extend the proof of self-adjointness of the force operator F to plas-
mas with an interface. Recall the proof of Section 6.2.3 for model I plasmas, which
resulted in the expression (6.56) with a boundary term that we purposely kept for
the present reduction. That term will be transformed now to a symmetric expres-
sion, both manifesting self-adjointness (this section) and immediately resulting in
the necessary extensions of the energy expression (6.85) for model II interface
plasmas in the next section.

As in Section 6.2.2, consider again two displacement vector fields ξ(r, t) and
η(r, t) defined over the plasma volume V , not necessarily satisfying the ideal
MHD equation of motion (6.23). These vector fields will be connected by means
of the boundary conditions (6.140) and (6.143) to the associated magnetic per-
turbations Q̂(r, t) and R̂(r, t) , defined over the vacuum volume V̂ , that do sat-
isfy the vacuum equations (6.129) and the b.c. (6.130) on the wall W . Hence, the
‘extensions’ Q̂ and R̂ satisfy the following differential equations:

∇ × Q̂ = 0 , ∇ · Q̂ = 0 ,

∇ × R̂ = 0 , ∇ · R̂ = 0 (on V̂ ), (6.148)
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Fig. 6.19. ‘Extension’ of the perturbation into the vacuum.

subject to the boundary conditions

n · ∇ × (ξ × B̂) = n · Q̂ ,

n · ∇ × (η × B̂) = n · R̂ (on S), (6.149)

−γ p ∇ · ξ + B · Q + ξ · ∇(1
2 B2) = B̂ · Q̂ + ξ · ∇( 1

2 B̂2) ,

−γ p ∇ · η + B · R + η · ∇(1
2 B2) = B̂ · R̂ + η · ∇(1

2 B̂2) (on S), (6.150)

n · Q̂ = 0 ,

n · R̂ = 0 (on Ŵ ), (6.151)

Recall that Q ≡ ∇ × (ξ × B) and R ≡ ∇ × (η × B) in the LHSs of Eqs. (6.150).
The idea of the relations (6.148)–(6.151) is to ‘extend’ the function ξ into the

vacuum by means of the magnetic field variable Q̂, and likewise to ‘extend’ η by
means of R̂, by matching something like the function value and the normal deriva-
tive at the plasma–vacuum interface. This is schematically indicated in Fig. 6.19.
It is a very remarkable property of ideal MHD that only two conditions need to
be satisfied to connect two vector fields ξ and Q̂. Hence, it appears that we are
dealing only with ordinary second order differential equations. The reason behind
this is the extreme anisotropy of ideal MHD as regards motion inside and across
the magnetic surfaces, to the study of which we will turn later.

The quadratic form (6.56) was derived in Section 6.2.3 without invoking the
solid wall boundary conditions so that it remains valid for model II and model II*
interface plasmas. We repeat it here for convenience:∫

η · F(ξ) dV = −
∫ {

γ p ∇ · ξ ∇ · η + Q · R + 1
2∇ p · (ξ ∇ · η + η ∇ · ξ)

+ 1
2 j · (ξ × R + η × Q) − 1

2∇� ·
[
ξ∇ · (ρη) + η∇ · (ρξ)

]}
dV

+
∫

n · η
(
γ p ∇ · ξ + ξ · ∇ p − B · Q

)
d S . (6.152)
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� Transformation of the surface integral By the application of the second interface con-
dition (6.143), the surface integral may be transformed as follows:

∫
n · η (γ p ∇ · ξ + ξ · ∇ p − B · Q) d S

= −
∫

n · η ξ ·
[[
∇(p + 1

2 B2)
]]

d S −
∫

n · η B̂ · Q̂ d S

= −
∫

n · η n · ξ n ·
[[
∇(p + 1

2 B2)
]]

d S −
∫

n · η B̂ · Q̂ d S . (6.153)

For the last step we used the equilibrium jump condition [[p + 1
2 B2]] = 0 , which implies

that the tangential derivative of the jump vanishes as well: t · [[∇(p + 1
2 B2)]] = 0 , where

t is an arbitrary unit vector tangential to the interface.
Next, we transform the term − ∫

n · η B̂ · Q̂ d S. Introducing vector potentials in the
vacuum, Q̂ ≡ ∇ × Â , R̂ ≡ ∇ × Ĉ , and exploiting the first interface condition (6.142) in
terms of the vector potential Ĉ, i.e. n · η B̂ = −n × Ĉ , we get:

−
∫

n · η B̂ · Q̂ d S =
∫

n × Ĉ · Q̂ d S =
∫

n × Ĉ · ∇ × Â d S

(A.1)= −
∫

(∇ × Â) × Ĉ · n d S
(A.14)=

∫
∇ ·

[
(∇ × Â) × Ĉ

]
dV̂

(A.12)=
∫ [

Ĉ · ∇ × ∇ × Â − ∇ × Â · ∇ × Ĉ
]

dV̂

(6.132)= −
∫

∇ × Â · ∇ × Ĉ dV̂ = −
∫

Q̂ · R̂ dV̂ . (6.154)

Here, a minus sign appears in the conversion of the surface term to the volume term because
V̂ is located outside S, and the contribution over W could be added for free since it vanishes
by virtue of the boundary condition (6.136). �

Collecting terms yields

∫
η · F(ξ) dV = −

∫ {
γ p ∇ · ξ ∇ · η + Q · R + 1

2∇ p · (ξ ∇ · η + η ∇ · ξ)

+ 1
2 j · (ξ × R + η × Q)− 1

2∇� ·
[
ξ ∇ · (ρη) + η ∇ · (ρξ)

]}
dV

−
∫

n · η n · ξ n ·
[[
∇(p + 1

2 B2)
]]

d S −
∫

Q̂ · R̂ dV̂ , (6.155)

which is symmetric in the variables ξ and η, and their ‘extensions’ Q̂ and R̂; QED.
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6.6.3 Extended variational principles

Analogous to the procedure of Sections 6.2.3 and 6.4.1, and again exploiting
complex-type inner products, we immediately obtain a meaningful expression for
the potential energy W of interface plasmas by identifying ξ and η, and Q̂ and R̂,
in the quadratic form (6.155):

W [ξ, Q̂] = −1
2

∫
ξ∗ · F(ξ) dV = W p[ξ] + W s[ξn] + W v[Q̂] , (6.156)

where

W p[ξ] = 1
2

∫ [
γ p |∇ · ξ|2 + |Q|2 + (ξ∗ · ∇ p) ∇ · ξ + j · ξ∗ × Q

−(ξ∗ · ∇�) ∇ · (ρξ)
]

dV , (6.157)

W s[ξn] = 1
2

∫
|n · ξ|2 n ·

[[
∇(p + 1

2 B2)
]]

d S , (6.158)

W v[Q̂] = 1
2

∫
|Q̂|2 dV̂ . (6.159)

This shows that the work done against the force F leads to an increase of the
potential energy W p of the plasma proper, the potential energy W s of the plasma–
vacuum surface, and the potential energy W v of the vacuum: very plausible
indeed.

However, how to exploit the expression for W [ξ, Q̂]? Obviously, if we were to
minimize it by exploiting trial functions ξ with vacuum ‘extensions’ Q̂, that would
have to satisfy the differential equations (6.129) and be subject to the interface
conditions (6.140) and (6.143) on S and to the boundary condition (6.130) on
Ŵ , we would have obtained a very awkward (asymmetrical) variational principle.
Here is how the asymmetry between the use of the variable ξ and the variable Q̂ is
removed and how life for a physicist becomes pleasant again.

Extended spectral variational principle Eigenfunctions ξ of the operator ρ−1F
with their vacuum ‘extension’ Q̂ make the Rayleigh quotient

�[ξ, Q̂] ≡ W [ξ, Q̂]

I [ξ]
≡ W p[ξ] + W s[ξn] + W v[Q̂]

1
2

∫
ρ|ξ|2 dV

(6.160)

stationary; the eigenvalues ω2 are the stationary values of �. Here, ξ and Q̂ have
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to satisfy the following essential boundary conditions:

(1) ξ regular on V , [ or n · ξ = 0 (on interior wall W ) ] , (6.161)

(2) n · ∇ × (ξ × B̂) = n · Q̂ (on S) , (6.162)

(3) n · Q̂ = 0 (on exterior wall Ŵ ) . (6.163)

The regularity condition (6.161), already mentioned in the footnote of Sec-
tion 6.2.1, has been added to complete the number of conditions necessary to fix
solutions. For example, in cylindrical plasmas, this condition eliminates solutions
that diverge at r = 0 . Such solutions are also eliminated by removing these points
from the physical domain by putting an internal wall there (like the fixed rod ex-
ploited in ‘hard-core’ pinches).

� Proof Let ω2 be a stationary value of �[ξ, Q̂], so that

δ� = δW p + δW s + δW v − �δ I

I
= 0 .

Working out the variational expressions in terms of the variations δξ of ξ and δÂ of the vec-
tor potential Â just amounts to transforming the quadratic forms in reverse order with re-
spect to that of Section 6.6.2, imposing the essential boundary conditions (6.161)–(6.163):

δW p − �δ I

= −
∫

δξ∗ ·
[

F(ξ) + ρω2ξ
]
dV −

∫
δξ∗

n

(
γ p ∇ · ξ + ξ · ∇ p − B · Q

)
d S,

(6.164)

δW s =
∫

δξ∗
n ξn n ·

[[
∇(p + 1

2 B2)
]]

d S , (6.165)

δW v = −
∫

δÂ∗ · ∇ × ∇ × Â dV̂ +
∫

δξ∗
n B̂ · Q̂ d S . (6.166)

Since δξ and δÂ are arbitrary variations of ξ and Â, minimization of �[ξ, Q̂] leads to
three Euler equations, viz. the equation of motion from the volume part of δW p − �δ I ,
the vacuum differential equations from the volume part of δW v, and the second interface
condition from the sum of the remaining surface integrals:

F(ξ) = −ρω2ξ (on V ), (6.167)

∇ × Q̂ = 0, ∇ · Q̂ = 0 (on V̂ ), (6.168)

−γ p∇ · ξ + B · Q + ξ · ∇( 1
2 B2) = B̂ · Q̂ + ξ · ∇( 1

2 B̂2) (on S). (6.169)

Hence, the variational formulation (6.160) plus the essential boundary conditions (6.161)–
(6.163) is fully equivalent to the spectral formulation in terms of the differential equa-
tions (6.167)–(6.168), subject to the essential boundary conditions plus the second
interface condition (6.169); QED. �

We have now reached the goal of symmetrizing the variational principle with
respect to the use of ξ and Q̂. In this manner, the differential equations for the
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vacuum and the second interface condition do not need to be imposed separately;
they have been absorbed in the form of W [ξ, Q̂] and are automatically satis-
fied upon minimization. For that reason the second interface condition (6.169) is
called a natural boundary condition. The distinction between essential and natu-
ral boundary conditions is of fundamental importance since it is connected with
counting the number of equations and unknowns. It will return when we discuss
numerical methods of solving the MHD equations by means of Galerkin methods
in the companion Volume 2.

For the investigation of stability, the spectral variational principle can again
be simplified considerably by dropping the requirement that the functions ξ are
normalized by means of I . As shown in Section 6.4.4, the central question of
stability is just the determination of the sign of W so that any normalization will
do. Hence, we are led to the following formulation of the stability problem.

Extended energy principle for stability A plasma–vacuum interface equilibrium is
stable if (sufficient) and only if (necessary)

W [ξ, Q̂] > 0 (6.170)

for all trial functions ξ(r) in the plasma, that are bound in norm, ‘extended’ with
trial functions Q̂(r) in the vacuum, satisfying the boundary conditions (6.161)–
(6.163).

The extended energy principle can be modified with the σ -stability contribution,
as in Section 6.5.3: Wσ [ξ, Q̂] ≡ W [ξ, Q̂] + σ 2 I [ξ] . This yields the extended
σ -stability principle.

The three different methods of stability analysis discussed in Section 6.4.4 again
apply with the extended expression (6.156) for W [ξ, Q̂]. We will demonstrate them
by completely solving a particular problem of gravitational stability in the next
section. In order to simplify that analysis as much as possible, we will exploit an
incompressible plasma model. This choice implies one more counting problem,
associated with the incompressibility condition. We wish to settle this before be-
coming immersed in the detailed explicit calculations.

Incompressibility In the energy principle, one can always test for stability with
respect to the restricted class of incompressible displacements ∇ · ξ = 0 . That
is something else than considering an incompressible plasma model. Since such
a plasma admits only incompressible displacements, one might be tempted to
simply pose ∇ · ξ = 0 and to drop the contribution −γ p∇ · ξ from the pres-
sure perturbation π , defined in Eq. (6.24), entering the equation of motion (6.23).
However, that would lead to an overdetermined system of equations for the three
components of ξ ! The problem is that the ratio of specific heats, γ , diverges for
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incompressible fluids. A consistent procedure to restore the required freedom in
the dynamics of incompressible plasmas is, therefore, to apply the two limits
γ → ∞ and ∇ · ξ → 0 simultaneously in such a way that the Lagrangian pressure
perturbation

πL ≡ −γ p∇ · ξ is finite . (6.171)

Eq. (6.24) for the Eulerian pressure perturbation π (≡ πE) then has to be replaced
by π = πL − ξ · ∇ p , so that an additional free variable πL appears in the equation
of motion. Hence, for incompressible plasmas, Eq. (6.23) is to be replaced by

Finc(ξ) ≡ − ∇πL + ∇(ξ · ∇ p) − B × (∇ × Q)

+ (∇ × B)Q + (∇�) ∇ρ · ξ = ρ
∂2ξ

∂t2
, (6.172)

where application of the condition

∇ · ξ = 0 (6.173)

implicitly determines the free variable πL. For incompressible interface plasmas,
there is one additional adjustment, viz. that the second interface condition (6.143)
is to be replaced by

πL + B · Q + ξ · ∇(1
2 B2) = B̂ · Q̂ + ξ · ∇(1

2 B̂2) (at S) , (6.174)

where the boundary value of πL is determined by the solutions of the plasma equa-
tions (6.172) and (6.173).

The equivalent variational principle for incompressible interface plasmas de-
parts from an expression for the Rayleigh quotient �[ξ, Q̂] as in Eq. (6.160), where
the expression (6.157) for the plasma energy is to be replaced by

W p
inc[ξ] = 1

2

∫ [
|Q|2 + j · ξ∗ × Q − (ξ∗ · ∇�) ∇ρ · ξ

]
dV , (6.175)

and minimization of � should be subject to the (unchanged) boundary conditions
(6.161)–(6.163) plus the incompressibility constraint (6.173). At this point, the
simplification due to the incompressibility assumption is evident. However, where
does the Lagrangian pressure variable πL reside in this formulation? It enters when
one minimizes � subject to a constraint, viz. Eq. (6.173). This brings in a Lagrange
multiplier which plays the role of πL, and which is determined by the minimiza-
tion. As before, it is not necessary to subject the trial functions to the second in-
terface condition (6.174) but functions satisfying it naturally emerge as a result
of the minimization, where the boundary value of πL is found from the Lagrange
multiplier.
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6.6.4 Application to the Rayleigh–Taylor instability

We now apply the extended energy principle to the problem of the gravitational
instability of a magnetized plasma that is supported from below by a vacuum mag-
netic field. Hence, we extend the problem of the ordinary gravitational stability of
an inverted glass of water (Sections 6.1.1 and 6.5.4) to a genuine plasma with an
interface. The gravitational instability for interface fluids is called the Rayleigh–
Taylor instability. We will use the same term for the generalized instability of
magnetized plasmas. This presents a model problem for plasma confinement with
a clear separation of inner plasma and outer vacuum, where instabilities are pref-
erentially localized at the interface (so-called free-boundary or surface instabili-
ties). Of course, for laboratory plasmas, the driving force of the instability, gravity,
is negligible, but very similar instabilities arise in a plasma with a curved mag-
netic field at the interface, as shown in the pioneering investigation by Kruskal and
Schwarzschild [130]. Thus, the Rayleigh–Taylor instability of magnetized plasmas
allows us to discuss a number of basic concepts, like interchange instability, stabi-
lization by magnetic shear, and wall stabilization. On the other hand, gravitational
instabilities do arise in a wide class of astrophysical situations, notably the Parker
instability [175] in galactic plasmas (Section 7.3.3). Hence, it pays to carefully
study the different steps in the analysis of its most simple representation.

In contrast to Section 6.5.4, we now assume constant density ρ0 in the plasma
and neglect compressibility, but allow for a constant uni-directional magnetic field
B (no current), on top of a vacuum also with a constant uni-directional magnetic
field B̂, but pointing in a different direction (Fig. 6.20). The plasma occupies a

x

z

y

B

B

ϕ
g

x = - b

x = a

plasma

vacuum

Fig. 6.20. Gravitating plasma slab supported from below by a vacuum magnetic
field with conducting walls at x = a and x = −b .
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horizontal layer (0 ≤ x ≤ a) that is infinitely extended in the y and z directions, but
vertically confined between a conducting wall at x = a and a vacuum below. Like-
wise, the vacuum occupies a horizontal layer (−b ≤ x ≤ 0) confined between the
plasma above and a conducting wall below at x = −b. The gravitational accelera-
tion is constant and points downward in the vertical direction: g = −∇� = −gex .

Gravitational equilibrium is chosen to be due to balance by the pressure gradient
alone, so that we have the following quantities in the plasma volume V :

ρ = ρ0 , B = B0ez , j = 0 ,

∇ p = −ρ∇� ⇒ p′ = −ρ0g ⇒ p = p0 − ρ0gx (where p0 ≥ ρ0ga) ;
(6.176)

pressure balance at the plasma–vacuum interface S yields

p0 + 1
2 B2

0 = 1
2 B̂2

0 ; (6.177)

and the magnetic field in the vacuum volume V̂ is described by

B̂ = B̂0(sin ϕ ey + cos ϕ ez) , (6.178)

where ϕ is the angle between B̂ and B. Recall that the jump in the direction and
magnitude of the magnetic field at the interface implies that a surface current flows
there:

j� = n × [[B]] = ex × (B0 − B̂0) , (6.179)

where the unit normal n is defined to point into the vacuum, so that n = −ex .

(a) Reduction to a one-dimensional problem We assume the plasma to be incom-
pressible since this permits the use of the simplified expression (6.175) for the
plasma energy derived in Section 6.6.3 and to illustrate how the incompressibility
constraint is handled in practice. Some of the more subtle gravitational mecha-
nisms involving compressibility have already been encountered in Section 6.5.4,
and will return in Chapter 7. It should be stressed that the assumption of incom-
pressibility is just a convenient way to defer the difficult issue of wave propagation
and instabilities in inhomogeneous plasmas, with the associated singularities, to
a later stage (Chapter 7). In particular, notice that p′ 	= 0 in the present equilib-
rium. For compressible plasmas, this would considerably complicate the analysis
since it implies that the speed of sound varies in the layer. The simplicity of the
incompressible model is really that the sound speed does not occur.

Applying the simplifications of the chosen equilibrium to the expressions W p
inc,

W s , W v , where the jump in the surface integral (6.158) exhibits the driving energy
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of the gravitational instability explicitly,

n · [[∇(p + 1
2 B2)]] = p′ = −ρ0g , (6.180)

we obtain the following potential energy contributions to W [ξ, Q̂] in the spectral
variational principle (6.160):

W p = 1
2

∫
|Q|2 dV , Q ≡ ∇ × (ξ × B) , ∇ · ξ = 0 , (6.181)

W s = − 1
2ρ0g

∫
|n · ξ|2 d S , (6.182)

W v = 1
2

∫
|Q̂|2 dV̂ , ∇ · Q̂ = 0 . (6.183)

Minimization of �[ξ, Q̂], or W [ξ, Q̂], is to be carried out for divergence-free trial
functions ξ and Q̂ that satisfy the essential boundary conditions (6.161)–(6.163).

Because the slab is translation symmetric in the y and z directions, we
may represent the perturbations in terms of separate Fourier modes that do not
couple:

ξ =
(
ξx(x), ξy(x), ξz(x)

)
ei(ky y+kz z) ,

(6.184)
Q̂ =

(
Q̂x(x), Q̂ y(x), Q̂z(x)

)
ei(ky y+kz z) .

Hence, ∇ → (d/dx, 0, 0) for equilibrium quantities, but ∇ → (d/dx, iky, ikz)

for perturbations. In products like ξ∗
x ξy , which occur in the integrands of the

quadratic forms, the exponential y and z dependencies of the complex conjugate
Fourier factors cancel out so that we just obtain one-dimensional (1D) integrations
of functions of x alone. For that reason, the indices ky and kz that should appear on
the Fourier amplitude ξx;ky,kz (x), etc., are simply suppressed in Eqs. (6.184). Also,
the exponential factor is usually omitted when working out expressions, e.g. by
writing

∇ · ξ = ξ ′
x + ikyξy + ikzξz = 0 . (6.185)

These are just shorthand notational conveniences. In case of doubt, one should
restore the mentioned factors. Another matter of notation: since the slab is in-
finitely extended, so that the horizontal areas A ≡ ∫∫

dydz → ∞, the integrals
will be renormalized to correspond to the finite contribution over a unit area,
W ≡ W/A. However, since this is a trivial operation, the bars will not be written
leaving it understood that all expressions for the W s and I are renormalized from
now on.
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Eliminating the contributions of ξz to W p , and of Q̂z to W v , by exploiting the
divergence conditions, we get the following 1D expressions:

W p = 1
2 B2

0

∫ a

0

[
k2

z (|ξx |2 + |ξy|2) + |ξ ′
x + ikyξy|2

]
dx , (6.186)

W s = − 1
2ρ0g|ξx(0)|2 , (6.187)

W v = 1
2

∫ 0

−b

[
|Q̂x |2 + |Q̂y|2 + 1

k2
z
|Q̂ ′

x + iky Q̂y|2
]

dx . (6.188)

These are to be minimized subject to a normalization that may be chosen rather
freely if we just wish to investigate the problem of stability. For surface instabili-
ties, the choice

ξx (0) = const (6.189)

is quite effective since it stresses the contribution of the surface. (Under point (d),
we will point out an important restriction though in the use of this normalization.)
On the other hand, to obtain the growth rate of the instability, the full physical
norm for incompressible plasmas should be exploited:

I = 1
2ρ0

∫ a

0

[
|ξx |2 + |ξy|2 + 1

k2
z
|ξ ′

x + ikyξy |2
]

dx . (6.190)

(For stability investigations, it would also be permissible to drop the second and
third term and to keep a normalization involving the normal perturbation ξx only,
as we saw in Section 6.4.4. However, in this particular case, that choice turns out
not to be a clever one since it is much easier to keep the full norm, as we will
see under point (c).) Finally, independent of whether the normalization (6.189) or
(6.190) is used, the essential boundary conditions should be satisfied. They reduce
to

ξx(a) = 0 , (6.191)

Q̂x(0) = ik0 · B̂ ξx (0) , (6.192)

Q̂x(−b) = 0 , (6.193)

where k0 ≡ (0, ky, kz) is the horizontal wave vector.

(b) Stability analysis We will investigate the stability by means of the normaliza-
tion (6.189). Our first task is to get rid of the tangential components ξy and Q̂ y .
Since ξy does not occur in the reduced normalization, minimization with respect
to ξy only involves minimization of W p. This is accomplished algebraically by
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splitting off a positive definite term which is then put equal to zero:

W p = 1
2 B2

0

∫ a

0

[
k2

z

k2
0

ξ ′
x

2 + k2
z ξ

2
x +

∣∣∣∣ky

k0
ξ ′

x + ik0ξy

∣∣∣∣
2 ]

dx

= 1
2k2

z B2
0

∫ a

0

(
1

k2
0

ξ ′
x

2 + ξ2
x

)
dx . (6.194)

Similarly, minimization of W v with respect to Q̂ y is trivial:

W v = 1
2

∫ 0

−b

[
|Q̂x |2 + 1

k2
0

|Q̂′
x |2 + 1

k2
z

∣∣∣ky

k0
Q̂′

x + ik0 Q̂y

∣∣∣2
]

dx

= 1
2

∫ 0

−b

(
1

k2
0

|Q̂ ′
x |2 + |Q̂x |2

)
dx . (6.195)

Hence, just the two unknown functions ξx and Q̂x , joined by the first interface
condition (6.192), remain to be determined, whereas the other components of the
vectors follow from the relations that we have already found:

ξy = i(ky/k2
0) ξ ′

x , ξz = i(kz/k2
0) ξ ′

x ,

Q̂y = i(ky/k2
0)Q̂′

x , Q̂z = i(kz/k2
0)Q̂′

x . (6.196)

Notice that there is no loss in generality if we assume ξx , Q̂ y , Q̂z to be real, and
ξy , ξz , Q̂x to be purely imaginary (as we tacitly did above when dropping the
absolute signs in the final expression for W p, but keeping them in W v). This du-
ality between the Fourier components in the direction of inhomogeneity (x) and
in the homogeneous directions (y, z) will frequently be employed in the following
chapters.

The stability problem has now been reduced to the minimization of

W = W p[ξx (x)] + W s[ξx (0)] + W v[Q̂x(x)] , (6.197)

subject to the constraint (6.189) and the boundary conditions (6.191)–(6.193),
where W p is given by (6.194), W s by (6.187), and W v by (6.195). This involves
the standard variational problem of minimizing W p with respect to real functions
ξx on 0 ≤ x ≤ a , and of W v with respect to real functions iQ̂x on −b ≤ x ≤ 0 .

To carry out these minimizations, recall some general results from variational
analysis. Minimization of the quadratic form

W [ξ ] = 1
2

∫ a

0
(Fξ ′2 + Gξ2) dx = 1

2

[
Fξξ ′

]a

0
− 1

2

∫ a

0

[
(Fξ ′)′ − Gξ

]
ξ dx ,

(6.198)
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where F ≥ 0 but, otherwise, F(x) and G(x) are arbitrary functions on [0, a], is
effected by the variation δξ(x) of the unknown function ξ(x):

δW =
∫ a

0

(
Fξ ′δξ ′ + Gξδξ

)
dx =

[
Fξ ′δξ

]a

0
−

∫ a

0

[
(Fξ ′)′ − Gξ

]
δξ dx = 0 .

(6.199)
Since ξ(0) and ξ(a) are prescribed, δξ = 0 at the boundaries so that the solution
of the Euler–Lagrange equation

(Fξ ′)′ − Gξ = 0 (6.200)

minimizes W [ξ ]. For that minimizing solution, the value of W becomes

Wmin = 1
2

[
Fξξ ′

]a

0
= −1

2[Fξξ ′](x =0) , (6.201)

where we imposed the boundary condition ξ(a) = 0 appropriate for our applica-
tion.

Minimization of the integral (6.194) for W p and of (6.195) for W v yields
the following Euler–Lagrange equations, with solutions satisfying the respective
boundary conditions on the upper and lower walls:

ξ ′′
x − k2

0ξx = 0 ⇒ ξx = C sinh [k0(a − x)] ,

Q̂′′
x − k2

0 Q̂x = 0 ⇒ Q̂x = iĈ sinh [k0(x + b)] . (6.202)

Whereas the y- and z-dependencies of the Fourier modes (6.184) correspond to
wave-like motions (with a real wave number k0) in the horizontal direction, the
exponential x-dependencies exp (±k0x) combine into cusp-shaped vertical distur-
bances about the interface: the waves are evanescent (with a purely imaginary wave
number ik0) in the vertical direction. The constant C is related to the normalization
(6.189) and Ĉ may be eliminated by means of the boundary condition (6.192):

Ĉ sinh(k0b) = k0 · B̂ ξx(0) = Ck0 · B̂ sinh(k0a) . (6.203)

Inserting these solutions of the Euler–Lagrange equations back into the integrals
(6.197), using the relation (6.201), yields the final expression for the energy in
terms of boundary contributions at x = 0 only:

W = −k2
z B2

0

2k2
0

ξx(0)ξ ′
x (0) − 1

2ρ0g ξ2
x (0) + 1

2k2
0

∣∣∣Q̂x(0)Q̂′
x (0)

∣∣∣
= ξ2

x (0)

2k0 tanh(k0a)

[
(k0 · B)2 − ρ0k0g tanh(k0a) + (k0 · B̂)2 tanh(k0a)

tanh(k0b)

]
.

(6.204)
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Fig. 6.21. Direction of the horizontal wave vector k0 for the least stable modes.

Here, the expression in square brackets has been arranged so as to correspond to
the expression for the growth rate derived below.

The perturbation energy W clearly exhibits the competition between the stabi-
lizing field line bending energies, ∼ 1

2(k0 · B)2 for the plasma and ∼ 1
2 (k0 · B̂)2 for

the vacuum, with the destabilizing gravitational energy, ∼ −1
2ρ0k0g tanh(k0a), of

the Rayleigh–Taylor instability due to the motion of the interface. Since the mag-
netic fields B and B̂ do not point in the same direction, representing magnetic shear
at the plasma–vacuum interface, no choice of k0 exists for which the magnetic en-
ergies vanish. However, minimum stabilization is obtained for directions of k0 that
are, on average, perpendicular to the field lines (the shaded area in Fig. 6.21). The
Rayleigh–Taylor instability may then lead to interchange instability, where regions
of high plasma pressure and vacuum magnetic field regions are interchanged.

To discuss the dependence on the magnitude of the wave vector k0, we exploit
approximations of the hyperbolic tangent:

tanh κ ≡ eκ − e−κ

eκ + e−κ
≈

{
1 (κ � 1 : short wavelength)
κ (κ � 1 : long wavelength). (6.205)

For short wavelengths of the modes or far away walls (k0a � 1 , k0b � 1), the
magnetic terms (∼ k2

0) dominate over the gravitational term (∼ k0) and the sys-
tem is stable. The more dangerous regime is for long wavelengths of the modes
(k0a � 1), when the lower wall is far away or even removed (k0b → ∞). (To keep
p0 finite in the present equilibrium, the upper wall cannot be moved to ∞ .) In that
case, the plasma magnetic energy and the gravitational energy compete (∼ k2

0)
but, since the vacuum magnetic energy is negligible (∼ k3

0), the plasma becomes
Rayleigh–Taylor unstable for interchange modes (k0 ⊥ B) where the plasma mag-
netic energy vanishes. Only when b/a ∼ 1 is there genuine competition between
the three terms (∼ k2

0) so that effective wall stabilization may be obtained.
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(c) Growth rate analysis To get the growth rate of the instabilities, when W is
negative, we need to minimize the full Rayleigh quotient � with the complete
expression (6.190) for the norm I . Exceptionally, for the present case of incom-
pressible surface instabilities, this turns out to be a minor extension since I and
W p have the same functional dependence:

I = ρ0

k2
z B2

0

W p . (6.206)

It should be pointed out that such blind luck is not at all typical in plasma stability
calculations. Nevertheless, of course we will make use of it to get our answer
quickly. Because of this relation, the expression for � simplifies to

� = k2
z B2

0

ρ0
+ W s + W v

I
. (6.207)

Minimization is now straightforward: W s and W v do not depend on the radial
dependence of ξ so that the expressions (6.187) and (6.195) still hold, whereas,
vice versa, minimization of I does not depend on the radial dependence of Q̂
so that it proceeds along the same line as minimization of W p. (Note that we
obtain the largest growth rate by minimizing W s and W v (which are negative for
instability) and also minimizing I (which is positive definite).) This yields

I = − ρ0

2k2
0

ξx(0)ξ ′
x (0) = ρ0 ξ2

x (0)

2k0 tanh(k0a)
, (6.208)

so that we obtain the following dispersion equation:

ω2 = W

I
= 1

ρ0

[
(k0 · B)2 − ρ0k0g tanh(k0a) + (k0 · B̂)2 tanh(k0a)

tanh(k0b)

]
. (6.209)

The expression in square brackets is identical to that of W in Eq. (6.204). In hind-
sight, that justifies the discussion under point (b) of the wave number dependence:
Whereas the energy expression W allows a discussion of the relative importance
of the three contributions, there is really no invariant measure for their absolute
magnitudes, like that of Eq. (6.209), in the context of the energy principle.

To construct a scale independent expression for the growth rate in terms of a
minimum number of essential parameters (see Section 4.1.2), we exploit the trivial
parameters a, ρ0, and B̂0 to get rid of the dimensions. This yields the following six
dimensionless parameters:

k̄0 ≡ k0a , β ≡ 2p0

B̂2
0

= 1 − B2
0

B̂2
0

, ḡ ≡ aρ0

B̂2
0

g , w ≡ b

a
, (6.210)
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with the angle ϑ between k0 and B, and the angle ϕ between B̂ and B (see
Fig. 6.21). The normalized growth rate then reads:

ω̄2 ≡ a2ρ0

B̂2
0

ω2 = (1 − β)k̄2
0 cos2 ϑ − k̄0ḡ tanh k̄0 + k̄2

0 cos2(ϑ − ϕ)
tanh k̄0

tanh(k̄0w)
.

(6.211)

Hence, ω̄2 = ω̄2(k̄0, ϑ; β, ḡ, ϕ, w), where parameters in front of the semicolon
refer to the wave number of the perturbations and parameters behind it refer to
the equilibrium. Their ranges are: k̄0 ≥ 0 , 0 ≤ ϑ ≤ π ; 0 ≤ β ≤ 1 , 0 ≤ ḡ ≤ 1

2β ,
0 ≤ ϕ ≤ π , w ≥ 0 . Clearly, this is a final and complete answer that just remains
to be studied in the relevant limits.

Approximating the hyperbolic tangents, we get the following expressions for
the short and long wavelength limits:

ω̄2 ≈

⎧⎪⎨
⎪⎩

(1 − β)k̄2
0 cos2 ϑ − k̄0ḡ + k̄2

0 cos2(ϑ − ϕ) (k̄0 � 1 )

k̄2
0

[
(1 − β) cos2 ϑ − ḡ + w−1 cos2(ϑ − ϕ)

]
(k̄0 � 1 ). (6.212)

For β = 1 (no magnetic field in the plasma) and ϑ − ϕ = 1
2π (horizontal wave

vector k0 ⊥ B̂), the Rayleigh–Taylor instability survives in its pure form:

ω̄2 = −k̄0 ḡ tanh k̄0 ≈
⎧⎨
⎩

−k̄0 ḡ (k̄0 � 1 )

−k̄2
0 ḡ (k̄0 � 1 ). (6.213)

As we saw above, the Rayleigh–Taylor instability also survives for arbitrary β and
long-wavelength interchange modes in the plasma, i.e. ϑ = 1

2π (k0 ⊥ B), when
the lower wall is removed (w → ∞). This implies that the vacuum wall is essential
to obtain complete stability. Further study of the different limits, and their physical
significance, is left to the reader (Exercise [6.8]).

(d) Concluding remarks We have derived the stability properties of a simple grav-
itating plasma–vacuum system bounded by conducting walls above and below.
When this system is considered as an example of confined laboratory plasmas,
gravity should be viewed as mimicking magnetic curvature effects. When the
interest is in astrophysical applications, the walls should either be moved to infinity
or considered as a device to limit the domain of the calculation. In computational
MHD, such ‘walls’ are nearly always present for that purpose. One should check
then that the solutions found are insensitive to the positions of these ‘walls’.

The growth rates found for the Rayleigh–Taylor instability depend on the wave
number as ω̄2(k̄2

0, ϑ) , i.e. they just depend on the two horizontal components of
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k̄0 . Why no dependence on a vertical ‘wave number’? Of course, strictly speak-
ing, there is no wave number in that direction because the plasma is inhomoge-
neous. However, that is just a formal answer, since it is obvious that wave-like
motion must exist, also when the spatial dependence is not precisely periodic.
The point is that the incompressible plane plasma slab is a highly degenerate
configuration, admitting oscillatory solutions of the Alfvén and slow magneto-
sonic type, but these internal modes completely decouple from the external sur-
face modes studied in this section. It is a useful exercise, left to the reader
(Exercise [6.8]), to figure out from the equation of motion how this decoupling
comes about.

The merit of the present calculation is that it can be carried out completely in
terms of elementary functions. The reason is that the inhomogeneities that occur
are concentrated on a single surface (x = 0). This gives rise to surface waves with
a cusped structure that is localized precisely there. For compressible plasmas with
distributed inhomogeneities, the mentioned degeneracy is lifted so that all waves
and instabilities are coupled and the solutions ξx (x) are oscillatory, in general. In
that case, use of the normalization (6.189) is extremely risky since ξx(0) may be-
come zero. From the expression (6.201) for Wmin it is clear that such a zero marks a
transition when the plasma becomes internally unstable. This demonstrates that the
internal inhomogeneities, and their associated singularities, require a much more
careful study than presented so far. This is the subject of Chapter 7.

6.7 Literature and exercises

Notes on literature

Stability:

– Bernstein, Frieman, Kruskal & Kulsrud [26], ‘An energy principle for hydromagnetic
stability problems’, is probably the most quoted paper in plasma physics. The Project
Matterhorn report [27] is an appendix containing useful details on the derivations.

– Hain, Lüst & Schlüter [101], ‘Zur Stabilität eines Plasmas’, appeared simultaneously
but is less known, probably because it is written in German and uses tensor notation.

– Kadomtsev [119] is a readable presentation of the energy principle with interface
extensions and applications.

– Freidberg, Ideal Magnetohydrodynamics [72], chapter 8, is an overview of the general
theory of MHD stability.

Spectral theory:

– Friedman, Principles and Techniques of Applied Mathematics [74] contains the ele-
ments of linear operator theory in a form that is well adapted to use by physicists.

– Lifschitz, Magnetohydrodynamics and Spectral Theory [146], Chapter 2, presents the
mathematical preliminaries to linear MHD from the spectral theory of operators.
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Proof of the energy principle and modifications:

– Laval, Mercier & Pellat [139] presents the proofs of the ‘Necessity of the energy
principle for magnetostatic stability’ for the first time.

– Goedbloed & Sakanaka [89] presents a ‘New approach to magnetohydrodynamic
stability’ by introducing the σ -stability concept.

Rayleigh–Taylor instability:

– Kruskal & Schwarzschild [130] gives the first analysis of the gravitational and kink
instabilities of a plasma–vacuum interface system.

– Meyer [155] shows that the gravitational instability can be stabilized by magnetic
fields with different directions in the plasma and the vacuum.

– Goedbloed [81](I) demonstrates stabilization over a wider parameter range by replac-
ing the vacuum by a tenuous plasma with a force-free magnetic field.

Exercises

[ 6.1 ] Stability

Clarify, with a sketch, the meaning of: stable perturbations, unstable perturbations,
marginal stability, nonlinear stability, and the difference between marginal stability and
lack of equilibrium.

[ 6.2 ] The force operator

The plasma velocity is related to the displacement vector ξ by the Lagrangian time deriva-
tive v = Dξ/Dt .

– Exploiting this definition, linearize the MHD equations for a plasma with a back-
ground flow. What is the difference between keeping and ignoring the flow?

– Now ignore the background flow. Insert the expression for v in the linearized MHD
equations and find the expressions for the perturbations p1, B1, and ρ1. Insert those in
the equation for v1, and derive the equation of motion in terms of the force operator
F.

– How is the role of the equation for ρ1 different for laboratory and astrophysical plas-
mas?

– Count the number of variables and equations in this formalism and compare it with
the formalism in terms of primitive variables. Does it check? Comment on the differ-
ence.

[ 6.3 ] Stable and unstable solutions

Express the force operator equation of motion for normal modes with ω = σ + iν.
– Discuss the different classes of solutions in terms of the signs of σ and ν. Which ones

are stable and which ones are unstable?
– Show that for stable solutions the force of the perturbation is restoring, while for

unstable solutions it is in the same direction as the plasma displacement.
– Show that, in ideal MHD, the transition from stable to unstable solutions has to go

through the marginal state where the force operator F(ξ) = 0 .
– What happens to the perturbations when dissipation cannot be neglected?
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[ 6.4 ] Force operator; meaning of the terms

The force operator is given by the expression (6.30) of Section 6.2.1.
– Give the meaning of the different terms. Which one gives rise to the Alfvén waves?
– Simplify the force operator for infinite homogeneous plasmas and show that only

stable waves can occur.
– Insert plane wave solutions in the spectral equation for a homogeneous plasma and

derive the algebraic eigenvalue problem. Discuss the different solutions.

[ 6.5 ] � The resolvent operator

The spectrum of a linear operator L is obtained from the study of the inhomogeneous
equation (L − λ)x = a, where a is a given element of the function space exploited, λ is
one of the (complex) eigenvalues of the operator L , and x is the unknown solution.

– Invert this expression. Discuss the three possibilities for solutions dependent on λ.
– Convert the equation of motion, in terms of the force operator F, by means of the

Laplace transform ξ̂ ≡ ∫ ∞
0 ξeiωt dt. Show that the resulting equation is of the above

type.

– Invert this expression to find the solution for the Laplace transformed variable ξ̂.
– Find the formal solution for ξ by performing the inverse Laplace transforma-

tion. What obstacles do you encounter in the construction of the asymptotic time-
dependence?

[ 6.6 ] � Hamilton’s principle

Consider a particle with position xi (t) and velocity ẋi (t), having kinetic energy T and
potential energy W . The path of the particle will be such that δ

∫ t1
t0

L(xi , ẋi , t) dt = 0 ,
where L ≡ T − W , and t0 and t1 are the respective times at the start and end points of the
path.

– Assume that these points are fixed. Show that we get the following ‘Euler–Lagrange’
equations from this variational principle:

d

dt

∂L

∂ ẋi
− ∂L

∂xi
= 0 .

For a continuum, like a plasma described by MHD, the linearized motion may be de-
scribed in terms of the continuous displacement ξ j (xi , t), so that the discrete label i is
replaced by the continuous labels xi . With the kinetic and potential energy given by

T = 1
2

∫
ρξ̇

∗ · ξ̇ dV, W = − 1
2

∫
ξ∗ · F dV,

the Lagrangian becomes L = ∫ L(∂ξ j/∂xi , ξ̇ j , ξ j ; xi , t) dV .
– Show that the Euler–Lagrange equations,

d

dt

∂L
∂ξ̇ j

+
∑

k

d

dxk

∂L
∂(∂ξ j/∂xk)

− ∂L
∂ξ j

= 0 ,

result in the equation of motion. (See Goldstein [91] on continuous systems and
fields.)

[ 6.7 ] The energy principle

The energy for linear plasma perturbations is given by the expression (6.85) of Sec-
tion 6.4.1.



6.7 Literature and exercises 299

– What is the criterion for stability? Ignoring magnetic fields and gravity, is an ordinary
fluid always stable?

– Specify to plane slab geometry, where the fluid is infinitely extended in the horizontal
directions and the variables are functions of height only. With limited height of the
fluid, and still ignoring magnetic fields but including gravity, impose the equilibrium
equation and derive the expression for W. Construct a necessary stability criterion by
means of incompressible trial functions and explain what it means.

– Rearrange the equation for W and obtain the Rayleigh–Taylor stability criterion by
means of a complete minimization.

[ 6.8 ] � Normal mode analysis for the Rayleigh–Taylor instability

Work out the normal mode analysis for the Rayleigh–Taylor instability of incompressible
interface plasmas by means of the equation of motion. Can you figure out where the Alfvén
and slow magneto-sonic waves reside? Of course, the final expression for the growth rate
should agree with the expression derived in Section 6.6.4 by means of the variational ana-
lysis. What is the role of the Lagrangian pressure perturbation?

[ 6.9 ] � Stability criteria for plasma–vacuum configurations

Derive stability criteria for general plasma–vacuum configurations with β = 1 and a curved
interface. Discuss the qualitative difference between convex and concave curvature of the
outer magnetic field. (Hint: consult Kadomtsev [119], p. 162.)
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Waves and instabilities of inhomogeneous plasmas

7.1 Hydrodynamics of the solar interior

We have studied the MHD waves for homogeneous plasmas in Chapter 5. This
theory was transformed in Chapter 6 to the higher level of spectral theory in or-
der to facilitate the much more complicated analysis of inhomogeneous plasmas,
which we want to undertake in the present chapter. Plasma inhomogeneity is not
just a complication in the analysis, but also provides qualitatively new physical
phenomena like wave damping, wave transformation, and, most important of all, a
very wide class of global MHD instabilities of magnetically confined plasmas.

Explicit examples of inhomogeneous plasma dynamics abound in the solar sys-
tem, as we will see in Chapter 8. For the Sun, a number of important phenomena
may be described neglecting the magnetic field. Therefore, before we turn to mag-
netized plasmas in Section 7.3, we will first simplify the model to a purely hy-
drodynamic one and study the effects of sound and gravity separate from the three
MHD waves. Since the hydrodynamic waves are clearly identified in solar observa-
tions, we will be able to clarify the potential of observing MHD wave propagation
for the investigation of astrophysical objects in general (Section 7.2.4).

We summarize some basic facts of the standard solar model (see Priest [190],
Stix [217] or Foukal [69]). The Sun is a sphere of hot material, mainly plasma,
of radius R� = 7.0 × 108 m and mass M� = 2.0 × 1030 kg. The total radiation
power output of the Sun, the solar luminosity, is L� = 3.86 × 1026 W. At the
Earth, i.e. at a distance of 1 AU (= 1.5 × 1011 m), this results in a heat flux of
L�/[4π × (1 AU)2] = 1.36 kW m−2: the solar constant. This number roughly
corresponds to a crude estimate which one would make on the basis of sunbathing
experience. Through the work of H. A. Bethe and C. F. von Weizsäcker (1939)
we know that this enormous amount of energy is not produced by gravitational
contraction but by thermonuclear reactions.

300
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Fig. 7.1. Internal structure of the Sun: thermonuclear energy production in the
core, radiation transport in the radiation zone, and convection in the outermost
layer.

The thermonuclear energy source is located in the core (r ≤ 0.25R�) of the
Sun (Fig. 7.1), where the values of the temperature and the density are T0 =
1.6 × 107 K and ρ0 = 1.6 × 105 kg m−3, respectively. This is sufficient for the
p–p fusion reaction chain to occur, described by the equations (1.7) and (1.8)
of Section 1.2.1. (Recall that these fusion reactions are completely different, with
vastly different time scales, from the ones exploited in thermonuclear laboratory
experiments.) The energy produced in the form of gamma radiation is transported
through the radiative zone (0.25R� ≤ r ≤ 0.713R�) to the outer layers. As men-
tioned in Chapter 1, on average, this process takes millions of years per photon
and the wavelengths gradually shift to those of UV and visible light. Finally, the
radiative transport is exceeded by convection in the outermost layer of the Sun, the
convection zone (0.713R� ≤ r ≤ R�), for reasons that soon will become clear.

7.1.1 Radiative equilibrium model

Let us first consider the process of radiation transport of the thermonuclear power
produced in the core to the outer layers of the Sun. This requires the formulation
of a radiative equilibrium model which can predict the static equilibrium distri-
butions of the different variables characterizing the interior of the Sun. For that
purpose, the equations of magnetohydrodynamics presented in Section 4.1 should
be enhanced with radiation terms (see Section 4.4.2), whereas the magnetic field
contributions can be neglected.

For generality, we first present the time-dependent hydrodynamic equations, ex-
tending the equations (4.12)–(4.14) of MHD with internal energy production and
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radiation transport, but ignoring the magnetic field (B = 0). The equation of mass
conservation (4.12) is unchanged:

∂ρ

∂t
+ ∇ · (ρv) = 0 . (7.1)

In the momentum conservation equation (4.13), the gravitational attraction is spec-
ified to be spherically symmetric:

ρ
Dv
Dt

+ ∇ p − ρg = 0 , where g = −ger , g = g(r) = G
M(r)

r2
. (7.2)

Here, the gravitational constant G = 6.67 × 10−11 N m2 kg−2 and M(r) is the
mass inside a sphere of radius r , which is related to the density ρ by means of
the obvious differential equation

d M

dr
= 4πr2ρ . (7.3)

For the present purpose, it is convenient to replace the pressure evolution equation
(4.14), which is a consequence of the entropy conservation equation, by the appro-
priate generalization of the internal energy equation (4.19), given by Eq. (4.138):

ρ
De

Dt
+ p∇ · v = ∇ · [ λ∇(kT ) ] + ρε , where e ≡ 1

γ − 1

p

ρ
. (7.4)

The right hand side now contains two additional terms which are due to radiative
transport, governed by the thermal conduction coefficient, λ(r),1 and the ther-
monuclear energy production per unit mass, ε(r). In general, the latter will be
strongly dependent on the temperature and the concentration of hydrogen.

At this point, it becomes clear that the radiative model actually requires more
than just one fluid since thermonuclear energy production and thermal conduc-
tion depend on the concentration of the different particle species. This aspect of
the problem will be approximated by means of an equation of state, relating the
pressure and the temperature, that is modified to take the different masses of the
particles into account. For a plasma consisting of electrons and one kind of ion
with equal temperatures (T ≡ Te = Ti ), the expression for the pressure may be
converted by means of the charge neutrality relation, ne = Zcni , and the definition
for the density, ρ ≡ neme + ni mi :

p = (ne+ni ) kT = ni (1 + Zc) kT = 1 + Zc

mi (1 + Zcme/mi )
ρkT ≈ 1 + Zc

A

ρkT

m p
.

(7.5)

1 To stick to conventions in the literature, we had to introduce notations conflicting with those of previous chap-
ters: the thermal conductivity λ of the present chapter was called κ in Sections 3.3.2 and 4.4.2, but the symbol
κ will here be used for the opacity (see below).
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Here, A is the mass number (in multiples of the proton mass, mi = Am p) and Zc is
the charge number (in multiples of e) of the ions. The latter quantity is subscripted
with the letter c since, in this context, the bare symbol Z is used for another quan-
tity, to be introduced shortly.

So far, the equation of state (7.5) is just the usual one for a plasma consisting
of electrons and one kind of ion, so that Zc and A are constants. Now, we modify
the equation of state by permitting different ion species that are radially distributed
according to a function called the mean molecular weight µ, so that

p = 1

µ

ρkT

m p
, where µ ≡ A

1 + Zc
is no longer constant . (7.6)

The mean molecular weight µ measures the average weight of the constituent par-
ticles in units of m p: µ = 1/2 for ionized hydrogen (Zc = A = 1), µ = 4/3 for
ionized helium (Zc = 2, A = 4), and µ ≈ 2 for the completely ionized heav-
ier atoms (Zc � 1, A ≈ 2Zc). For a plasma with a mixture of these ions, µ ≈
(2X + 3

4Y + 1
2 Z)−1 , where X is the mass fraction of hydrogen, Y is the mass frac-

tion of helium, and Z indicates the mass fraction of the heavier elements. Hence,
µ = µ(ρ(r), T (r)) is now a function of position reflecting the abundance of the
different elements in the Sun and their degrees of ionization, to be determined by
Saha equations of the type discussed in Section 1.4.1. Note that the dependence of
p on µ implies that the pressure decreases when hydrogen is converted into helium
by the mentioned thermonuclear reactions.

To construct a static equilibrium model of the Sun from these equations, one
sets v = 0 and ∂/∂t = 0 . The mass conservation equation (7.1) is then trivially
satisfied, whereas Eqs. (7.2) and (7.3) provide the equations for hydrostatic equi-
librium:

dp

dr
= −ρg = −G

ρM

r2
⇒ 1

r2

d

dr

(
r2

ρ

dp

dr

)
= − G

r2

d M

dr
= −4πGρ . (7.7)

In static equilibrium, the LHS of the internal energy equation (7.4) vanishes so that

1

r2

d

dr

[
r2λ

d(kT )

dr

]
= −ρε , (7.8)

which expresses radiative equilibrium: the produced thermonuclear energy is
transported outward by radiative transfer. The set of differential equations (7.7)–
(7.8) is complete when supplemented with the equation of state (7.6) and equations
determining the functions µ(r), λ(r), and ε(r).

Although the hydrostatic model is now complete, it is useful to relate the
differential equation (7.8) for the temperature with the fundamental quantities
of radiative transport, viz. luminosity, radiation pressure and opacity. Radiative
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equilibrium implies that the local value of the luminosity, L(r), which is the net
radiation flux per unit of time through a spherical surface, is given by

L(r) =
∫ r

0
ε(r ′) d M = 4π

∫ r

0
ρ εr ′2 dr ′ . (7.9)

To relate this expression to the temperature gradient appearing in Eq. (7.8), we
introduce the radiation pressure2

q ≡ prad =
(

4σ

3c

)
T 4 , (7.10)

where σ ≡ 2π5k4/(15c2h3) = 5.67 × 10−8 W m−2 K−4 is the Stefan–Boltzmann
constant, and we exploit the fundamental relationship between the gradient of the
radiation pressure and the absorbed radiation,

dq

dr
= −

(
1

4πc

)
κρL

r2
, (7.11)

where κ is the opacity, i.e. the absorption coefficient of the radiation per unit mass
and per unit length. Hence,

L(r) = −
(

16πσ

3

)
r2

κρ

dT 4

dr
. (7.12)

From Eqs. (7.9) and (7.12) we again obtain a differential equation for the temper-
ature, which, of course, should be equivalent to Eq. (7.8). This implies that the
thermal conductivity λ is inversely proportional to the opacity κ ,

λ =
(

16σ

3k

)
T 3

κρ
. (7.13)

The opacity is a microscopic quantity determined by quite a number of different
scattering processes between photons and atoms, ions or electrons, averaged over
frequency. To compute radiative equilibrium, one considers κ = κ(ρ, T ) to be
a known function, obtained in the form of a table from the extensive numerical
calculations that have been developed for this purpose [217].

Finally, we need an explicit relation for the thermonuclear energy production
rate by proton–proton reactions, as given, e.g., by Zirin [250]:

ε = ε(X, ρ, T ) = 0.25 ρX2
(

106

T

)2/3

exp
{
−33.8 (106/T )1/3

}
, (7.14)

2 The effect of the radiation pressure is here only taken into account as far as the radiation transport is concerned,
but neglected in the hydrostatic equilibrium equation. Actually, one should replace p in Eq. (7.7) by the total
pressure P ≡ p + q, but one easily checks that this effect is negligible for relatively cool stars like the Sun.
With T0 = 1.6 × 107 K, n0 = 1032 m−3, and Tph = 6000 K, nph = 2.4 × 1023 m−3, the value of q/p ranges

from 7.4 × 10−4 in the centre to 1.6 × 10−5 at the photosphere.
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where the dimensions of the quantities are given by [ρ] = kg m−3 , [T ] = K , and
[ε] = J kg−1 s−1 . It is clear that the function ε(X, ρ, T ) is strongly concentrated
in the central regions of the Sun where the temperature is high: thermonuclear burn
only occurs in the core region of the Sun (r ≤ 0.25R�).

	 Exercise. Estimate the fraction of the total solar mass participating in the thermonuclear
energy production, using the values of M(R�), L(R�) and ρ0 given in this section. 


The standard solar model consists of the two second order differential equations
(7.7) and (7.8), supplemented with the equation of state (7.6) and numerically
obtained values of the functions µ(ρ, T ) , κ(ρ, T ) , and ε(X (ρ, T ), ρ, T ) . For the
latter quantity one should exploit Eq. (7.14), which evidently spoils the possibility
of obtaining explicit analytic solutions, even when mild assumptions are made
about µ and κ .

Since two second order ODEs are equivalent to four first order ODEs, one may
choose, for example, to solve for the following ODEs for the four quantities M(r),
L(r), p(r) and T (r) :

dp

dr
= −G

ρM

r2
, where ρ =

(
m p

k

)
µp

T
,

d M

dr
= 4π r2ρ ,

(7.15)
dT

dr
= −

(
3

64πσ

)
κρL

r2T 3
,

d L

dr
= 4π r2ρε .

Appropriate boundary conditions for these equations are

p(R�) ≈ 0 , M(0) = 0 , T (R�) ≈ 0 , L(0) = 0 . (7.16)

Of course, the solution obtained should reproduce the known value of the solar
mass, M(R�) = M�, and of the solar luminosity, L(R�) = L�, at the known
position r = R� of the solar radius. Also, the values p0 and T0 should correspond
to the numbers cited for the central density and temperature to yield thermonuclear
burn. This procedure actually turns out to provide quite realistic solutions (see
Fig. 7.2), except for one feature, viz. the assumption of hydrostatic equilibrium up
to the solar surface.

7.1.2 Convection zone

In the outer layers of the Sun, cooling is so strong that the absolute value of
the temperature gradient exceeds a certain threshold given by the Schwarzschild
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Fig. 7.2. Radial distributions of the physical quantities for a standard solar
model. (From Foukal [69], using data of Bahcall and Ulrich, Rev. Mod. Phys.
60, 297 (1988).)

criterion for convective stability. Since the temperature gradient is negative, that
criterion is best discussed in terms of the quantity −dT/dr . Convective stability
is achieved when −dT/dr does not exceed a critical value, which is obtained as
follows.

Introducing the mean particle mass, m ≡ µm p, the ratio of the Boltzmann con-
stant k and m may be abbreviated as a kind of gas constant,R ≡ k/m. Anticipating
the outcome of the present section, R is actually constant in the convection zone
because of the strong mixing that occurs, so that µ ≈ const there. Consequently,
the equation of state (7.6) may be written as

p = RρT . (7.17)

Hence, the temperature gradient is related to the density and pressure gradients by

−dT

dr
= 1

R
(

p

ρ2

dρ

dr
− 1

ρ

dp

dr

) [
= 1

R
(

p

ρ2

dρ

dr
+ g

)]
, (7.18)

where the equilibrium relation (7.7), dp/dr = −ρg , has been inserted in the
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rightmost equality. Here, and below, we put square brackets around such equal-
ities to indicate that this additional equilibrium information has been exploited.

The critical value for convective stability is obtained from the consideration that
motions of the gas are neutrally stable only if the fluid is isentropic, i.e. if the value
of the specific entropy is constant throughout the pertinent region of space:

S ≡ pρ−γ = const ⇒ dρ

dr
= ρ

γ p

dp

dr

[
= −ρ2g

γ p

]
, (7.19)

so that

−
(

dT

dr

)
isentr.

= − 1

R
γ − 1

γ

1

ρ

dp

dr

[
= 1

R
γ − 1

γ
g

]
. (7.20)

Convective instability occurs when the actual temperature gradient −dT/dr ex-
ceeds this value, i.e. when the Schwarzschild criterion for convective stability,

−dT

dr
≤ −

(
dT

dr

)
isentr.

⇒ dρ

dr
− ρ

γ p

dp

dr
≤ 0

[
⇒ dρ

dr
g + ρ2g2

γ p
≤ 0

]
,

(7.21)

is violated. Interestingly enough, the criterion for gravitational stability (in square
brackets) of Section 6.5.4 is recovered: convective and gravitational (Rayleigh–
Taylor) instabilities amount to the same.

Note that we here exploit the term ‘isentropic’ rather than the more usual
term ‘adiabatic’ since we wish to stress that the background equilibrium state is
not isentropic in general but that the assumption of adiabatic fluid motion, i.e.
DS/Dt = 0 , may still be made. Recall that this assumption is underlying the
whole analysis of Chapter 6, including the derivation of the gravitational stabil-
ity in Section 6.5.4. Hence, adiabatic motions are stable or unstable according to
whether the condition (7.21) is satisfied or violated. Only at marginal stability do
the two concepts coincide: the equilibrium is then characterized by constant en-
tropy in space and marginal motion (ω = 0) does not change this distribution.

In the Sun, the Schwarzschild criterion (7.21) is violated in the region
0.713R� ≤ r ≤ R�, which is called the convective region for that reason. In this
region turbulent mixing occurs, i.e. eddies of hot material are carried up and eddies
of cool material are carried down so as to maintain the temperature gradient at the
value given by the RHS of the first expression (7.21). Consequently, rather than
applying the boundary conditions (7.16) at the solar surface (r = R�), one obtains
a more realistic solar model by separating the interior in the regions r ≤ 0.713R�
(core and radiative zone), bounded by a surface where the boundary condition

−dT

dr
= −

(
dT

dr

)
isentr.

(at r = 0.713R�) (7.22)
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is imposed, and the convective region which is governed by a completely different
set of equations. In particular, the assumption of static equilibrium is not appro-
priate for the convective region so that one should return to the time-dependent
equations (7.1)–(7.6), where the flow also destroys the spherical symmetry of the
problem. Unfortunately, there is little one can do about solving this problem with-
out recourse to a large computer and, even then, there remains a large uncertainty
about the nature of the solutions in the convection zone.

Ironically, there appears to be more certainty about the structure of the interior
of the Sun, which is completely opaque (recall that the mean free path of pho-
tons is only a few centimetres there), than the outer regions. Also, the magnetic
field, which we have ignored until now, turns out to play an important role in the
outer layers of the Sun. In particular, the origin of the solar magnetic field, i.e. the
solar dynamo, is thought to be situated at the bottom of the convection zone. The
dynamo problem involves differential rotation, spherical geometry, and magnetic
fields. This significantly adds to the complexity of the problem since magnetic
fields cannot be fitted in a spherically symmetric geometry. This fact is very evi-
dent from the huge number of complex magnetic structures that can be observed
in the atmosphere of the Sun, viz. in the photosphere, the chromosphere and the
corona.

In conclusion, it appears hopeless to try to find solutions for the interior of the
Sun, by means of the theoretical approach discussed so far, starting from such a
complicated boundary. Fortunately, a powerful observational and analytical tool
has become available that can probe the deep structure of the Sun, viz. helioseis-
mology, which will be treated in the following section.

7.2 Hydrodynamic waves and instabilities of a gravitating slab

The convective layer derives its name from the convective instability which arises
when the Schwarzschild criterion (7.21) is violated. Since this is associated with
the transition from stability to instability of gravity waves, at this point it is in-
structive to consider the more general subject of solar oscillations. Here, we will
consider the Sun as a whole and, again, neglect the presence of magnetic fields.
The symmetry of the problem would involve the treatment of wave propagation
in spherically inhomogeneous systems (background quantities depending on the
radial coordinate r ), leading to the occurrence of spherical harmonics in the ana-
lysis. However, we will avoid these technical complications and just consider the
gravito-acoustic waves in a planar stratification (background quantities depending
on the vertical coordinate x). Obviously, the expressions derived require a gener-
alization to spherical stratification if one wishes to compare calculated frequencies
with observed ones. Our goal is to demonstrate how spectral analysis relates to



7.2 Hydrodynamic waves of a gravitating slab 309

practical applications, not to treat the subject of solar and stellar oscillations in de-
tail. (The interested reader should consult the texts by Christensen-Dalsgaard [56]
or Unno et al. [234].)

7.2.1 Hydrodynamic wave equation

Again, we exploit the equations of gas dynamics. We now keep the adiabatic law
so that the relevant equations become

Dρ

Dt
+ ρ∇ · v = 0 , (7.23)

ρ
Dv
Dt

+ ∇ p − ρg = 0 , (7.24)

Dp

Dt
+ γ p∇ · v = 0 . (7.25)

Note that this implies that, for the study of waves, we neglect the RHS of Eq. (7.4),
i.e. non-adiabatic effects caused by thermal conduction and thermonuclear energy
production. Also, for simplicity, we consider the gravitational acceleration as a
given constant, i.e. we neglect perturbations of the gravitational potential (which
is called the Cowling approximation):

g = (−g, 0, 0) , g = const .

We will again assume a static background equilibrium, i.e. v = 0 and ∂/∂t = 0 ,
so that the only restriction on the equilibrium comes from the momentum equa-
tion (7.24):

∇ p0 = ρ0g ⇒ p′
0(x) = −ρ0(x)g , (7.26)

where the prime indicates differentiation with respect to x .
Linearization leads to the following equations:

∂ρ1

∂t
+ v1 · ∇ρ0 + ρ0∇ · v1 = 0 , (7.27)

ρ0
∂v1

∂t
+ ∇ p1 − ρ1g = 0 , (7.28)

∂p1

∂t
+ v1 · ∇ p0 + γ p0∇ · v1 = 0 . (7.29)

These equations are straightforward generalizations of Eqs. (5.5)–(5.7) with ad-
ditional terms due to gravity and the associated inhomogeneity. Hence, we could
derive the wave equation, corresponding to Eq. (5.8) for the homogeneous case,
by differentiating Eq. (7.28) with respect to t and inserting the expressions
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for ∂ρ1/∂t and ∂p1/∂t from Eqs. (7.27) and (7.29). However, we rather ex-
ploit our newly obtained instrument of integrating by means of the displacement
vector ξ (Section 6.1.2), where v1 = ∂ξ/∂t, so that ρ1 = −∇ · (ρ0ξ) and
p1 = −ξ · ∇ p0 − γ p0∇ · ξ . Inserting these expressions into Eq. (7.28), and can-
celling some terms by exploiting the equilibrium relation (7.26), we obtain the
wave equation for gravito-acoustic waves in a plane stratified medium:

ρ
∂2ξ

∂t2
− ∇(γ p∇ · ξ) − ρ ∇(g · ξ) + ρg ∇ · ξ = 0 . (7.30)

We have omitted the subscripts 0 and 1 for the equilibrium and perturbed quantities
since there can be no confusion any more: perturbed quantities are expressed in ξ,
all other quantities refer to the background. The wave equation (7.30) generalizes
Eq. (5.8) with two additional terms related to gravity. Of course, Eq. (7.30) is also
obtained as the special case B = 0 of the general MHD equation of motion (6.23),
exploiting the appropriate expression (6.50) for the force operator.

Considering normal mode solutions of the form

ξ(r, t) = ξ̂(x) ei(ky y+kz z−ωt) , (7.31)

Eq. (7.30) may be written in matrix form as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρω2 + d

dx
γ p

d

dx
iky

(
d

dx
γ p + ρg

)
ikz

(
d

dx
γ p + ρg

)

iky

(
γ p

d

dx
− ρg

)
ρω2 − k2

yγ p −kykzγ p

ikz

(
γ p

d

dx
− ρg

)
−kykzγ p ρω2 − k2

z γ p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ̂x

ξ̂y

ξ̂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 .

(7.32)

Since there is no preferred horizontal direction in the system, there is no loss in
generality if we rotate the coordinate system such that kz = 0, so that ρω2ξ̂z = 0 .
Hence, ignoring marginal shifts ( ω2 = 0 , ξ̂z �= 0 ), all terms with kz and ξ̂z may
be neglected and ξ̂y may be eliminated:

ξ̂y = −ik0
γ pξ̂ ′

x − ρgξ̂x

ρω2 − k2
0γ p

, (7.33)

where k0 ≡
√

k2
y + k2

z (= ky now) is the horizontal wave number. Inserting this

expression in the first component of Eq. (7.32) gives a second order differential
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equation for the unknown ξ̂x :

d

dx

(
γ p ρω2

ρω2 − k2
0γ p

d ξ̂x

dx

)
+
[

ρω2 − k2
0ρ

2g2

ρω2 − k2
0γ p

−
(

k2
0γ p ρg

ρω2 − k2
0γ p

)′ ]
ξ̂x = 0 .

(7.34)
To solve this differential equation one should specify the vertical profiles p(x)

and ρ(x), which should satisfy the equilibrium condition (7.26), and the boundary
conditions.

	 Alternative expression. The last term of Eq. (7.34) may be written as

−
(

k2
0γ p ρg

ρω2 − k2
0γ p

)′
= ρ′g −

(
ρg

ρω2

ρω2 − k2
0γ p

)′
.

This more readily exhibits the correspondence with the expressions for spherical geometry
(Eq. (7.58) of Section 7.2.4) and for magnetized plasmas (Eq. (7.91) of Section 7.3.2). 


Formulation of the appropriate boundary conditions obviously would involve
the spherical geometry of the original problem. Since we have ignored that part
of the problem, the next logical step is to consider modes that do not sensitively
depend on the choice of the boundary. Such modes are obtained by the assumption
that the boundaries are far away. In other words: we should study modes of finite
extent in the y- and z-directions (either arbitrary wave numbers ky and kz , or quan-
tized if one wishes to consider the y- and z-directions as periodic), but sufficiently
localized in the direction of inhomogeneity. Hence, imposing rigid wall boundary
conditions,

ξ̂x (x =0) = ξ̂x(x =a) = 0 , (7.35)

where x = 0 would correspond to the centre and x = a to the surface of the Sun,
only makes sense if a is large as compared to the typical ‘wavelengths’ in the
x-direction. (Quotation marks here since we strictly cannot define a wave vector
in a direction of inhomogeneity.) For example, we might consider modes which
rapidly oscillate in the x-direction:

ξ̂x (x) ∼ eiqx with qa � 1 . (7.36)

Of course, there are no walls on the Sun, and the boundary conditions (7.35) just
serve to define a region of localization of the modes. In more general terms, one
would consider so-called cavity modes, where the background pressure and density
distributions create a kind of potential well in which the modes are confined.

The differential equations (7.34) with the boundary conditions (7.35) permit the
study of the instabilities (ω2 < 0) and stable waves (ω2 > 0) which originate from
the peculiar interaction of the sound and gravity terms. For the solar context, these
two cases are exemplified by the convective instabilities of the convection zone
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and the solar acoustic-gravity waves (the p- and g-modes), respectively. We treat
these two examples in Subsections 7.2.2 and 7.2.3.

7.2.2 Convective instabilities

Since time scales of gravitational instabilities are much longer than time scales
of acoustic oscillations, we may assume ρ |ω2|  k2

0γ p for the study of these
instabilities. The wave equation (7.34) then simplifies to

d

dx

(
ρω2

k2
0

d ξ̂x

dx

)
− ρ

(
ω2 − N 2

)
ξ̂x = 0 , (7.37)

where N is the Brunt–Väisäläa frequency:

N 2 = N 2(x) ≡ −g

(
1

ρ

dρ

dx
− 1

γ p

dp

dx

) [
= − 1

ρ

(
ρ′g + ρ2g2

γ p

)]
. (7.38)

Since ρ and N 2 depend on x through ρ(x) and p(x), of which at least one function
is completely arbitrary, in general, the solution of the differential equation (7.37)
can only be obtained by numerical integration. However, assuming rapid spatially
oscillatory modes of the kind expressed by Eq. (7.36) with q � |∇| ∼ 1/a, where
|∇| represents a typical gradient scale length of the equilibrium, one obtains the
following estimate for the eigenfrequencies of the local instabilities:

ω2 ≈ k2
0

k2
0 + q2

N 2(x) . (7.39)

Hence, the system is locally unstable in the range of x where N 2 < 0.
It will have been noticed that the bracket in the definition (7.38) for N2 is just

the expression entering the gravitational stability criterion derived in Section 6.5.4
by application of the energy principle. We now have additional information on this
instability, viz. an estimate of the growth rates. (Note that this required applica-
tion of the alternative to method (3) of Section 6.4.4, viz. the differential equation
approach associated with the normal-mode analysis.)

We have already seen in Section 7.1.2 that the Schwarzschild criterion (7.21)
for convective stability and the gravitational stability criterion coincide when the
equilibrium conditions are taken into account. This is now immediately evident
from the connection with the Brunt–Väisäläa frequency:

dT

dx
−
(

dT

dx

)
isentr.

= T

g
N 2 ≥ 0

[
⇒ − T

ρg

(
ρ′g + ρ2g2

γ p

)
≥ 0

]
. (7.40)

Hence, N 2 ≥ 0 is nothing else than the Schwarzschild criterion.
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If the Schwarzschild criterion is violated, i.e. N 2 < 0 , Eq. (7.39) tells us that
we should expect convective instabilities exponentially growing as exp(

√−ω2 t).
Of course, such modes rapidly enter the nonlinear domain, where the assumptions
underlying the given derivation break down. This is associated with the forma-
tion of convective cells, which may be nonlinearly stable. However, the onset of
this phenomenon is correctly predicted by the linear theory. On the other hand,
if N2 > 0 , Eq. (7.39) provides us with the expression for the frequency of slow
gravitational modes (the g-modes). These will be treated in a slightly more general
context, without the assumption of smallness of ω2 made in this subsection.

7.2.3 Gravito-acoustic waves

An instructive special case of gravito-acoustic waves in an inhomogeneous
medium is obtained for an exponentially stratified medium with constant sound
speed:

ρ = ρ0e−αx , p = p0e−αx , so that c2 = γ p

ρ
= γ p0

ρ0
= const. (7.41)

From the equilibrium equation (7.26) this implies that p′ = −αp = −ρg (where
we recall that g is also assumed constant), so that

α = ρg

p
= ρ0g

p0
= γ g

c2
= const. (7.42)

The spectral equation (7.34) then reduces to

c2ω2

ω2 − k2
0c2

d

dx

(
e−αx d ξ̂x

dx

)
+
(

ω2 − k2
0g2

ω2 − k2
0c2

+ α
k2

0c2g

ω2 − k2
0c2

)
e−αx ξ̂x = 0 .

(7.43)

The expression (7.38) for the square of the Brunt–Väisäläa frequency here simpli-
fies to

N 2 = αg − g2

c2
= (γ − 1)

g2

c2
> 0 , (7.44)

so that we will only find stable waves. By means of this expression, Eq. (7.43)
transforms to

d2ξ̂x

dx2
− α

d ξ̂x

dx
+ ω4 − k2

0c2 ω2 + k2
0c2 N 2

c2 ω2
ξ̂x = 0 . (7.45)

This is a differential equation with constant coefficients so that its solution be-
comes trivial.
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This is another occasion of blind luck (cf. Section 6.6.4) which, we repeat, is
not at all typical for the problem of wave propagation in inhomogeneous media.
One should be aware of the limitations intrinsic to the use of special cases that
are analytically solvable. Frequently, one comes across so-called ‘intuition’, based
upon insight obtained from such cases, which may be very misleading. For exam-
ple, here we have lost the important possibility of convective instability, discussed
in the previous subsection, simply because N 2 > 0 due to the assumption of an
exponential medium. In general, for arbitrary pressure and density profiles, the
differential equation to be solved is just a general ODE, where numerical solution
is the appropriate procedure.

The solutions of Eq. (7.45) are exponentials of the form ξ̂x = Ce( 1
2 α±iq)x , where

q ≡
√

−1

4
α2 + ω4 − k2

0c2 ω2 + k2
0c2 N2

c2 ω2
. (7.46)

Clearly, the expression under the square root sign has to be positive in order to ob-
tain spatially oscillatory solutions that can satisfy the boundary conditions (7.35).
The latter conditions imply that q has to be quantized:

qa = nπ (n = 1, 2, . . .). (7.47)

The dispersion equation of the gravito-acoustic waves is then obtained by inverting
the expression (7.46) for q :

ω4 − (k2
0 + q2 + 1

4α2)c2ω2 + k2
0c2 N 2 = 0 , (7.48)

having the solutions

ω2
p,g = 1

2k2
effc

2

[
1 ±

√
1 − 4k2

0 N 2

k4
effc

2

]
, k2

eff ≡ k2
0 + q2 + 1

4α2 , (7.49)

where keff is the effective total ‘wave number’ (quotation marks since the vertical
dependence of the perturbations does not correspond to a plane wave) and k0 is the
horizontal wave number. The branch with the + sign refers to the acoustic waves
or p-modes (pressure driven), and the branch with the − sign refers to the gravity
waves or g-modes (gravity driven).

In Fig. 7.3 we have drawn the curves for ω2 = ω2(k2
0) for different values of

the vertical ‘wave number’ q. The curves for q2 = 0 (dotted), which represent the
so-called turning point frequencies ω2

p0 and ω2
g0 , mark the boundaries between

propagation (q real) and evanescence (q imaginary) of the waves. For increas-
ing values of q2, the eigenfrequencies ω2 of the p-modes monotonically increase
with an accumulation or cluster point at ∞ : ω2

p → ω2
P = ∞ . This monotonicity

of the eigenfrequency with the number of nodes of the eigenfunctions, so-called
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Fig. 7.3. Dispersion diagram for the p- and g-modes of a plane, exponential,
atmosphere. The squared frequencies in normalized units, ω̄2 = ω̄2(k̄2

0, q̄2), are
plotted for ten values of the vertical ‘wave number’ q̄ = nπ (n = 1, 2, . . ., 10).
The normalized Brunt–Väisäläa frequency N̄ = 10, the normalized acoustic cut-
off frequency N̄p = 1

2 ᾱ = 10.21. Dotted curves represent the turning point fre-
quencies (n = 0), dashed curves are the asymptotic values for k̄0 → ∞.

Sturmian behaviour, is a well-known property of sound waves and musical in-
struments. On the other hand, the eigenfrequencies of the g-modes monotonically
decrease (anti-Sturmian behaviour) with an accumulation point at 0 : ω2

g → ω2
G =

0 . The lowest branch (q2 = 0) of the p-modes crosses the ω2 axis at the value N 2
p ,

given by

N 2
p ≡ ω2

p,cut ≡ ω2
p0(k

2
0 =0) = 1

4α2c2 = γ 2g

4c2

(
≥ N 2

)
, (7.50)

which is called the acoustic cutoff frequency. For k2
0 → ∞, the acoustic branches

asymptotically tend to the ordinary sound wave frequency, which is called the
Lamb frequency in this context, ω2

p ≈ S2 ≡ k2
0c2 , whereas the g-modes asymp-

totically tend to the Brunt–Väisäläa frequency, ω2
g ≈ N 2 (dashed curves).

The split in Sturmian (∂ω2/∂q2 > 0) and anti-Sturmian (∂ω2/∂q2 < 0) discrete
modes is a quite general one for wave propagation in inhomogeneous media. We
will prove in Section 7.5.1, for the more general MHD case, that this difference is
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associated with the sign of the coefficient in front of the highest derivative of the
differential equation, i.e.

ρc2ω2

ω2 − k2
0c2

, (7.51)

for the gravito-acoustic waves described by Eq. (7.34). Hence, the marginal fre-
quency (ω2 = 0) of the numerator and the Lamb frequency (ω2 = k2

0c2) of the
denominator delimit the frequency ranges where the modes are Sturmian or anti-
Sturmian.

For the interpretation of the dispersion curves of Fig. 7.3, note that all frequen-
cies and wave numbers have been made dimensionless by means of the sound
speed c and the height a of the layer: ω̄ ≡ (a/c) ω, k̄0 ≡ k0a, q̄ ≡ qa, etc. To
get estimates for the p-mode frequencies of the Sun, let us choose a ≡ R� =
7 × 108 m and a value for the sound speed c somewhere in the interior of the Sun
(using data from Unno et al. [234]):

r = 0.5R� , c = 3 × 105 m s−1 ⇒ f p ≡ c

2πa
= 6.8 × 10−5 Hz . (7.52)

With the factor f p we may convert the normalized angular frequencies ω̄ into the
actual frequencies ν of the modes, e.g.

l = 0 , n = 0 ⇒ νp,cut ≡ N̄ p · f p = 0.68 mHz ,

l = 0 , n = 20 ⇒ νp ≈ nπ · f p = 4.3 mHz ,

l = 100 , n = 1 ⇒ νp ≈ l · f p = 6.8 mHz ,

where l ≈ k̄0 is the number of nodal lines on the spherical surface and n = q̄/π

is the radial quantum number. These frequencies lie in the range of the observed 5
minute oscillations (νp = 3.3 mHz). To go beyond these order of magnitude esti-
mates, one has to consider the spherical geometry and the actual inhomogeneities
of the Sun.

	 Free-boundary modes. The addition of a separate low-density layer on top of the expo-
nential one we considered so far would permit the investigation of surface modes, analo-
gous to the analysis of the Rayleigh–Taylor instability of Section 6.6.4. In the solar context,
these oscillations are called f -modes, which are free-boundary oscillations of the solar
surface involving both the interior and the atmosphere of the Sun. Their frequency is inter-
mediate between the lowest n branches of the p- and g-modes so that the f -mode could
be considered as the common n = 0 branch of these modes. However, an estimate of the
short-wavelength limit of the frequency of incompressible surface waves (which remains
valid for compressible fluids) shows that the mechanism is really gravitational:

ω2
f ≈ k0g . (7.53)

Notice that, in contrast to the problem of Section 6.6.4, gravity is now pointing into the
heavier fluid so that the waves are stable. Inserting the value of the gravitational acceler-
ation at the solar surface, we obtain the following approximation of the frequency of the
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f -modes:

ν f ≡ ω f

2π
≈

√
l · f f , f f ≡ 1

2π

√
G M�

R3�
≈ 0.1 mHz . (7.54)

Since helioseismology actually depends on surface oscillations for detection, the ex-
tension with free-boundary modes is an important step towards reality of the model.
For further discussion of surface modes, and generalization to MHD, see the review by
Roberts [193]. 


7.2.4 Helioseismology and MHD spectroscopy

For educational purposes, we have treated the p- and g-modes in a highly idealized
medium, characterized by constant values of the sound speed and the gravitational
acceleration. Of course, in the Sun these conditions are not valid. Moreover, one
should treat the problem in spherical geometry. This gives rise to a quantization
condition for the horizontal wave number: k0 R� = √

l(l + 1) , where l is the de-
gree of the mode, whereas the vertical wave number q and associated quantization
condition (7.47) also require a modification to account for the inhomogeneities of
the interior of the Sun.

	 Spherical geometry. For spherical symmetry, the normal mode expansion (7.31) is to be
replaced by

ξr (r, θ, φ, t) = ξ̂ (r) Y m
l (θ, φ) e−iωt ,

ξθ (r, θ, φ, t) =
[

η̂(r)
∂Y m

l

∂θ
+ ζ̂ (r)

1

sin θ

∂Y m
l

∂φ

]
e−iωt , (7.55)

ξφ(r, θ, φ, t) =
[

η̂(r)
1

sin θ

∂Y m
l

∂φ
− ζ̂ (r)

∂Y m
l

∂θ

]
e−iωt ,

where Y m
l (θ, φ) are spherical harmonics, well known from quantum mechanics of spheri-

cally symmetric systems. Like in quantum mechanics, the actual eigenfrequencies are de-
termined from the radial wave equation which brings in the radial mode number n (number
of nodes of the radial wave function). The degree l (total number of nodal circles on the
spherical surface) takes the place of the horizontal wave number k0, and the system is
degenerate with respect to the longitudinal order m (number of nodal circles through the
poles, |m| ≤ l). This degeneracy is lifted when differential rotation is taken into account.

In the Cowling approximation, where perturbations of the gravitational potential are ne-
glected, the original vector eigenvalue problem in terms of ξ may be reduced to the solution
of just one ODE for ξ̂ , the radial wave equation. Similar to the plane case of Section 7.2.1,
one of the three variables ξ̂ , η̂, ζ̂ vanishes:

ω2ζ̂ = 0 ⇒ ζ̂ = 0 (if ω2 �= 0 ) , (7.56)

i.e. when marginal toroidal shifts are ignored ( ω2 = 0 , ζ̂ �= 0 ). Then, the component η̂
may be eliminated,

η̂ = − (c2/r2)(r2ξ̂ )′ − gξ̂

r2(ω2 − S2)
, (7.57)
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Fig. 7.4. Power spectrum of solar oscillations, obtained from Doppler veloc-
ity measurements in light integrated over the solar disc. (From Christensen-
Dalsgaard [56], citing A. Claverie, G. R. Isaak, C. P. McLeod, H. B. van der
Raay, P. L. Palle and T. Roca Cortes, Mem. Soc. Astron. Ital. 55, 63 (1984).)

which, upon substitution, yields the radial wave equation

d

dr

(
ω2

ω2 − S2

γ p

r2

d

dr
(r2ξ̂ )

)
+
[

ρω2− ρg2

r2

l(l + 1)

ω2−S2
+ ρ′g − r2

(
ρg

r2

ω2

ω2 − S2

)′ ]
ξ̂ = 0,

(7.58)

where S2 ≡ l(l + 1)c2/r2 is the Lamb frequency. Note the similarity with the analogous
equation for the H-atom in quantum mechanics, but also notice that there is considerably
more structure to this problem (due to the presence of three background fields ρ(r), p(r),
g(r), and the reduction of a vector eigenvalue problem to a scalar wave equation, with a
much more complicated dependence on the eigenvalue parameter). 


When the theory is modified in this manner and applied to the observations of
the p-mode spectra, it provides a powerful tool for probing the interior of the Sun,
called helioseismology; see Christensen-Dalsgaard [56] or Harvey [105]. Broadly
speaking, this is done by ‘inversion’ of the observed spectra to obtain the equilib-
rium profiles that produced them. Fig. 7.4 shows a typical example of a classical
spectrum of solar oscillations observed by means of a measurement of the Doppler
shifts of the quantum mechanical spectral lines of the sunlight. At this point, it
is important to realize that the Doppler shifts themselves are the object of study
here since they are directly related to the radial oscillations of the photosphere.
With observed radial velocities ṽr ∼ 1 km/s, it is quite all right to exploit linear
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Fig. 7.5. Solar oscillations for a standard solar model: computed frequency as a
function of the degree � for different values of the radial mode number n. (From
Christensen-Dalsgaard [56].)

theory since the amplitudes reached in typical 5 min periods are not larger than
5 × 10−4 R�  R�.

Above, ‘inversion’ of the solar oscillation spectrum is put in quotation marks to
indicate that it is not a mechanical procedure that can be applied blindly. Whereas
computing a spectrum for a particular equilibrium can be carried out numerically
(see, e.g., Fig. 7.5), virtually to any degree of accuracy desired, the inverse problem
requires a much larger effort. (It is not so difficult to take fingerprints at the site
of the crime, but it is usually quite difficult to catch the criminal that produced
them.) It consists of computing the spectrum while iterating on infinitely many
possible values of the equilibrium input parameters until matching is obtained.
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This procedure is ill-posed, a mathematical way of expressing that it is really a
kind of art.

Also notice that a spectrum of solar oscillations, like that shown in Fig. 7.4,
does not exhibit the modes on an equal footing. First, out of the infinity of modes
that are possible, only a finite number are observed that have been excited by some
mechanism, which, in itself, is part of the puzzle. Second, the spectral peaks ob-
served do not correspond to the energy contents of the modes but to the amplitudes
of the eigenfunctions at the position where the Doppler shifts are produced, that
is in the photosphere. Hence, there is strong biasing towards modes that have a
sizeable amplitude there.

One finds that p-modes of low order l penetrate the deep interior of the Sun,
whereas high l modes in general are more localized towards the outside. This high
l localization is most outspoken for the f -modes, which are free-boundary gravi-
tational oscillations of the solar surface. (Note that the frequency estimate given in
Eq. (7.54) checks quite well with the numbers of Fig. 7.5.) In general, g-modes are
cavity modes trapped in the region interior to the convection zone and, hence, quite
difficult to observe. The spectrum of p-modes, however, has been determined with
surprising accuracy. It has been compared with computed values based on theoret-
ical solar models. It turns out that the frequencies deduced from the Doppler shifts
of spectral lines agree with the calculated ones for the p-modes to within 0.1%!
This impressive agreement serves as an example for what is possible in a purely
classical (as opposed to quantum mechanical) kind of spectroscopy.

	 Caveat on the analogy with quantum mechanical spectral theory. In Section 6.5.4,
we have stressed that the analogy of MHD (and, hence, HD) spectral theory with quantum
mechanics is through the mathematics of linear operators, not through the physics of the
systems. Consequently, one should be careful not to make tacit assumptions on the physical
interpretation of the spectra. For example, the (accidental) degeneracy of the energy levels
E(n, l) of the hydrogen atom (due to the Coulomb potential), with the restriction l ≤ n, and
the association of l with the angular momentum operator are strictly limited to the quantum
mechanical interpretation of the radial wave equation for ψ(r). From Fig. 7.5 it is evident
that the eigenfrequencies ν(n, l) of the solar oscillations do not exhibit this degeneracy
and restriction on l. They are obtained from the radial wave equation (7.58) for the fluid
displacement ξ(r), which not only has a completely different radial structure but also a
completely different physical interpretation. In particular, whereas l is associated with the
number of nodal lines on the sphere in both cases, the quantum mechanical association
with the angular momentum operator certainly does not carry over to fluid dynamics. 


On the basis of this successful example of fluid dynamical spectroscopy, we
have proposed a similar activity for laboratory fusion plasmas, called MHD
spectroscopy [88]. In order to understand the common feature, the procedure of
helioseismology has been summarized in Fig. 7.6 to provide a kind of model exam-
ple for other physical systems, like laboratory fusion machines. Notice that for the
birth of helioseismology it was not sufficient to have collected a great number of
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Fig. 7.6. Systematics of helioseismology.

observations of solar oscillations or to have calculated many spectra, but rather that
the two activities should have matured to a sufficient degree to allow for a unique
correlation between calculated and observed spectra. This interplay between the-
ory and observations is illustrated in the figure. To leading order, the Solar Model
is spherically symmetric with the equilibrium depending on the abundance of the
different chemical elements H, He, and the heavier ones (indicated by the symbols
X , Y , and Z ), the temperature T , the density ρ, the luminosity L , etc. Perturbations
of this equilibrium are studied by means of a Spectral Code which determines the
collection {ωl,n} of the frequencies of the different modes. Observations provide
values of the same quantities. The discrepancies between the two then bring about
improvement of the Solar Model, where the non-spherical symmetry due to the
presence of differential rotation (�) and magnetic fields (B) plays an important
role. Of course, the final interest is in stellar evolution, i.e. the very slow time-
dependence of all the equilibrium quantities that are determined on a snapshot
basis by helioseismology.

It is not difficult to recognize the counterparts of the three activities depicted in
Fig. 7.6 for laboratory fusion research: transport models to describe the slow evolu-
tion of the background equilibrium, spectral calculations of the fast MHD modes,
and diagnostics to determine the frequencies and other characteristics of these
modes. Clearly, the success of the similar activity of MHD spectroscopy hinges
on improved diagnostics and spectral calculations. Helioseismology provides the
paradigm demonstrating that fluid dynamical states can be predicted with high
accuracy. We will see in a later chapter that this should be realizable for toka-
maks as well. Another example of this kind of HD or MHD spectroscopy has
been developed in the solar context with the aim of determining the hydrodynam-
ical and magnetohydrodynamical properties of sunspots from the absorption of
sound waves propagating in the photosphere. This activity has been called sunspot
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seismology by Bogdan [34, 33]. Many other plasma-astrophysical objects may be
investigated this way, e.g. there is a recent proposal to initiate magneto-seismology
of accretion discs by Keppens et al. [124].

At this point in our exposition, it might appear that extension of the 1D spher-
ical HD model to MHD with magnetic effects is the next logical step. However,
recall that spherically symmetric magnetic fields are incompatible with ∇ · B = 0
(Section 1.3.4). Hence, incorporation of magnetic fields in spherical geometry in-
evitably involves 2D magnetic configurations (as indicated by the extensions listed
outside the 1D Solar Model box in Fig. 7.6). In the following sections we will stay
with 1D geometry and introduce magnetic fields in the plane slab model. This will
give rise to plenty of new phenomena associated with plasma inhomogeneity. The
further complications of two-dimensionality will be the subject of later chapters in
Volume 2.

7.3 MHD wave equation for a gravitating magnetized plasma slab

7.3.1 Preliminaries

With the instructive examples of hydrodynamic waves and instabilities in ordi-
nary fluids of Section 7.2, we now turn to the influence of inhomogeneity on the
spectrum of waves and instabilities in magnetized plasmas. Macroscopic plasma
dynamics inevitably involves effects of the finite geometry of the magnetic con-
finement volume. This substantially complicates the analysis since the assumption
(made in Chapter 5 for homogeneous plasmas) of plane waves represented by un-
coupled Fourier harmonics breaks down. Waves with different wave numbers k
couple through plasma inhomogeneity so that wave transformation takes place.
It is perfectly well possible to have a wave that should be characterized as a fast
magneto-sonic wave in one part of the plasma volume, but which exhibits Alfvén
wave properties in another part.

More important yet, from a fundamental as well as from a practical point of
view, is the occurrence of two new phenomena, viz. instabilities and continuous
spectra. Both are essentially due to plasma inhomogeneity, but instabilities (as the
hydrodynamic convective instability encountered in Section 7.2.2) obviously occur
for ω2 < 0 , whereas continua are mainly located on the stable side (ω2 > 0) of
the spectrum in ideal MHD. These phenomena are extremely important for a wide
class of laboratory and astrophysical plasmas. This will be extensively demon-
strated in the later chapters, but first we have to get acquainted with the necessary
analytical tools.

We will approach the problem stepwise and, at first, restrict the analysis to inho-
mogeneity in one direction only (called one-dimensional or 1D systems) leading
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to a description in terms of ordinary differential equations (ODEs). A generic ex-
ample of such systems is the plane gravitating plasma slab with inhomogeneities
ρ(x), p(x) and B(x) of the density, pressure and magnetic field, caused by plasma
currents and gravitational stratification. We have already encountered the hydrody-
namic version of the basic ODE in the wave equation (7.34) of Section 7.2.1. The
fundamental wave equation for the gravitating magnetized plasma slab is derived
in Section 7.3.2. This equation describes a bewildering variety of waves, continua
and instabilities, as will be shown in Sections 7.4 and 7.5.

(a) Transformation of the homogeneous problem As a preliminary to the study of
inhomogeneous plasmas, it is expedient to restate the homogeneous wave problem
of Section 5.2 in a slightly different manner. Recall that the equilibrium back-
ground in that case was specified by

B = Bez , with ρ , p , B = const , (7.59)

so that the sound and Alfvén speeds, c ≡ √
γ p/ρ and b ≡ B/

√
ρ , are constant.

We have already transformed the eigenvalue problem (5.51) in terms of the force
operator and associated displacement vector in the spectral equation (6.31) of Sec-
tion 6.2.1. Since, for the time being, all equilibrium quantities are considered con-
stant, we may write the normal mode amplitude ξ(r) as a Fourier integral (or a
Fourier series if one considers a finite box) of plane wave solutions which do not
couple:

ξ(r) = (2π)−3/2
∫∫∫

ξ̂(k) eik·r d3k . (7.60)

The normal modes ξ̂(k; ω) exp i(k · r − ωt) may then be studied separately by
substituting ∇ → ik in Eq. (6.31). This leads to the algebraic eigenvalue problem
(6.32), which we repeat for convenience:

ρ−1F(ξ̂) =
[
− (k · b)2 I − (b2 + c2) kk + k · b (kb + bk)

]
· ξ̂ = −ω2ξ̂ .

(7.61)
The matrix representation of this equation is identical to Eq. (5.52) with v̂x,y,z re-
placed by ξ̂x,y,z . However, we will now generalize the wave vector k to have a
non-vanishing component ky in order to be able to distinguish between the two
perpendicular directions x and y (Fig. 7.7). This will facilitate the transition to the
analysis of the inhomogeneous problem, where x and y will no longer be equiva-
lent since the eventual inhomogeneity will be in the x-direction.

The mentioned transformation amounts to a rotation of the coordinate system
through an angle −χ ≡ − arctan(ky/kx) about the z-axis. (The minus sign ap-
pears here because k⊥ is along the old x ′-axis.) We indicate the old representation



324 Waves and instabilities of inhomogeneous plasmas

kx

k⊥
χ

k

B

k0

ky

k
//

Fig. 7.7. New orientation of the k vector.

by primes, ρ−1F′ · ξ′ = −ω2ξ′ , where the sans serif bold symbol F′ is used to
denote the (old) matrix representation of the operator F. The new representation
then becomes

ρ−1F · ξ = −ω2ξ , with F = R · F′ · R−1 and ξ = R · ξ′ , (7.62)

where

R ≡
⎛
⎝cos χ −sin χ 0

sin χ cos χ 0
0 0 1

⎞
⎠ . (7.63)

This results in the following matrix representation of the spectral equation (7.61):⎛
⎜⎜⎜⎝

− k2
x (b

2 + c2) − k2
z b2 −kx ky(b2 + c2) −kx kzc2

− kx ky(b2 + c2) −k2
y(b

2 + c2) − k2
z b2 −kykzc2

− kx kzc2 −kykzc2 −k2
z c2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ξx

ξy

ξz

⎞
⎟⎟⎟⎠= −ω2

⎛
⎜⎜⎜⎝

ξx

ξy

ξz

⎞
⎟⎟⎟⎠ ,

(7.64)

where we have dropped the hats on ξ for notational simplicity. Note that Eq. (5.52)
is recovered, as it should, when the limit ky → 0 is taken. Solutions are obtained
by setting the determinant of the system to zero. Of course, this results in the
same dispersion equations (5.56) for the Alfvén eigenvalues ω2

A and (5.58) for the
magneto-sonic eigenvalues ω2

s, f :

ω2
A = k2

‖b2 , ω2
s, f = 1

2k2(b2 + c2)

[
1 ±

√
1 −

4k2
‖b2c2

k2(b2 + c2)2

]
, (7.65)

where now

k2 = k2
x + k2

y + k2
z , k⊥ =

√
k2

x + k2
y , k‖ = kz .
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Fig. 7.8. (a) Dispersion diagram ω2 = ω2(kx ) for ky and kz fixed; (b) corre-
sponding structure of the spectrum.

However, the expressions (5.57) and (5.60) for the eigenvectors have to be modi-
fied to account for the changed direction of the plane spanned by k and B (previ-
ously, the x ′–z′ plane) since the Alfvén eigenvectors ξA are perpendicular to this
plane and the magneto-sonic eigenvectors ξs, f are lying in it.

(b) Essential spectrum The spectrum of MHD waves is modified significantly by
plasma inhomogeneity. If the inhomogeneity is in the x-direction, the assumption
of uncoupled plane waves breaks down with respect to the wave number kx so that
we have to replace kx by − i∂/∂x in Eq. (7.64). Hence, the dispersion equation
ω2 = ω2(kx , ky, kz) loses its meaning with respect to the dependence on kx . The
consequences of this will be worked out in the next section. However, one essential
feature of the spectrum remains intact, that was already alluded to in the discussion
of the asymptotic properties associated with the group velocity (Section 5.3.3).
This relates to localized wave motion in the direction of inhomogeneity, which
can be understood already from the homogeneous theory by considering the limit
kx → ∞. To that end, we plot ω2 as a function of kx , keeping ky and kz fixed
(Fig. 7.8(a)). Note that this picture is very similar to Fig. 5.7(b), but the degeneracy
of Alfvén and fast modes at k⊥ = 0 is removed.

The effects of a confined inhomogeneous plasma can now be mimicked, within
the context of homogeneous theory, by considering the plasma as a slab of finite
extension enclosed by plates at x = 0 and x = a . The wave number kx will then
be quantized: kx = nπ/a , where n is the number of nodes of the eigenfunction ξx

considered as a function of x . Hence, the eigenvalues will be labelled by n, rather
than by kx , and this labelling still makes sense for an inhomogeneous medium with
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equilibrium quantities that vary in the x-direction. This quantization produces a
discrete spectrum, with three branches that behave distinctly differently (Fig.
7.8(b)). The essential features of these three sub-spectra of point eigenvalues,
labelled by n, are the following ones.

(1) The discrete eigenvalues of the fast sub-spectrum monotonically increase, so that

ω2
F ≡ lim

kx→∞
ω2

f ≈ lim
kx →∞

k2
x (b

2 + c2) = ∞ (7.66)

is a formal cluster point of the fast wave point spectrum.
(2) The eigenvalues ω2

a of the Alfvén sub-spectrum are infinitely degenerate, because they
do not depend on kx , so that

ω2
A ≡ lim

kx →∞
ω2

a = ω2
a = k2

‖b2 . (7.67)

Hence there is no need to distinguish between the point eigenvalues ω2
a and the limit

ω2
A. (That is why we did not even introduce the symbol ω2

a before.)
(3) The discrete eigenvalues of the slow wave sub-spectrum monotonically decrease with

an accumulation or cluster point at

ω2
S ≡ lim

kx →∞
ω2

s = k2
‖

b2c2

b2 + c2 , (7.68)

where the subscript s denotes the slow discrete modes and S their cluster point.

Mathematically speaking, ω2
F , ω2

A, and ω2
S belong to what is called the essential

spectrum, which is the manifestation of the continuous spectrum in this context.
This turns out to be basic for the discussion of the inhomogeneous case, where
the functions vary with x . Then, the infinite degeneracy of the Alfvén eigenvalues
is lifted by the appearance of a continuous spectrum of improper Alfvén modes
instead, and the cluster point of the slow point spectrum is spread out in a contin-
uous spectrum of improper slow modes, whereas the fast cluster point ω2

F = ∞ is
unaffected.

The two values of ω2 denoted by ω2
s0 and ω2

f 0 , where the slow and the fast
modes cross the vertical axis in Fig. 7.8(a), also turn out to play a special role in
the spectral theory of inhomogeneous plasmas. Their values are given by:

ω2
s0, f 0 ≡ ω2

s, f (kx =0) = 1
2k2

0(b
2 + c2)

[
1 ±

√√√√1 −
4k2

‖b2c2

k2
0(b

2 + c2)2

]
, (7.69)

where k0 ≡
√

k2
y + k2

z is the horizontal wave number (see Fig. 7.7). The function

of these turning point frequencies ω2
s0 and ω2

f 0 appears to be to separate the three
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Fig. 7.9. (a) Gravitating plasma slab and (b) magnetic field line projection.

branches of the spectrum, as evidenced by the following sequence of inequalities:

0 ≤ ω2
S ≤ ω2

s ≤ ω2
s0 ≤ ω2

A ≤ ω2
f 0 ≤ ω2

f ≤ ω2
F = ∞ . (7.70)

This clear separation of the three discrete sub-spectra for homogeneous media re-
turns, in a modified form, when the plasma becomes inhomogeneous.

	 Exercise. Check the above expressions to teach yourself the basic steps. All of this trivial
algebra returns in operator form in later sections! 


7.3.2 Derivation of the MHD wave equation for a gravitating slab

We now introduce genuine inhomogeneity in the model. Consider a plasma slab,
infinite and homogeneous in the y- and z-directions, and contained between two
planes at x = x1 and x = x2 (Fig. 7.9(a)). The equilibrium is assumed to vary in
the x-direction:

B = By(x) ey + Bz(x) ez , ρ = ρ(x) , p = p(x) . (7.71)

The magnetic field is confined to plane layers parallel to the y-z plane, but its
direction is assumed to vary with height. This is caused by current layers that are
confined to the same planes (to be considered as the magnetic surfaces for this
configuration):

j = ∇ × B = −B ′
z(x) ey + B ′

y(x) ez , (7.72)

where primes denote differentiation with respect to x . In general, j has a dif-
ferent direction from B so that there is a Lorentz force j × B = (∇ × B) ×
B = −∇(1

2 B2) in the x-direction. (The latter relation follows by application of
Eq. (A.8) where the additional term B · ∇B, which is present for curved magnetic
fields, vanishes here.) This force is to be balanced by the pressure gradient ∇ p
and the gravitational force ρ(x)g, due to an external gravitational field � with
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constant acceleration

g = −∇� = −ĝex . (7.73)

Here, a hat is put on the gravitational acceleration since the ordinary symbol g will
be used for another purpose shortly. Consequently, equilibrium requires satisfac-
tion of just one ODE,

(p + 1
2 B2)′ = −ρ ĝ , (7.74)

which is the only restriction to be imposed on the possible choices of the functions
ρ(x), p(x), By(x), and Bz(x).

In this manner, a generic 1D inhomogeneous model for confined plasmas is ob-
tained. The presence of the two bounding plates may appear to be a rather artificial
constituent of the model, in particular for astrophysical plasmas. Their function is
to simply model plasma confinement, either by the presence of a conducting shell
(as in tokamaks), or by the presence of an immobile (very dense) neighbouring
plasma. One could always try to minimize their influence by moving them out to
infinity, while keeping their essential role of eliminating the flow of energy in or
out of the system. Of course, the ultimate remedy is to extend the analysis to an
appropriate choice of one of the models (II)–(VI) of Section 4.6.

The wave and spectral equations for the gravitating plasma slab are obtained
from Eqs. (6.23) and (6.28), which we repeat for convenience:

F(ξ) = ρ
∂2ξ

∂t2
= −ρω2ξ . (7.75)

Clearly, the most laborious part of the problem is the evaluation of the force oper-
ator

F(ξ) ≡ −∇π − B × (∇ × Q) + (∇ × B) × Q + ∇� ∇ · (ρξ) , (7.76)

with

π = −γ p∇ · ξ − ξ · ∇ p , Q = ∇ × (ξ × B) . (7.77)

This will be done in the following sequence of steps.

(a) Field line projection First, normal modes are studied satisfying the spectral
equation (7.75), but now the 3D Fourier representation (7.60) is replaced by a 2D
Fourier representation for the two homogeneous directions only:

ξ(r) = 1

2π

∫ ∫
ξ̂(x; ky, kz) ei(ky y+kz z) dkydkz . (7.78)
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Our task is to find the x-dependence of the separate Fourier components, which
simply will be denoted as ξ(x) exp i(ky y + kzz) , dropping the hat. The horizontal
part of the differential operator ∇ then produces the algebraic substitutions ∂y →
iky and ∂z → ikz , whereas the component ∂x in the direction of inhomogeneity
will produce (ordinary) differential equations.

Next, all vectors are projected onto the three unit vectors ex , e⊥, e‖ (the field
line triad, Fig. 7.9(b)), which represent the physically relevant directions:

ex ≡ ∇x ,

e⊥ ≡ (B/B) × ex = (0, Bz/B, −By/B) , (7.79)

e‖ ≡ B/B = (0, By/B, Bz/B) .

This orthogonal projection3 is based on the physical significance of magnetic field
lines and magnetic surfaces for the description of perturbations. It may be gen-
eralized to more complicated equilibria, like tokamaks with nested magnetic sur-
faces where ex represents the normal, and e⊥ and e‖ the two tangential directions
with respect to these surfaces. Hence, we will call the three directions defined
by Eq. (7.79) by generic names, viz. normal (with respect to the magnetic sur-
faces), perpendicular (with respect to the field lines, but tangential to the magnetic
surfaces so that the symbol ⊥ is now more restrictive than in Section 7.3.1) and
parallel (with respect to the field lines). In this projection, the result of the gradient
operator on the perturbation ξ(x) exp i(ky y + kzz) may be written as

∇ = ex∂x + ie⊥(x) g + ie‖(x) f , (7.80)

where ∂x ≡ d/dx is the normal derivative, and f and g represent the perpendicular
and parallel derivatives:

g = g(x) ≡ −ie⊥ · ∇ = G/B , G ≡ ky Bz − kz By ,

f = f (x) ≡ −ie‖ · ∇ = F/B , F ≡ ky By + kz Bz . (7.81)

(The lower case g and f will be replaced by the upper case G and F in later chap-
ters where division by B becomes awkward.) The quantities g and f may be con-
sidered as the wave vectors in the perpendicular and parallel directions, although

3 One frequently encounters the statement in the literature that a local field line coordinate representation is
exploited when, at best, a projection like the present one is meant. At worst, the existence of coordinates
u(x, y, z), v(x, y, z), w(x, y, z) is really assumed and one of them, say w, is supposed to measure distance
along the magnetic field. The existence of such coordinates would imply B = f (u, v, w)∇w, where f is some
scalar function. Hence j = ∇ × B = ∇ f × ∇w = (1/ f )∇ f × B , so that j‖ = 0 . Of course, such a severe
restriction on the equilibrium is not justified in general. In plane slab geometry, that condition implies that B is
uni-directional. Only for such trivial fields could one construct field line coordinates of that kind.

Field line coordinates of an entirely different kind, so-called Clebsch coordinates α, β, γ , do exist, though.
Here, B is represented as the vector product of two gradients of them: B = ∇α × ∇β . These coordinates are
useful for the study of instabilities localized about magnetic field lines.
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they are functions of x in general. However, the magnitude of the resulting hori-
zontal wave vector is constant:

k0 ≡
√

g2 + f 2 =
√

k2
y + k2

z . (7.82)

We also project ξ on the field line triad:

ξ = ξ ex − iη e⊥ − iζ e‖ , (7.83)

where

ξ ≡ ex · ξ = ξx ,

η ≡ ie⊥ · ξ = i(Bzξy − Byξz)/B ,

ζ ≡ ie‖ · ξ = i(Byξy + Bzξz)/B .

The factors i have been inserted here since this turns out to lead to a representation
where ξ , η and ζ may be assumed to be real.

When manipulating with vector equations, it is important to remember that the
directions of the unit vectors e⊥ and e‖ vary with x when B is not uni-directional:

∂x e⊥ = −ϕ′e‖ , ∂x e‖ = ϕ′e⊥ , (7.84)

where ϕ ≡ arctan(By/Bz) is the angle between B and the z-axis (see Fig. 7.9(b)).
It remains to evaluate the components of the force operator F(ξ) explicitly,

i.e. to exploit the consequences of the equilibrium relation (7.74), of the 2D Fourier
representation (7.78), and of the orthogonal projection (7.79)–(7.83). This involves
straightforward but rather tedious analysis, which is put in small print.

	 Explicit construction of the wave equation matrix. In order to keep the analysis as
mechanical as possible, we first derive the x , y, z components of the force operator F and
only at the end compose the perpendicular and parallel components. Writing the different
Fourier components of F, we will drop the harmonic factor exp i(ky y + kzz) , but, of
course, only after the gradient, divergence and curl operations have been applied. Straight-
forward application of the operations (7.80)–(7.82) and (7.83) then yields, for example, the
important relation

∇ · ξ = ξ ′ + gη + f ζ , (7.85)

so that the fluid terms of F may be written as

−∇π = [ p′ξ+ γ p(ξ ′+ gη+ f ζ ) ]′ ex

+ iky[p′ξ + γ p(ξ ′ + gη + f ζ )] ey + ikz[p′ξ + γ p(ξ ′ + gη + f ζ )] ez ,

∇� ∇ · (ρξ) = ĝ [(ρξ)′ + ρgη + ρ f ζ ] ex . (7.86)

The evaluation of the magnetic terms requires some more diligence because of the repeated
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curl operations:

ξ × B = −iBη ex − Bzξ ey + Byξ ez ,

Q = iB f ξ ex − [(Byξ)′ − kz Bη] ey − [(Bzξ)′ + ky Bη] ez ,

∇ × Q = −i[(Bgξ)′ + k2
0 Bη] ex

+ [(Bzξ)′′− kz B f ξ+ ky(Bη)′]ey − [(Byξ)′′− ky B f ξ− kz(Bη)′]ez,

(7.87)

−B × (∇ × Q) = [By(Byξ)′′ + Bz(Bzξ)′′ − B2 f 2ξ + Bg(Bη)′] ex

+ iBz[(Bgξ)′ + k2
0 Bη] ey − iBy[(Bgξ)′ + k2

0 Bη] ez ,

j × Q = [B ′
y(Byξ)′ + B′

z(Bzξ)′ + B(Bg)′η] ex + iB B ′
y f ξ ey + iB B′

z f ξ ez .

Inserting the above expressions in the spectral equation (7.75), using the equilibrium equa-
tion (7.74), produces the three vector components of F in the x , y, z directions:

−ρω2ξx = [(γ p + B2)ξ ′]′ − B2 f 2ξ + [(γ p + B2)gη]′ + ρ ĝgη + (γ p f ζ )′ + ρ ĝ f ζ ,

−ρω2ξy = iBz Bg ξ ′ + iky(γ pξ ′ − ρ ĝξ) + i(k2
0 Bz B + kyγ pg) η + ikyγ p f ζ , (7.88)

ρω2ξz = −iBy Bg ξ ′ + ikz(γ pξ ′ − ρ ĝξ) − i(k2
0 By B − kzγ pg) η + ikzγ p f ζ .

Projecting the last two components onto e⊥ and e‖ finally yields the required representation
given in Eq. (7.89) below. 


	 Exercise. If you want to become conversant with spectral analysis of plasmas, you should
not only reproduce the above steps, but also find alternative derivations. 


(b) Wave equation in field line projection The resulting wave or spectral equa-
tion for a plane gravitating slab, in orthogonal field line projection, assumes the
following symmetric form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d

dx
(γ p + B2)

d

dx
− f 2 B2 d

dx
g(γ p + B2) + gρ ĝ

d

dx
f γ p + fρ ĝ

− g(γ p + B2)
d

dx
+ gρ ĝ −g2(γ p + B2) − f 2 B2 −g f γ p

− f γ p
d

dx
+ f ρ ĝ − f g γ p − f 2γ p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

η

ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −ρω2

⎛
⎜⎜⎜⎝

ξ

η

ζ

⎞
⎟⎟⎟⎠ . (7.89)
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The most important feature of this matrix representation of the force operator F
is that it depends on x through ρ(x), p(x), B2(x), f (x) and g(x). If this depen-
dence is neglected (which implies that the four gravitational terms ρ ĝ must be
neglected as well), the eigenvalue equation (7.64) for infinite homogeneous plas-
mas is recovered. The eigenvalue equation (7.32) for the gravito-acoustic modes
of Section 7.2.1 is recovered in the limit B → 0 .

The matrix eigenvalue problem (7.89) for the three vector components ξ , η,
ζ only contains normal differential operators d/dx in the first row and column.
Hence, it can be reduced to a single second order differential equation in ξ by
eliminating η and ζ by means of the second and third components, which are
algebraic in η and ζ :

η = g
[(b2 + c2)ω2 − f 2b2c2] ξ ′ − ĝ ω2 ξ

D
,

ζ = f
c2(ω2 − f 2b2) ξ ′ − ĝ (ω2 − k2

0b2) ξ

D
, (7.90)

where b ≡ B/
√

ρ , c ≡ √
γ p/ρ , and D is the determinant of the lower right

2 × 2 sub-matrix. Substituting these expressions into the first component gives the
required second order differential equation for ξ , derived by Goedbloed [81](I):

d

dx

N

D

dξ

dx
+
[

ρ(ω2 − f 2b2) + ρ′ĝ − k2
0ρ ĝ2 ω2 − f 2b2

D

−
{
ρ ĝ

ω2(ω2 − f 2b2)

D

}′ ]
ξ = 0 , (7.91)

where

N = N (x; ω2) ≡ ρ(ω2 − f 2b2)
[
(b2 + c2) ω2 − f 2b2c2

]
,

(7.92)
D = D(x; ω2) ≡ ω4 − k2

0(b2 + c2) ω2 + k2
0 f 2b2c2 .

This equation has to be solved subject to the model I boundary conditions

ξ(x1) = ξ(x2) = 0 . (7.93)

This completes the formulation of this one-dimensional spectral problem.
Note that Eq. (7.91) contains the differential equation (7.34) for gravito-acoustic

modes in the limit b → 0 . Also, the three MHD wave frequencies ω2
s , ω2

A, ω2
f for

homogeneous plasmas, given in Eq. (7.65), are recovered in the limit ρ ĝ → 0 and
neglecting all x dependencies, so that d/dx → ikx , g → ky , and f → kz .

It is of some interest for later generalizations to observe the intriguing difference
between the spectral problem posed by the ‘3D’ vector eigenvalue equation (7.89)
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and the equivalent ‘1D’ scalar eigenvalue equation (7.91), supplemented with the
algebraic relations (7.90). Whereas the latter formulation is convenient for most
of the analysis, and certainly for numerical integration, the eigenvalue character of
the problem has been spoiled to a great extent because ω2 is scattered all over the
place in Eq. (7.91). (For that reason, equations of this type are sometimes called
‘nonlinear’ eigenvalue equations.) Hence, to prove or disprove general properties
(like monotonicity of the discrete spectrum) it may be advisable to return to the
original formulation (7.89).

(c) Singular frequencies The ordinary differential equation (7.91), with the bound-
ary conditions (7.93), describes all gravito-magnetohydrodynamic modes of a
gravitating magnetized plasma slab with completely arbitrary equilibrium profiles.
Before trying to solve it by analytical or numerical methods, one first needs to pay
attention to the physical meaning of the different terms and, in particular, to the
different singularities that occur.

It is clear that the factor N/D in front of the highest derivative of the differential
equation plays an important role. We may write this factor in terms of the four
special frequencies (that were already introduced) in Eqs. (7.94)–(7.96) for the
case of a homogeneous plasma:

N

D
= ρ(b2 + c2)

[ ω2 − ω2
A(x) ] [ ω2 − ω2

S(x) ]

[ ω2 − ω2
s0(x) ] [ ω2 − ω2

f 0(x) ]
. (7.94)

The numerator N involves the asymptotic Alfvén and slow magneto-sonic frequen-
cies,

ω2
A(x) ≡ f 2b2 ≡ F2/ρ , ω2

S(x) ≡ f 2 b2c2

b2 + c2
≡ γ p

γ p + B2
ω2

A(x) , (7.95)

whereas the denominator D involves the slow and fast turning point frequencies,

ω2
s0, f 0(x) ≡ 1

2k2
0(b2 + c2)

[
1 ±

√
1 − 4 f 2b2c2

k2
0(b

2 + c2)2

]
. (7.96)

For inhomogeneous plasmas, all of these four special frequencies depend on x ,
through f 2(x), b2(x) and c2(x) , so that their role is to be determined by a local
analysis about the points where the different factors of N and D vanish. In par-
ticular, the ODE (7.91) becomes singular for N → 0 , when ω2 → ω2

A(x) or
ω2 → ω2

S(x) , i.e. when the local Alfvén or slow magneto-sonic frequencies are
approached. These singularities deserve a separate treatment, given in Section 7.4,
where it is shown that they give rise to non-square integrable solutions associ-
ated with continuous spectra. On the other hand, the ODE only develops apparent
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singularities for D → 0 , when ω2 → ω2
s0(x) or ω2 → ω2

f 0(x) , i.e. when the
local magneto-sonic turning point frequencies are approached. An apparent singu-
larity implies that there are cancellations in the series expansion of the solution, so
that it remains finite in the end. This follows directly from the equivalent system
of first order differential equations (next subsection), but can also be demonstrated
explicitly from the second order differential equation (Section 7.4.1). The history
of this topic is summarized at the end of Section 7.4.2.

The function F(x), that occurs in the frequencies ωA(x) and ωS(x) of the
Alfvén and slow continua, deserves special attention since it represents the pro-
jection of the gradient operator parallel to the magnetic field:

F ≡ −iB · ∇ = k0 · B . (7.97)

The locations in the plasma where F = 0 play an important role in the stability
of plasmas since the stabilizing magnetic field line bending energy vanishes there,
favouring interchange instability (see Section 7.5.2). Accordingly, in stability the-
ory, the continua {ω2

A(x)} and {ω2
S(x)} appear in the disguise of the ‘interchange’

values {F2(x)}.

(d) Equivalent system of first order differential equations For numerical integra-
tion one usually converts a second order ODE into a pair of first order ODEs for
the function and its first derivative. In our case, instead of ξ ′, it is much better to
exploit a physical variable for that purpose, viz. the (Eulerian) perturbation of the
total pressure:

� ≡ π + B · Q = −γ p∇ · ξ − ξ · ∇ p + B · Q . (7.98)

Converting ∇ · ξ by means of Eq. (7.85), Q with Eq. (7.87), and exploiting the
equilibrium relation (7.74), this expression may be transformed into

� = −ρ(b2 + c2)ξ ′ + ρ ĝξ − ρg(b2 + c2)η − ρ f c2ζ

= − N

D
ξ ′ + ρ ĝ

ω2(ω2 − f 2b2)

D
ξ , (7.99)

where η and ζ have been eliminated in the second line by means of Eq. (7.90).
Hence, the peculiar derivative term in curly brackets in the second order
ODE (7.91) comes from this expression for the total pressure perturbation �.

By means of the expression just derived, we may convert the second order dif-
ferential equation (7.91) into the following pair of first order differential equations:(

ξ

�

)′
= − 1

N

(
C D

E −C

)(
ξ

�

)
, (7.100)
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where

C ≡ −ρ ĝ ω2(ω2 − f 2b2) ,
(7.101)

E ≡ −
[
ρ(ω2 − f 2b2) + ρ′ĝ

]
N − ρ2ĝ2(ω2 − f 2b2)2 .

The determinant of the matrix on the RHS of Eq. (7.100) is proportional to N :

DE + C2 = −
{[

ρ(ω2 − f 2b2) + ρ′ĝ
]

D − k2
0ρ ĝ2(ω2 − f 2b2)

}
N . (7.102)

This guarantees that no additional singularities have been introduced in this for-
mulation. The vector eigenvalue equations (7.89) for ξ , η, ζ , the scalar eigenvalue
problem (7.91) for ξ , and the two-variable eigenvalue problem (7.100) for ξ , � are
equivalent.

The formulation in terms of two first order ODEs was first exploited by Appert,
Gruber and Vaclavik [9] for the analogous problem in cylindrical geometry. Its
merit is that it shows right away that nothing blows up for D = 0 so that these
singularities of Eq. (7.91) must be apparent, whereas the N = 0 singularities are
genuine.

7.3.3 Gravito-MHD waves

Before we start the investigation of the general structure of the spectrum of MHD
waves in a gravitating medium, where the mentioned singularities will be in the
centre of our attention, it is useful to discuss one simple but non-trivial example of
a complete spectrum where the singularities are still absent (or, rather, degenerate
enough to permit a simple representation). This is provided by the generalization of
the problem considered in Section 7.2.3 to an exponentially stratified atmosphere
with constant sound and Alfvén speeds:

ρ = ρ0e−αx , p = p0e−αx , B = B0e− 1
2 αxez , (7.103)

so that

c2 = γ p

ρ
= γ p0

ρ0
, b2 = B2

ρ
= B2

0

ρ0
. (7.104)

It is useful to exploit the parameter β as a measure for the relative magnitude of
the sound speed with respect to the Alfvén speed:

β ≡ 2p

B2
= 2p0

B2
0

, so that
c2

b2
= 1

2γβ . (7.105)
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The equilibrium relation (7.74) then fixes the relationship between the parameter
α and the gravitational acceleration ĝ:

α = ρ ĝ

p + 1
2 B2

= ρ0ĝ

p0 + 1
2 B2

0

= γ ĝ

c2 + 1
2γ b2

= 2

1 + β

ĝ

b2
. (7.106)

Also, the wave numbers f (= kz) and g (= ky) are constants now so that the con-
tinuous spectra ω2

S ≡ f 2b2c2/(b2 + c2) and ω2
A ≡ f 2b2, defined in Eq. (7.95),

just degenerate into two points on the ω2-axis.
Through these simplifications, the basic spectral equation (7.91) transforms into

a differential equation with constant coefficients (after elimination of the factor
e−αx ):

N0

ρ0 D0

d

dx

(
e−αx dξ

dx

)
+
[

ω2 − f 2b2 − k2
0 ĝ2 ω2 − f 2b2

D0
− αĝ

+ αĝ
ω2(ω2 − f 2b2)

D0

]
e−αx ξ = 0, (7.107)

where the numerator and denominator coefficients N0 ≡ N (0) and D0 ≡ D(0).
This yields an exponential solution ξ = Ce( 1

2 α±iq)x with a vertical ‘wave number’

q ≡
√

−1

4
α2 + ρ0

N0

[
(ω2 − f 2b2)(D0 + k2

0c2 N 2
B) + αĝ g2b2ω2

]
= n

π

a
(7.108)

that has to satisfy the quantization condition (7.47) because of the model I bound-
ary conditions on ξ . Here, we have introduced the Brunt–Väisäläa frequency NB

again (with an index B on it to avoid confusion with our other symbol N ):

N 2
B ≡ − 1

ρ

(
ρ′ĝ + ρ2ĝ2

γ p

)
= αĝ − ĝ2

c2
= (γ − 1)β − 1

1 + β

ĝ2

c2
. (7.109)

Note that in the HD limit (β → ∞), the expression (7.44) of Section 7.2.3 is re-
covered: N 2

B → (γ − 1)ĝ2/c2 . However, due to the finite β MHD modifications
of the equilibrium, positivity of N2

B is no longer guaranteed now but depends on
the value of β:

N 2
B

{≥ 0 for β ≥ (γ − 1)−1

< 0 for 0 ≤ β < (γ − 1)−1. (7.110)

This permits some analysis of the MHD version of the convective instability, but
one should be aware of the intrinsic limitation of the stability results obtained on
the assumption (7.103) of exponential profiles. Obviously, this assumption is not
dictated by physical necessity but is just made for analytical convenience.
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(a) Dispersion equation and special solutions Inversion of Eq. (7.108) for q yields
the dispersion equation for the gravito-MHD waves:

(ω2− f 2b2)
[
ω4 − k2

eff(b
2 + c2)ω2 + k2

eff f 2b2c2 + k2
0c2 N 2

B

]
+ αĝ g2b2ω2 = 0 ,

(7.111)
where f = k0 cos ϑ and g = k0 sin ϑ (with ϑ indicating the angle between k0 and
B) and we recall the definition of the effective total ‘wave number’,

k2
eff ≡ k2

0 + q2 + 1
4α2 .

Since the dispersion equation (7.111) is a cubic equation in ω2, with three in-
dependent solutions, we immediately conclude that gravity does not increase the
number of degrees of freedom of the MHD system. We had three MHD waves
without gravity and we keep three waves with gravity. These waves transform into
the ordinary MHD waves of Chapter 5 when ĝ → 0 and into the gravito-acoustic
waves of Section 7.2.3 when b → 0 (β → ∞). However, the latter limit deserves
further analysis to clarify how the twofold HD spectral structure of Fig. 7.3 (with
clustering at ω = ∞ and ω = 0) relates to the threefold MHD spectral structure
(with clustering at ω = ∞, ω = ωA and ω = ωS). This will be discussed after we
have obtained the MHD counterpart in Fig. 7.10.

Two misleadingly simple expressions are obtained from the dispersion equa-
tion (7.111) for the limiting cases of purely parallel and purely perpendicular
propagation. For parallel propagation ( k0 ‖ B ⇒ ϑ = 0 , f = k0 , g = 0 ), the
following solutions are obtained:

ω2
1 = k2

0b2 , ω2
2,3 = 1

2k2
eff(b

2 + c2)

[
1 ±

√
1 − 4k2

0c2(k2
effb

2 + N 2
B)

k4
eff(b

2 + c2)2

]
.

(7.112)

These appear to be the unaffected Alfvén waves and two gravitational modifi-
cations of the fast and slow magneto-sonic waves (one of which will give rise to the
Parker instability). For perpendicular propagation ( k0 ⊥ B ⇒ ϑ = 1

2π , f = 0 ,

g = k0) the dispersion equation yields the following solutions:

ω2
1 = 0 , ω2

2,3 = 1
2k2

eff(b
2 + c2)

[
1 ±

√
1 − 4k2

0 N 2
m

k4
eff(b

2 + c2)

]
, (7.113)

where another characteristic expression appears, viz.

N2
m ≡ − 1

ρ

(
ρ′ĝ + ρ2ĝ2

γ p + B2

)
= αĝ − ĝ2

b2 + c2
= (γ − 1)β + 1

1 + β

ĝ2

b2 + c2
,

(7.114)
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which is called the magnetically modified Brunt–Väisäläa frequency; see
Priest [190]. (Note the different sign in the numerator compared to the expres-
sion (7.109) for N 2

B , so that N 2
m > 0 for this class of equilibria, independent of the

value of β.) One of the solutions degenerates into a marginal mode and the two
other solutions are magnetic compressional modifications of the p- and g-modes
given by Eq. (7.49). The dispersion diagram of Fig. 7.3 remains valid for these so-
lutions if we replace the sound speed by the magneto-sonic speed (c2 → b2 + c2),
and adapt the definitions of the Lamb and Brunt–Väisäläa frequencies accordingly.

We have termed the expressions (7.112) and (7.113) misleadingly simple since
they represent limiting cases of intricate mode couplings where the labels A, s
and f may no longer be appropriate (which is why we have used the neutral la-
bels 1, 2 and 3 instead) and they create a false impression on stability (with only
the parallel expression admitting unstable solutions, whereas MHD instabilities
preferentially operate in the perpendicular direction). To obtain the full spectral
picture of the different HD and MHD effects operating in gravitating plasmas, and
their relation to stability, we should study the cubic dispersion equation (7.111)
for oblique propagation. This is done, most effectively, by means of a numerical
representation (exploiting Cardano’s explicit solutions) for a typical choice of the
parameters. Since the latter part of the problem is less trivial than it may appear,
we first pay attention to the construction of dimensionless parameters.

(b) Dimensionless scaling of the dispersion equation and general solutions
When handling the final result of an MHD calculation, like the dispersion equa-
tion (7.111), it is always useful to convert it to a dimensionless form exploiting the
scale independence introduced in Section 4.1.2 to get rid of the trivial dimensional
factors. To that end, we exploit the thickness a (≡ x2 − x1) of the slab as a mea-
sure for lengths, and the density ρ0 and the magnetic field strength B0 at x = 0
as measures for the density and magnetic field determining the (constant) Alfvén
speed b ≡ B0/

√
ρ0. The relevant, dimensionless, parameters then become

ω̄ ≡ (a/b) ω , k̄eff ≡ keffa , k̄0 ≡ k0a , q̄ ≡ qa , ᾱ ≡ αa , (7.115)

in terms of which the implicit form of the dimensionless dispersion equation reads:

ω̄6 −
[
(1 + 1

2γβ)k̄2
eff + k̄2

0 cos2ϑ
]
ω̄4

+
[
(1 + γβ)k̄2

eff cos2ϑ + 1
4(1 + β)(γβ − β + 1 − 2 cos2ϑ) ᾱ2

]
k̄2

0 ω̄2

−
[

1
2γβ k̄2

eff cos2ϑ + 1
4 (1 + β)(γβ − β − 1) ᾱ2

]
k̄4

0 cos2ϑ = 0 . (7.116)
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The solution of this cubic provides the explicit dimensionless dispersion equation:

ω̄ = ω̄(k̄0, ϑ, q̄; ᾱ, β, γ ) . (7.117)

Here, the parameters in front of the semicolon refer to the perturbation and the
ones behind it refer to the equilibrium. For the numerical investigation of the sta-
bility of a particular equilibrium, one could fix the parameters ᾱ, β, γ (= 5/3) to
correspond to that equilibrium, but one should investigate the full range of the pa-
rameters q̄, ϑ, k̄0, since that is what nature does. Using the scale independence in
this manner, we obtain certainty about the completeness of parameter space and
avoid useless scanning of redundant parameters.

In terms of the dimensionless parameters, the ‘singular’ frequencies of Sec-
tion 7.3.2 become

N0 = 0 ⇒ ω̄2
A = k̄2

0 cos2ϑ , ω̄2
S =

1
2γβ

1 + 1
2γβ

k̄2
0 cos2ϑ , (7.118)

D0 = 0 ⇒ ω̄2
s0, f 0 = 1

2 k̄2
0(1 + 1

2γβ)

[
1 ±

√
1 − 2γβ

(1 + 1
2γβ)2

cos2ϑ

]
.

(7.119)

The dimensionless expressions of the two kinds of Brunt–Väisäläa frequencies,
involving the gravitational parameter ᾱ, read:

N̄ 2
B = 1

4 ᾱ2 (1 + β) [(γ − 1)β − 1]
1
2γβ

, N̄ 2
m = 1

4 ᾱ2 (1 + β) [(γ − 1)β + 1]

1 + 1
2γβ

.

(7.120)

Whereas the ‘singular’ frequency expressions (7.118) and (7.119) do not involve
ᾱ, they play a decisive role in the clarification of the MHD spectral structure, as
we will see.

In Fig. 7.10 we show plots of ω̄2(k̄2
0) for oblique propagation (ϑ = π/4) for

thirty values of the vertical mode number n. The value of ᾱ (= 20) has been cho-
sen to be approximately the same as for the HD p- and g-modes of Fig. 7.3. To
demonstrate the connection with the latter diagram, a high value of β is taken in
Fig. 7.10(a), whereas β is chosen to be unity in Fig. 7.10(b) to exhibit the more
usual MHD spectral structure. The singular frequencies ω̄2

A and ω̄2
S are indicated by

long dashes and the magneto-sonic turning point frequencies ω̄2
s0, f 0 are indicated

by short dashes. The three dotted lines represent the zeroth (n = 0) ‘member’ of
each family of solutions. Those are actually not solutions, since they do not satisfy
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Fig. 7.10. Dispersion diagrams for the oblique gravito-MHD modes of an ex-
ponential plane plasma layer. The squared frequencies in normalized units, ω̄2 =
ω̄2(k̄2

0, q̄2, ϑ), are plotted for thirty values of the vertical ‘wave number’ q̄ = nπ
(n = 1, 2, . . ., 30); ᾱ = 20, ϑ = π/4. (a) Near HD regime (β = 50), inset: blow-
up of low-frequencies (slow wave spectrum not yet resolved on this scale); (b) reg-
ular MHD regime (β = 1), inset: unstable slow modes.

the boundary conditions, but they conveniently mark the boundaries of the most
global modes. The spectral structure is determined by how these three families of
solutions for ω̄2 are distributed from n = 1 to n → ∞, where the latter limit yields
the essential spectrum (see Section 7.3.1).
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By means of Fig. 7.10, the following matters may be elucidated:

(1) the relationship between the HD and the MHD spectral structures (Fig. 7.10(a));
(2) the influence of gravity and the essential spectrum in MHD (Fig. 7.10(b));
(3) the convective/Rayleigh–Taylor instability in the presence of a magnetic field.

We will discuss them, one by one.

(1) The HD dispersion equation (7.48) is obtained from the MHD dispersion
equation (7.116) by scaling with β, ω̃2 ≡ 1

2γβ ω̄2 (so that the vertical sizes in
Fig. 7.10(a) are a factor 1

2γβ larger than those in Fig. 7.3), and taking the limit
β → ∞:

ω̃2
[
ω̃4 − k̄2

eff ω̃2 + 1
4 (γ − 1)ᾱ2k̄2

0

]
= 0 . (7.121)

This shows that, in addition to the p- and g-modes discussed in Section 7.2.3, the
marginal horizontal shifts perpendicular to k0, that were discarded in Section 7.2.1,
are needed to obtain a threefold essential spectrum (ω̃2

1,2 ≡ 0, ω̃2
3 ≡ ∞) that may

be connected to the threefold essential spectrum of MHD. In fact, in the limit
β → ∞, the Alfvén and slow mode frequencies ω̄2

A,S → 0, where the displace-

ment ξ becomes dominantly horizontal, whereas ω̄2
F ≡ ∞, corresponding to dom-

inantly vertical displacements. Fig. 7.10(a) shows that, for large but finite β, the
p-modes transform into the fast MHD modes and the g-modes transform into the
Alfvén modes. In addition, a new branch of gravitational slow MHD modes springs
forth in the low-frequency domain. From the inset in Fig. 7.10(a) it is clear that for
the value of the gravitational parameter chosen, ᾱ2 ∼ k̄2

0, the spectrum is strongly
affected by gravity both for the Alfvén modes (infinitely degenerate in the ab-
sence of gravity) and for the slow modes (anti-Sturmian in the absence of gravity).
Notice that there is still quite a lot of empty space left between the lowest Alfvén
curve and ω̄2

A and between the highest slow curve and ω̄2
S , which will be occu-

pied by the curves for n > 30 (not shown) establishing the link with the essential
spectrum.

(2) Decreasing the value of β to unity (Fig. 7.10(b)), the three MHD sub-spectra
(separated by empty evanescent regions containing the turning point frequencies
ω̄2

s0 and ω̄2
f 0) become more clearly distinguished. The three sequences can be la-

belled as fast, Alfvén and slow by virtue of the monotonicity of ω̄2 as a function
of n (to be proved in general in Section 7.4.3), where ω̄2

F , ω̄2
A and ω̄2

S are obtained
in the limit n → ∞. By expanding the solutions of the dispersion equation (7.116)
around these frequencies, one obtains the following expressions for the approach
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to the essential spectrum:

ω̄2
f ≈ (1 + 1

2γβ) q̄2 → ω̄2
F ≡ ∞ ,

ω̄2
a ≈ ω̄2

A + 1
2(1 + β)

(
k̄0

q̄

)2

ᾱ2 sin2ϑ → ω̄2
A , (7.122)

ω̄2
s ≈ ω̄2

S + ω̄4
S − 1

4(1 + β)(1 + β − γβ cos2ϑ) k̄2
0 ᾱ2

(1 + 1
2γβ) q̄2

→ ω̄2
S .

(For the validity of the expressions for ω̄2
a and ω̄2

s , the second term should be much
smaller than the first one so that they are not valid in the limit ϑ → π/2, when ω̄2

A
and ω̄2

S → 0. This subject abounds with non-uniform limits; the reader is strongly
advised to build up experience by studying this dispersion equation in the many
different limits, virtually all of which turn out to be physically relevant.) Whereas
the deviation from the limiting frequencies is determined by the gravitational pa-
rameter ᾱ, the essential spectrum itself is not affected by gravity; it is robust in that
sense.

The expressions (7.122) clearly show how the infinite degeneracy of the Alfvén
frequencies is lifted by gravity so that an anti-Sturmian sequence (ω̄2 ↓ ω̄2

A as
n → ∞) is obtained. The slow frequencies, which are anti-Sturmian (ω̄2 ↓ ω̄2

S)
in the absence of gravity, either become Sturmian (ω̄2 ↑ ω̄2

S), as in the range of
k̄2

0 plotted in Fig. 7.10(b), or remain anti-Sturmian when k̄2
0 is large enough (far

outside the range shown). However, for monotonicity of ω̄2(n) to remain valid,
the transition from Sturmian to anti-Sturmian behaviour should occur at a point
of infinite degeneracy of the slow modes. This is exactly what happens when the
numerator of the second term of the expression (7.122)(c) for ω̄2

s vanishes. Hence,
for this class of equilibria, the sequence of inequalities (7.70) for homogeneous
equilibria is modified to permit both Sturmian and anti-Sturmian slow frequencies
(ω̄2

s < ω̄2
S and ω̄2

s > ω̄2
S), and anti-Sturmian Alfvén frequencies (ω̄2

a > ω̄2
A).

Having obtained a rather compelling way of labelling the MHD sub-spectra,
we now return to our reservations when discussing the simple expressions (7.112)
for parallel propagation. In particular, it would appear logical to associate ω2

1 with
the Alfvén modes and ω2

2 (the solution with the minus sign) with the slow modes.
However, as shown by Adam [3], when N 2

Bc2 > 1
4α2b4 (i.e. β > 2 for γ = 5/3),

the curve for ω2
2(q) crosses the value ω2

1 so that some of the slow frequencies
would exceed the Alfvén frequency, in conflict with the very name ‘slow’. (There
is no conflict with the direction of monotonicity determined by the sign of N0/D0

since ω2
A = ω2

s0 in this case, so that two ‘singular’ frequencies are crossed simul-
taneously.) We eliminate this paradox by considering near parallel propagation
(|ϑ | = ε  1) in the limit ε → 0. For ε �= 0, the two solutions split apart into an
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anti-Sturmian Alfvén branch approaching ω2
A for q → ∞ and an anti-Sturmian

slow branch starting just below ω2
A (= ω2

s0) at q = 0 and approaching ω2
S for

q → ∞. For purely parallel propagation, in the limit ε → 0, these curves develop
a kink at the cross-over point q = qc so that we should call the upper part (consist-
ing of ω2

2 for 0 ≤ q < qc and of ω2
1 for qc ≤ q < ∞) ‘Alfvén’, and the lower part

(consisting of ω2
1 for 0 ≤ q < qc and of ω2

2 for qc ≤ q < ∞) ‘slow’.

(3) The transition to Sturmian monotonicity of the slow modes, exhibited by both
Figs. 7.10(a) and (b), is crucial for the well-posedness of the ideal MHD stability
problem. It guarantees that, for ω̄2 < 0, the largest growth rates are obtained for
the most global (n = 1) instability. (If this were not the case, making the plasma
layer thinner by moving in the walls, would make the growth rates larger, in con-
flict with physical intuition.) For example, as shown by the inset of Fig. 7.10(b),
the modes n = 1 and n = 2 are unstable but all the higher ones (n ≥ 3) are stable
for this particular choice of the parameters.

To systematically investigate the unstable range of parameters, one needs a
general stability criterion, which is usually not a closed expression but a rather
involved procedure like investigating the quadratic form of the energy (Sec-
tion 6.4.4). Exceptionally, for the present case of the exponential equilibrium
(7.103), an instability criterion is easily obtained from the dispersion equation
(7.116). For unstable solutions (ω̄2 < 0), the last coefficient (including the minus
sign) should be positive:(

1
2γβ k̄2

eff cos2ϑ + 1
2γβ N̄ 2

B

)
cos2ϑ ≡

{
1
2γβ(k̄2

0 + q̄2) cos2ϑ + 1
4

[
(1 + β)(γβ −β − 1) + 1

2γβ cos2ϑ
]
ᾱ2
}

cos2ϑ <0.

(7.123)

This expression shows that gravitational instability is obtained when the first term
in square brackets is not only negative (i.e., N̄2

B < 0) but also dominates over the
remaining terms proportional to cos2ϑ : the gravitational instability drive should
dominate over the stabilizing field-line bending contribution of the slow mode per-
turbations. Hence, one expects the worst instability for perpendicular propagation
(ϑ = π/2). On the other hand, recalling from Section 7.2.3 that the exponential
atmosphere is stable in the HD limit (β → ∞), magnetic field perturbations are
apparently essential to create gravitational instability in the MHD domain. Accord-
ingly, the whole potentially negative expression in curly brackets is multiplied by
cos2ϑ so that, at worst, marginal stability is obtained for ϑ = π/2. Consequently,
for this class of equilibria, the MHD version of the Rayleigh–Taylor instability
occurs in a range of near-perpendicular wave vectors k0, excluding the direction
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k0 · B = 0 itself. This range may even include parallel propagation (ϑ = 0) when
N̄ 2

B is negative enough, giving rise to the Parker instability (see below). The stabi-
lizing slow mode contributions also vanish in the extreme limit β → 0, opposite
to HD, when the plasma becomes unstable for all ϑ �= π/2 and any value of ᾱ. We
leave it to the reader to derive the expression for the growth rate for that case.

(c) Parker instability According to Parker [175], “the interstellar magnetic field
in the general neighbourhood of the Sun is, on average, parallel to the plane of
the Galaxy . . . This galactic magnetic field must be confined by the weight of the
gas (plasma) threaded by the field. This interstellar gas-field system is subject to
a universal Rayleigh–Taylor instability such that the interstellar gas tends to con-
centrate into pockets suspended in the field. The cause of the instability may be
thought of as a hydromagnetic self-attraction in the interstellar gas, which may be
ten times larger than the gravitational self-attraction of the gas. It is this hydro-
magnetic self-attraction which produces the observed tendency of the interstellar
gas to be confined in discrete clouds.”

The gas, which consists of electrons, ions and neutrals, is described by means
of the ideal MHD equations, so that the equations of the present section apply. The
instability is investigated for motions in the vertical x-z plane only, i.e. longitudinal
perturbations (ϑ = 0). Parker also includes the effects of a relativistic cosmic ray
particle population on the pressure of the background equilibrium, as well as on
the dynamics. Neglecting the latter, we obtain from Eq. (7.123) the criterion for
the Parker instability in our notation:

k̄2
eff + N̄ 2

B < 0 ⇒ k̄2
0 + q̄2 − 1

4 ᾱ2 · 2(1 + β)(1 + β − γβ) − γβ

γβ
< 0 .

(7.124)

The growth rate of the instabilities may be obtained from Eq. (7.112) (with the
minus sign). This shows the connection with the slow magneto-sonic wave which
is essential for the instability since it involves dominant perturbed flows parallel
to the magnetic field. Hence, ‘the gas tends to drain downward along the magnetic
lines of force into the lowest region along each line’.

Obviously, at this point, numerical values for the wave numbers k0, q and for the
equilibrium parameters α, β and γ have to be chosen to demonstrate the viability
of the mechanism for the description of cloud formation along galactic spiral arms.
We leave the subject here and refer to the original literature [175] and the review
paper by Mouschovias [160] for a discussion of all the astrophysical ramifications.

(d) Interchanges and quasi-interchanges We return to the discussion of the full
dispersion equation (7.116), for ϑ �= 0, since perpendicular and near-perpendicular
propagation properties are of generic interest for the stability of confined plasmas
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in general. Expanding the dispersion equation for ϑ = π/2 ± ε, with ε  1, we
obtain two potentially unstable solutions:

ω̄2 ≈ k̄2
0

k̄2
eff

N̄ 2
m (pure interchanges, ϑ = π/2) ,

ω̄2 ≈ N̄ 2
B

N̄ 2
m

ω̄2
S = (γ − 1)β − 1

(γ − 1)β + 1
k̄2

0 cos2ϑ (quasi-interchanges, ϑ �= π/2).

(7.125)

This reveals one of the limitations of the equilibrium with exponential dependence
of the background quantities. Pure interchanges, with a maximum growth rate at
ϑ = π/2, are trivially stable since they require N̄ 2

m < 0, which is not possible
for these equilibria. However, the second branch, with maximum growth rate at
ϑ �= π/2, may be unstable since it requires N̄ 2

B < 0. They have been called gravi-
tational quasi-interchanges by Newcomb [165]. Both the regular and the modified
Brunt–Väisäläa frequencies, N̄B and N̄m , enter the expression for their growth rate,
indicating the possibility of intricate stability transitions.

In the stability analysis of general equilibria, the crossing of these two branches
of the dispersion equation plays an important role in clarifying the apparent
discrepancies that occur in the stability criteria for gravitational interchanges. We
defer further discussion to Section 7.5.2, when we are no longer restricted to the
choice of uni-directional magnetic field and exponential equilibrium profiles.

7.4 Continuous spectrum and spectral structure

‘Singularity is almost invariably a clue.’

(Bender and Orszag [23], at the beginning of their exposition of
approximate solutions of linear differential equations, quoting Sherlock
Holmes in The Boscombe Valley Mystery by Sir Arthur Conan Doyle.)

7.4.1 Singular differential equations

We have obtained important insight in the structure of the MHD spectrum for
equilibria with exponential profiles, where the ‘singular’ frequencies determined
by N0 = 0 and D0 = 0 are constant. However, in this manner we have evaded the
most important issues of inhomogeneity in MHD, which are, in general, that these
frequencies depend on the coordinate x of inhomogeneity and that the magnetic
field is not uni-directional: continuous spectrum and magnetic shear are essen-
tial constituents of the MHD description of plasmas. We face these issues in this
section and the next.
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When a problem has been reduced to a non-singular ordinary second order
differential equation it may be considered to have been solved, because one can
always obtain the explicit answers numerically to any relevant degree of accuracy.
A specific example has just been given in Section 7.3.3. Since this example actu-
ally hinges on algebraic simplification through the exponential factor, let us briefly
consider how the numerical solution might proceed with a more general inhomo-
geneity. To that end, we write the basic differential equation (7.91) symbolically
as

d

dx

[
P(x; ω2)

dξ

dx

]
− Q(x; ω2) ξ = 0 , (7.126)

where P ≡ N/D , and Q ≡ −[· · ·] with the expression in square brackets as in
Eq. (7.91). This equation is to be solved subject to the model I boundary condi-
tions (7.93). Specifying the background equilibrium by a particular choice of the
profiles ρ(x), p(x), By(x) and Bz(x), satisfying the equilibrium constraint (7.74)
of Section 7.3.2, and prescribing a particular value ω2 = ω2(0) for the unknown
eigenfrequency, the functions P(x; ω2) and Q(x; ω2) are completely determined.
One may then solve Eq. (7.126) by means of a standard numerical library routine,
starting from the left boundary condition ξ(x1) = 0 (where the derivative ξ ′(x1)

may be prescribed arbitrarily since the differential equation is homogeneous and
linear), and stepping towards the right end of the interval x1 ≤ x ≤ x2. Of course,
arriving there, the right boundary condition ξ(x2) = 0 will not be satisfied in gen-
eral. This necessitates the construction of an algorithm for the choice of a new
value ω2 = ω2(1) that will bring the solution closer to satisfying that boundary
condition in the next iteration. This part of the problem is important for the de-
termination of the eigenvalue, but it does not present any difficulty. The point is
that an extremely effective algorithm exists, based on shooting (Section 7.5.1) and
the oscillation theorem (Section 7.4.3), which is valid as long as the ODE is non-
singular. The essential problem left is, therefore, a proper treatment of the singu-
larities of the basic differential equation. Hence, we now resume our discussion of
the singularities that was started in Section 7.3.2(c).

In contrast to the non-singular integration procedure just sketched, where the
boundary conditions determine the solution on the entire interval [x1, x2], a singu-
larity ω2 = ω2

A(x0) or ω2 = ω2
S(x0) at a point x = x0 splits the interval into two

parts that become independent, in a sense to be discussed. Hence, there is no way to
produce the singular problem from the non-singular one by a small perturbation.
There either is a singular point or there is not, and the presence of such a point
changes the analysis completely. For example, in marginal stability theory (where
ω2 ≡ 0, so that the mentioned singularities become zeros of the Alfvén frequency
ωA = F/

√
ρ with F defined in Eq. (7.97)) there is always a distinct difference
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Fig. 7.11. Normal dependence of ω2
A(x) determines: (a) continuous spectrum

singularity; (b) potential cluster point for stable waves; (c) potential cluster point
at marginal stability.

between configurations with magnetic shear (F ′ �= 0) and without (F ′ = 0), where
the limit F ′ → 0 produces complicated boundary layers. We will analyse this in
Section 7.5.

Before we delve into the singularity theory of Eq. (7.126), an explicit example
may illustrate the different kinds of singularities encountered in MHD of inhomo-
geneous plasmas. For that purpose, we concentrate on the Alfvén singularity. In
Fig. 7.11 three generic cases are depicted for the distribution of ω2

A(x), where the
slow singularities ω2

S(x) (not shown) may be assumed to be well separated from
the Alfvén ones (cases (a) and (b)), but they necessarily coalesce at the marginal
point (case (c)).

(a) If ω2
A(x) is monotonic, any choice of ω2 in the range ω2

A(x1) ≤ ω2 ≤ ω2
A(x2)

will lead to a singular point x1 ≤ x0 ≤ x2 where the Alfvén factor of the function
P may be expanded as follows:

ω2 − ω2
A ≈ −(ω2

A
′
)0 (x − x0) ⇒ P ∼ x − x0 . (7.127)

This range will determine the continuous spectrum {ω2
A} of Alfvén modes, and

similarly for the frequency range {ω2
S} of the slow modes, as will be shown in

Section 7.4.2.

(b) If ω2
A(x) is not monotonic, the continuous spectrum develops a maximum or

minimum at some point x0 where it starts to fold over onto itself. Choosing ω2 to
correspond to that extremum permits expansion of the Alfvén factor as

ω2 − ω2
A ≈ −1

2 (ω2
A

′′
)0 (x − x0)

2 ⇒ P ∼ (x − x0)
2. (7.128)

The value ω2 = ω2
A(x0) corresponds to an internal edge of the continuous spec-

trum which may become a cluster point of the discrete spectrum, depending on
further conditions, as will be discussed in Section 7.4.4.

(c) For marginal stability (ω2 = 0), such candidate cluster points always occur
in sheared magnetic fields at an interchange point F2(x0) = 0 , where both the
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Alfvén and the slow continuum reach the origin: ω2
S ≡ γ p(γ p + B2)−1ω2

A = 0 .
Since, according to Eq. (7.96), also ω2

s0 ≈ ω2
S there, the factor ω2

S of the numerator
N (ω2 = 0) is cancelled by the leading order of the factor ω2

s0 of the denominator
D(ω2 = 0) so that the Alfvén factor determines the behaviour at the singularity:

−ω2
A ≈ −1

2 (ω2
A

′′
)0 (x − x0)

2 = −(ωA
′)2

0 (x − x0)
2 ⇒ P ∼ (x − x0)

2 .

(7.129)
By means of this expansion, the conditions for local interchange stability may be
derived, as will be demonstrated in Section 7.5.2.

We are now prepared to appreciate the physical significance of the different steps
in the following mathematical analysis of Eq. (7.126).

Singularity of this differential equation is best discussed in terms of the standard
form used in classical texts (i.e. dating from the pre-electronic computing era,
e.g. Ince [115]) as well as in modern ones (e.g. Bender and Orszag [23]) on linear
differential equations:

ξ ′′ + P ′

P
ξ ′ − Q

P
ξ = 0 . (7.130)

This equation is non-singular if the two functions P ′/P and Q/P are analytic on
the whole domain of interest, i.e. in a finite region of the complex z-plane con-
taining the interval x1 ≤ x ≤ x2 of the real axis (where the prime is redefined as
differentiation with respect to z). Theoretically, the solution may be carried from
(ordinary) point to (ordinary) point by Taylor series expansion with a radius of
convergence determined by the distance to the nearest singularity of the two men-
tioned functions. Hence, such singularities interfere with the numerical procedure
described earlier. Obviously, the zeros of

N ≡ ρ(b2+ c2)
[
ω2 − ω2

A(x)
][

ω2− ω2
S(x)

]
∼ (x − x0)

l , (l = 1 or l = 2) ,

(7.131)

produce singularities of the kind P ′/P ∼ z−1 and Q/P ∼ z−l . Here, z is the com-
plex continuation of the real variable x − x0, which is the distance to a point x0

where either ω2
A or ω2

S coincides with the eigenvalue parameter ω2. We have seen
above that it is sufficient for virtually all cases of interest to consider l = 1 and
l = 2 only, i.e. regular singularities. In the neighbourhood of such singularities,
the differential equation may be written as

ξ ′′ + 1

z
p(z) ξ ′ − 1

z2
q(z) ξ = 0 , (7.132)
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where p(z) and q(z) are analytic functions with the following Taylor expansion:⎧⎪⎪⎨
⎪⎪⎩

p(z) ≡ z
P ′

P
= p0 + p1z + · · ·

q(z) ≡ z2 Q

P
= q0 + q1z + · · ·

, where

{
p0 = 1 , q0 = 0 (l = 1)

p0 = 2 , q0 �= 0 (l = 2).

(7.133)

The behaviour of the solutions in the neighbourhood of such points may be ob-
tained by means of the Frobenius method of expansion.

The Frobenius expansion about a regular singularity assumes

ξ = zν
∞∑

n=0

anzn , (7.134)

where, in general, the index ν is not an integer and may even be complex. The
values of ν and the coefficients an are obtained by substituting the expansion into
the differential equation (7.132):

∞∑
n=0

(ν + n)(ν + n − 1)anzν+n−2 + (p0 + p1z + · · ·)
∞∑

n=0

(ν + n)anzν+n−2

−(q0 + q1z + · · ·)
∞∑

n=0

anzν+n−2 = 0 . (7.135)

Balancing the different powers yields the following sequence of equalities:

zν−2 : [ν2 + (p0 − 1)ν − q0] a0 = 0 ,
(7.136)

zν−1 : [(ν + 1)ν + p0(ν + 1) − q0] a1 = (−νp1 + q1) a0 , etc.

Hence, in general, the two solutions ξ1 and ξ2 start off with a term a0zν1,2 , where a0

is arbitrary and the indices ν1,2 are the solutions of the indicial equation, obtained
by putting the factor in square brackets of (7.136)(a) equal to zero. The coefficients
an (n ≥ 1) follow by recursion from the relations (7.136)(b), etc. The solutions of
the indicial equation, and hence the solutions ξ1 and ξ2 themselves, are qualita-
tively different for the case (a) and the cases (b), (c) illustrated in Fig. 7.11:

l = 1 (continuous spectrum) : ν1 = ν2 = 0 , (7.137)

l = 2 (cluster points) : ν1,2 = −1
2 ± 1

2

√
1 + 4q0 . (7.138)

For the cluster point analysis (l = 2), this is virtually sufficient information. It will
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be completed in Section 7.4.4 for the waves (case (b)) and in Section 7.5.2 for
the marginal states (case (c)). For the analysis of the continuous spectrum (l = 1),
however, we are not done at all since we have just obtained one value (ν = 0) cor-
responding to an analytic function (called the ‘small’ solutions) which obviously
does not exhibit singular behaviour. The ‘large’ solution, revealing the singularity,
is to be obtained yet.

To complete the analysis for the first case, with equal indices ν1 = ν2 = 0, the
quoted literature (Ince [115], p. 397, Bender and Orszag [23], p. 73) shows how
the ‘large’ solution is obtained. This involves the special trick of writing the small
solution obtained as a function of ν, not substituting the value ν1 = 0 yet, differ-
entiating it with respect to ν, and then inserting the value ν = 0. This produces a
second, independent, solution containing a logarithmic contribution, since

∂

∂ν
(zν) = ∂

∂ν

(
eν ln z

)
= zν ln z → ln z for ν → 0 . (7.139)

Hence, in the neighbourhood of the regular singular point z = x − x0 = 0, two
solutions are obtained:

ξ1 = u(z) , u = u0 + u1z + · · · , (‘small’ solution) ,
(7.140)

ξ2 = u(z) ln z + v(z) , v = v0 + v1z + · · · , (‘large’ solution) ,

where the explicit form of the coefficients un and vn is much less important than the
appearance of the logarithmic factor. The latter introduces a branch point at z = 0
where a decision is to be taken on how to continue the solution past this point. This
choice depends on the physical context in which the singularity is encountered.

In the solution of the initial value problem by means of the Laplace transform, as
sketched in Section 6.3.2 and elaborated in Chapter 10, the parameter ω is assumed
to be complex and the continuation is obtained by deforming the Laplace contour
around the singularity. This procedure is completely analogous to that exploited
by Landau in his solution of the initial value problem for the Vlasov equation
(Section 2.3.3), where the velocity variable v of the Vlasov problem corresponds
to the spatial coordinate x of the MHD problem.

In the determination of the spectrum of ideal MHD, since there is no dissipation,
ω2 remains real, so that we should consider the solutions (7.140) along the real
axis, exploiting the principal value of ln z, i.e. ln |x − x0|. The logarithmic singu-
larity at x = x0 then divides the real x-interval in two parts such that the solution ξ

obtains just enough additional freedom (compared to that at an ordinary point) to
satisfy the boundary conditions for any value of ω2. This produces the continuous
spectrum, as will be demonstrated in the next section.
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	 Apparent singularities D = 0 singularities occur when either one of the factors ω2 −
ω2

s0 or ω2 − ω2
f 0 vanishes on the interval:

D ≡
[
ω2 − ω2

s0(x)
][

ω2 − ω2
f 0(x)

]
∼ x − x0 ⇒ P ∼ (x − x0)

−1, Q ∼ (x − x0)
−2.

(7.141)

This also produces singularities of the kind P ′/P ∼ z−1 and Q/P ∼ z−1. The coefficients
of the analytic functions p(z) and q(z) then yield solutions of the indicial equation with
an integer difference between the indices:

p0 = −1 , q0 = 0 ⇒ ν1 = 2 , ν2 = 0 . (7.142)

This implies that only one ‘small’ solution ∼ z2 is obtained, whereas the other one again
contains a logarithmic contribution, unless the coefficients of the expansion of p(z) and
q(z) possess the very special property

(p1 − q1)q1 − (p0 − q0)q2 = 0 . (7.143)

In that case, none of the solutions is singular; see Ince [115], p. 404. The MHD wave
equation (7.91) turns out to have precisely that property! This follows from the way in
which the expression D appears in the functions P and Q:

P ≡ N

D
, Q ≡ −U − V

D
−
(

W

D

)′
, (7.144)

where the explicit expressions for U , V , and W can be read off from Eq. (7.91). These
coefficients are related by

W 2 + N V = ρ2ĝ2(ω2 − f 2b2)2 D → 0 as x → x0 . (7.145)

Translated in terms of the functions p and q , this produces the equality (7.143). Conse-
quently, the D = 0 singularities are apparent. 


7.4.2 Alfvén and slow continua

For simplicity, we choose the equilibrium quantities such that the singular fre-
quency functions ω2

A(x) and ω2
S(x) are well separated and monotonically in-

creasing, as in Fig. 7.11(a). We will prove that the collection of frequencies
ω2 ∈ {ω2

A(x)| x1 ≤ x ≤ x2} and ω2 ∈ {ω2
S(x)| x1 ≤ x ≤ x2} constitutes the con-

tinuous spectrum, i.e. the set of improper eigenvalues of the MHD force operator
ρ−1F , with associated non-square integrable ‘eigenfunctions’.

We concentrate again on the Alfvén singularities ω2 ∈ {ω2
A(x)}, noting that

the analysis for the slow singularities ω2 ∈ {ω2
S(x)}, lying in a narrow band be-

low the Alfvén ones, is completely analogous. For a given value of ω2 = ω2
0

from this set, the ODE (7.91) is singular (N = 0) at the position x = x0 where
ω2

A(x0) = ω2
0, as shown once more in Fig. 7.12(a). The monotonically increasing

function ω2
A = ω2

A(x) may be inverted to give a monotonically increasing func-
tion xA = xA(ω2) , as illustrated in Fig. 7.12(b). In this manner, the position x
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Fig. 7.12. Inversion of the Alfvén frequency function: (a) ω2
A = ω2

A(x) ;
(b) xA = xA(ω2) .

of the singularity becomes a function of ω2. As we have seen in Section 7.4.1,
expansion about the singularity gives the dominant coefficient of the differential
equation:

ω2 − ω2
A(x) ≈ −(ω2

A
′
)0(x − x0) = −(ω2

A
′
)0 s , (7.146)

where, since everything is real now, the complex variable z is replaced by the real
variable s, which is the distance to the singularity:

s ≡ x − x0 = x − xA(ω2) . (7.147)

Instead of the complex expressions (7.140), we now obtain real independent solu-
tions of the form⎧⎨

⎩
ξ1 = u(s; ω2) (‘small’ solution) ,

ξ2 = u(s; ω2) ln |s| + v(s; ω2) (‘large’ solution) , (7.148)

to the right (s > 0) as well as to the left (s < 0) of the singularity.
The most important consequence of the singularities N = 0 of the differential

equation (7.91) is that certain jumps of the solutions are permitted, so that satis-
faction of the boundary conditions (7.93) is always possible for ω2 in the singular
domain. To prove this, we exploit the series expansions just obtained. Because of
the assumed monotonicity of ω2

A(x), the interval (x1, x2) contains only one singu-
lar point for a fixed value of ω2 so that the general solution may be written as

ξ =
[

A1u + C1(u ln |s| + v)
]

H(−s) +
[

A2u + C2(u ln |s| + v)
]

H(s) ,

(7.149)

where H(s) is the Heaviside step function (defined as H ≡ 0 for s < 0 and H ≡
1 for s > 0), and we have to determine the values of A1, C1, A2, and C2 . Of
course, for a non-singular second order differential equation the solution should
be continuous, so that A1 = A2 and C1 = C2 . We will now prove that the small
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solution may jump whereas the large solution has to be continuous: A1 �= A2 ,
C1 = C2 .

	 Proof Write the original differential equation (7.91) as

(Pξ ′)′ − Qξ = 0 , (7.150)

where

P ≈ P1s + · · · , Q ≈ Q0 + · · · .

Substitution of a ‘small’ solution ξ = u H(s) leads to the following expressions,
successively:

ξ ′ = u′ H(s) + uδ(s) ,

Pξ ′ = Pu′ H(s) + Puδ(s) = Pu′ H(s) ,

(Pξ ′)′ = (Pu′)′ H(s) + Pu′δ(s) = (Pu′)′ H(s) ,

(Pξ ′)′ − Qξ = [
(Pu′)′ − Qu

]
H(s) = 0 ,

by virtue of the fact that u(s) is a solution of Eq. (7.150), and properties such as H ′(s) =
δ(s) and sδ(s) = 0 . Consequently, A1u H(−s) is a solution of Eq. (7.150) but, likewise,
A2u H(s) is also a solution, so that the small solutions left and right are totally unrelated:
A1 �= A2 . Performing a similar analysis for the large solution, one finds that the term
u ln |s|H(s) produces a δ-function contribution that does not vanish, so that C1 = C2 ,
QED. 


Consequently, the general solution to Eq. (7.150) may be written as

ξ = A1u H(−x + xA) + A2u H(x − xA) + C [u ln |x − xA| + v] . (7.151)

Due to the fact that we have now three (rather than the usual two) constants avail-
able, the two boundary conditions ξ(x1) = 0 and ξ(x2) = 0 may always be satis-
fied for ω2 ∈ ω2

A(x) , i.e. when there is a singular point on the interval (x1, x2) .
By imposing these two boundary conditions, the two constants A1 and A2 may
be eliminated so that the improper eigenfunctions for an Alfvén continuum mode
become:

ξA(x; ω2) = C(ω2)

{[
ln

x − xA(ω2)

x1 − xA(ω2)
− v1(ω

2)

u1(ω2)

]
u(x; ω2)H(−x + x A(ω2))

+
[

ln
x − xA(ω2)

x2 − xA(ω2)
− v2(ω

2)

u2(ω2)

]
u(x; ω2)H(x − xA(ω2))+v(x; ω2)

}
,

(7.152)

where

u(x; ω2) ≡ u(x − xA(ω2)) , u1(ω
2) ≡ u(x1; ω2) , etc.
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Fig. 7.13. Schematic representation of the (a) normal and (b) tangential compo-
nents of the improper Alfvén and slow continuum ‘eigenfunctions’.

The factor C(ω2) may be fixed by ‘normalizing’ the eigenfunctions:

〈 ξA(x; ω2), ξA(x; ω̃2) 〉 = δ(ω2 − ω̃2) . (7.153)

Similar expressions may be derived for the improper eigenfunctions of the slow
continuum modes. Therefore, ‘solutions’ have been obtained which satisfy the
boundary conditions (see Fig. 7.13(a)) for any ω2 ∈ {ω2

A(x)} and ω2 ∈ {ω2
S(x)},

QED. The continuous ranges of frequencies [ ω2
A min, ω

2
A max ] and [ ω2

S min, ω
2
S max ]

are called the Alfvén continuum and the slow magneto-sonic continuum, respec-
tively.

This appears to establish the existence of two continuous spectra, but the most
characteristic part of the eigenfunctions is not yet discussed. Actually, if we re-
strict the analysis to the normal component of that function, we cannot even prove
that we have ‘improper’ eigenfunctions because the singularities ln |s| and H(s)
are square integrable. The dominant, non-square integrable, part of the ‘improper’
eigenfunction resides in the tangential components η and ζ , given by Eqs. (7.90),
which involve the derivative ξ ′ � ξ/a . From Eq. (7.151), this derivative produces
a 1/(x − x A) singularity and a δ-function:

ξ ′
A = C

{[
P 1

x − xA(ω2)
− A1 − A2

C
δ(x − xA(ω2))

]
u

+
[

A1

C
H(−x + x A(ω2)) + A2

C
H(x − xA(ω2))+ ln |x − xA(ω2)|

]
u′+v′

}

≈ C(ω2)

{
P 1

x − xA(ω2)
+ µ(ω2) δ(x − xA(ω2))

}
, (7.154)
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where P indicates that the principal part is to be taken when integrating this func-
tion, and µ(ω2) is a function involving the boundary data of u and v:

µ ≡ −A1 + A2

C
= ln

∣∣∣∣ x2 − xA(ω2)

x1 − xA(ω2)

∣∣∣∣− v1(ω
2)

u1(ω2)
+ v2(ω

2)

u2(ω2)
. (7.155)

For the Alfvén continuum modes, the tangential component η perpendicular to the
magnetic field dominates (since ξ ′

A is multiplied by ω2 − ω2
A in the expression for

ζ ):

ηA ≈ g(b2 + c2)(ω2
A − ω2

S)

D(ω2
A)

ξ ′
A = −1

g
ξ ′

A � ξA ∼ ζA for ω2 → ω2
A .

(7.156)
Similarly, for the slow continuum modes, the component ζ parallel to the magnetic
field dominates (since ξ ′

S is multiplied by ω2 − ω2
S in the expression for η):

ζS ≈ f c2(ω2
S − ω2

A)

D(ω2
S)

ξ ′
S = − 1

f

b2 + c2

c2
ξ ′

S � ξS ∼ ηS for ω2 → ω2
S ,

(7.157)

where the formal expression for ξ ′
S is obtained from Eq. (7.154) by replacing the

subscripts A by S. The tangential components of these ‘improper’ eigenfunctions
are represented schematically in Fig. 7.13(b).

In conclusion: the continuum modes are characterized by a non-square inte-
grable tangential component perpendicular to the magnetic field for the Alfvén
modes and a non-square integrable parallel tangential component for the slow
modes. This shows the extreme anisotropy of ideal MHD waves as regards mo-
tion inside and across magnetic surfaces. This is a quite general property which
remains true for other plasma geometries, like cylindrical and toroidal ones.

We appear to have obtained the generalization of the essential spectrum, rep-
resented by the three cluster point singularities for the simpler inhomogeneous
plasmas discussed in Section 7.3.3. What about the fast magneto-sonic singulari-
ties in the high frequency limit? In that limit, as we will show below, ξ ′ also blows
up but the normal component itself still dominates over the tangential components:

ξ ′
F � ξF � ηF ∼ ζF for ω2 → ω2

F ≡ ∞ . (7.158)

Hence, the three expressions (7.156)–(7.158) for the slow and Alfvén continuum
modes and the fast cluster modes together establish the generalization for inho-
mogeneous plasmas of the orthogonality property (5.63) and of the asymptotic
properties (5.88) for the three MHD waves that were introduced in Chapter 5.
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	 Fast magneto-sonic cluster point singularities For large ω2, the derivatives with
respect to x also become large, so that the differential equation for ξ reduces to

ξ ′′ + ω2

b2 + c2 ξ = 0 . (7.159)

The solution of this equation may be obtained by means of WKB analysis; see e.g. Bender
and Orszag [23], p. 484. The leading order solution reads:

ξ ≈ C(b2 + c2)1/4 sin
[
ωn

∫ x

x1

(b2 + c2)−1/2 dx
]
, ωn ≈ nπ∫ x2

x1

(b2 + c2)−1/2 dx
.

(7.160)

Although the sequence (7.160) contains functions of finite norm, it does not converge to an
element of Hilbert space for n → ∞ (see Section 6.3.1). Hence, the fast cluster point ω2

F ≡
limn→∞ ω2

n = ∞ belongs to the continuous or essential spectrum. From these expressions,
the singular behaviour (7.158) of the fast magnetosonic modes follows directly. 


	 Historical note It is clear now that the proper description of the singularities of the
MHD wave equation is crucial for the theory of inhomogeneous plasmas. The correct pic-
ture gradually evolved, mostly from the analysis of the analogous problem in cylinder
geometry with various simplifying assumptions. The presence of a continuous spectrum
of Alfvén waves in MHD was pointed out by Uberoi [233], who also drew attention to
the analogy with the problem of electrostatic oscillations in inhomogeneous cold plas-
mas (another fluid model). The latter was analysed by Barston [16] by means of singular
(‘improper’) normal modes, like the Van Kampen modes [237] in the Vlasov description
of plasmas, and by Sedláček [206] by means of the Laplace transform of the initial value
problem, like in the celebrated Landau solution of the damping [136]. All this made it
clear that these kinds of singularities are not restricted to the microscopic velocity space
details of a kinetic description of plasmas, but also occur in fluid descriptions when the
plasma is inhomogeneous in ordinary space. (Of course, always with the caveat, also made
in Section 7.2.4 on the analogy with quantum mechanical spectral theory, that the ana-
logy is through the mathematics of linear operators, not necessarily through the physics.)
Accordingly, the possibility of dissipationless damping of Alfvén waves was pointed out
by Tataronis and Grossmann [225], and the complementary theory of heating by Alfvén
waves was developed by Chen and Hasegawa [54]. From there, applications to laboratory
and astrophysical plasmas multiplied. These topics will be discussed in Chapters 10 and 11.
In the meanwhile, Grad [99] had put the subject, including stability, in the context of MHD
spectral theory, pointing out the presence of four types of singularities (for N = 0 and
D = 0) and, unfortunately, associating a continuous spectrum with each of them. The mis-
take concerning the D = 0 singularities was pointed out immediately by Appert, Gruber
and Vaclavik [9] (by means of the system of first order differential equations discussed in
Section 7.3.2), but Grad maintained that this was insufficient proof since a full construc-
tion of the resolvent operator (appearing in the solution of the initial value problem; see
Section 6.3) would be required. Such a proof was given by Goedbloed in a memorandum,
that was only published 24 years later [85] when the mistake was repeated by other
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authors. Since the form of the resolvent operator is another manifestation of the consis-
tency of MHD spectral theory, it is reproduced in Section 10.2. 


7.4.3 Oscillation theorems

In Section 7.3.1, we have shown that the sequence of inequalities (7.70) already
exhibits the central position of the essential spectrum for homogeneous plasmas,
where it just consists of the single frequencies ω2

S , ω2
A, and ω2

F . In the MHD wave
equation (7.91) for inhomogeneous plasmas, these frequencies returned in the form
of the genuine singularities ω2

S(x) and ω2
A(x), which give rise to continuous spec-

tra consisting of their values on the entire plasma interval x1 ≤ x ≤ x2. In addi-
tion, certain apparent singularities ω2

s0(x) and ω2
f 0(x) turned up, which could be

proved not to give rise to logarithmic contributions in the normal component, nor to
any non-square integrable contributions in the tangential components, so that they
do not represent continuous spectra. In this section, we will get to appreciate the
positive role they play in the determination of the spectral structure. For inhomo-
geneous plasmas, similar to the inequalities (7.70) (of course, omitting the discrete
eigenvalues ω2

s , ω2
a , ω2

f since they are unknown now), one easily demonstrates that
the mentioned frequencies are well ordered at each position x of the plasma slab:

0 ≤ ω2
S(x) ≤ ω2

s0(x) ≤ ω2
A(x) ≤ ω2

f 0(x) ≤ ω2
F = ∞ . (7.161)

Hence, for a weakly inhomogeneous plasma, or for a thin slice of the plasma not
containing points F = 0 (since ωS , ωs0, and ωA coalesce there), the values of the
frequencies (7.161) on the interval x1 ≤ x ≤ x2 might be distributed along the real
ω2-axis as schematically illustrated in Fig. 7.14. In the present section, we wish to
determine how the empty spaces of this diagram will be filled up (or not) by the
discrete spectrum.

(a) Sturm’s theorems To do that, we need to study the qualitative behaviour of the
eigenfunctions ξ of the differential equation (7.91), subject to the boundary condi-
tions (7.93), as a function of the eigenvalue parameter ω2. The kind of qualitative
behaviour we envision is exemplified by the classical Sturm–Liouville system (see,
e.g. Morse and Feshbach [159], p. 719) which is described by the non-singular

0
ω    2

{    }ω   2
S A{    }ω   2

{    }ω   2
s0

{    }ω   2
f0

Fω    2
 = ∞

Fig. 7.14. Schematic representation of the ranges of the genuine (black) and
apparent (grey) singularities of the MHD spectral equation for a weakly inhomo-
geneous plasma.



358 Waves and instabilities of inhomogeneous plasmas

••

ξb ξa

•
x2x1

Fig. 7.15. Sturm’s separation theorem.

second order differential equation

(Pξ ′)′ − (Q − λR) ξ = 0 , (7.162)

where λ is the eigenvalue parameter, P , Q and R are functions of x , with P > 0
and R > 0.

Let ξ(1) and ξ (2) be two linearly independent solutions of Eq. (7.162) for a fixed
value of λ. Denote the two linear combinations of these two solutions by

ξa = a1ξ
(1) + a2ξ

(2) , ξb = b1ξ
(1) + b2ξ

(2) . (7.163)

If b2/b1 �= a2/a1 , these solutions are linearly independent, i.e. the Wronski deter-
minant ξaξ

′
b − ξ ′

aξb �= 0 on the interval considered. Sturm’s separation theorem
states that the zeros of these solutions separate each other: if x1 and x2 are consec-
utive zeros of ξa, then ξb vanishes once in the open interval (x1, x2) (Ince [115],
p. 223; see Fig. 7.15). (Temporarily, we use x1 and x2 to indicate a sub-interval of
the complete interval.)

Proof Suppose ξb does not vanish on (x1, x2) . Then, x1 and x2 are consecutive
zeros of the finite function ξa/ξb . Hence, d(ξa/ξb)/dx must vanish at least once
on the interval. However,

d

dx

(
ξa

ξb

)
= ξaξ ′

b − ξ ′
aξb

ξ2
b

(7.164)

cannot vanish because that would imply that the Wronski determinant vanishes
somewhere. This contradiction proves that ξb must vanish at least once. It cannot
vanish more than once since then we could interchange the roles of ξa and ξb and
again get a contradiction. Hence, ξb vanishes once, and only once; QED.

As far as the oscillatory properties of Eq. (7.162) are concerned, one could say
that all solutions oscillate equally fast if λ is kept fixed. Considering solutions of
Eq. (7.162) for different values of λ , one may compare their oscillatory behaviour
by means of Sturm’s fundamental oscillation theorem stating the following. If x1

and x2 are two consecutive zeros of the function ξ1 satisfying

(Pξ ′
1)

′ − (Q − λ1 R) ξ1 = 0 , (7.165)
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x•

x2x1

ξ1

 ξ2

Fig. 7.16. Sturm’s oscillation theorem.

then the solutions ξ2 of the equation

(Pξ ′
2)

′ − (Q − λ2 R) ξ2 = 0 (7.166)

oscillate faster than ξ1 if λ2 > λ1 (Ince [115], p. 224; see Fig. 7.16). Here, ‘faster
oscillating’ means that the solution ξ2 that vanishes at the left endpoint x = x1

vanishes at least once on the interval (x1, x2). (Note that λ1 is an eigenvalue if the
interval (x1, x2) corresponds to the complete interval of the problem.)

Proof Multiply Eq. (7.165) by ξ2 and Eq. (7.166) by ξ1, integrate over (x1, x2) and
subtract: ∫ x2

x1

[
ξ2(Pξ ′

1)
′ − ξ1(Pξ ′

2)
′
]

dx =
[
ξ2 Pξ ′

1 − ξ1 Pξ ′
2

]x2

x1

= (ξ2 Pξ ′
1

)∣∣∣
x=x2

= (λ2 − λ1)

∫ x2

x1

R ξ1ξ2 dx . (7.167)

Suppose that the solution ξ2, which vanishes at x = x1, does not vanish in the
open interval (x1, x2). Then, the LHS of Eq. (7.167) is negative, whereas the RHS
is positive. This contradiction proves that ξ2 has to vanish at least once on the open
interval (x1, x2); QED.

Sturm’s oscillation theorem gives the behaviour of the solutions of the differen-
tial equation (7.162) on any sub-interval of the interval (x1, x2). Such an equation,
with the property that the solutions oscillate faster upon increasing the eigenvalue
parameter λ, is called Sturmian. We will call differential equations that have the
opposite property (e.g. Eq. (7.162) when the sign of λ is reversed) anti-Sturmian.
An immediate consequence of these properties is that one can label different dis-
crete modes by just counting the number of nodes on the interval (x1, x2). If
the system is Sturmian the eigenvalue λ is an increasing function of the num-
ber of nodes n , whereas for anti-Sturmian systems λ decreases as a function of
n (Fig. 7.17). The classical example of the first kind of behaviour is the vibrat-
ing string with characteristic wave speed c and length L , described by the equa-
tion c2∂2ξ/∂x2 = ∂2ξ/∂t2 = −ω2ξ , having the eigenvalues ω2 = n2π2c2/L2 .
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Sturmian

λx x x x
n =1   2   3 .....

anti-Sturmian

  3   2 n =1.....
λxxxx

ξ

x

n =1

n =2
x1 x2

Fig. 7.17. Sturmian and anti-Sturmian dependence of the eigenvalue λ on the
number of nodes of the eigenfunctions.

Examples of the second kind of behaviour are much less familiar. However, in
Sections 7.2.3 and 7.3.3, we have encountered some significant ones for the HD
and MHD waves in a gravitating exponential atmosphere. We will now generalize
these properties to arbitrary inhomogeneity.

(b) Oscillation theorem for the MHD wave equation Turning to the MHD wave
equation (7.91), it is immediately clear that it is not an equation of the simple
Sturm–Liouville kind (7.162). Nevertheless, we may ask whether it still has the
Sturmian, or anti-Sturmian, property. It is clear that in order to prove such a prop-
erty we certainly have to exclude regions of ω2 corresponding to the continuous
spectrum, where the differential equation becomes singular, i.e. where the coeffi-
cient N/D in front of the highest derivative develops zeros (N = 0). Moreover,
it turns out that we also will have to exclude the regions of ω2 corresponding
to the apparent singularities, where N/D becomes infinite (D = 0). Let us then
study the monotonicity properties, if any, of the discrete spectrum of Eq. (7.91)
for values of ω2 outside the continua {ω2

A} and {ω2
S} and also outside the ranges

{ω2
s0} and {ω2

f 0} shown in Fig. 7.14. For those values of ω2 the wave equation is

free of both genuine and apparent singularities, but the way in which ω2 appears
in the equation makes it virtually impossible to prove anything directly from the
equation itself. The reason is, of course, that the wave equation (7.91) has been de-
rived by reducing the original vector eigenvalue problem (with linear dependence
on ω2) to a scalar one. In such a case, the only hope to prove general properties
about the spectrum is to go back to first principles and, in particular, to exploit the
only general property of the original operator ρ−1F that we have, viz. that it is
self-adjoint.

We prove the following theorem (Goedbloed and Sakanaka [89]). If x1 and x2

are two consecutive zeros of the function ξ1 satisfying the MHD wave equation
(7.91) for ω2 = ω2

1, then the solutions ξ2 of the MHD wave equation for ω2 = ω2
2
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oscillate faster than ξ1 if ω2
2 > ω2

1 and N/D > 0 (Sturmian), and slower if
N/D < 0 (anti-Sturmian).

Proof Recall the proof of self-adjointness of the operator ρ−1F in Section 6.2.3.
In particular, let us start from the expression (6.57) for the inner product involving
the two displacement vectors ξ and η, which we now replace by ξ1 and ξ2 :

〈ξ2, ρ
−1F(ξ1)〉−〈ξ1, ρ

−1F(ξ2)〉= 1
2

∫
n · ξ2

(
γ p∇ · ξ1+ ξ1 · ∇ p−B · Q1

)
d S

− 1
2

∫
n · ξ1

(
γ p∇ · ξ2 + ξ2 · ∇ p − B · Q2

)
d S. (7.168)

For simplicity, we here exploit the inner product definition (6.35) but assume the
vectors to be real. The surface S bounding the plasma actually consists of two sur-
faces, viz. the planes x = x1 and x = x2. Note that the expressions in the brackets
on the RHS correspond to the Eulerian perturbation � of the total pressure defined
in Eq. (7.98), and reduced in Eq. (7.99). Therefore, we may write

〈ξ2, ρ
−1F(ξ1)〉 − 〈ξ1, ρ

−1F(ξ2)〉 = −1
2

∫
n · ξ2�(ξ1) d S + 1

2

∫
n · ξ1�(ξ2) d S

= − 1
2

[
ξ2 �(ξ1)

]x2

x1
+ 1

2

[
ξ1 �(ξ2)

]x2

x1

= 1
2

[
ξ2

N

D

∣∣∣∣
ω2

1

ξ ′
1

]x2

x1

− 1
2

[
ξ1

N

D

∣∣∣∣
ω2

2

ξ ′
2

]x2

x1

,

(7.169)

where we have suppressed the (infinite) area A ≡ ∫ d S of the y-z plane by tacitly
renormalizing the quadratic forms.

Let us now consider two solutions ξ1 and ξ2 of the MHD normal mode equation
corresponding to different values ω2

1 and ω2
2 of the eigenvalue parameter:

F(ξ1) = −ρω2
1 ξ1 ,

F(ξ2) = −ρω2
2 ξ2 , (7.170)

but not necessarily satisfying the boundary conditions (7.93). Then, the LHS of
Eq. (7.169) transforms to

(ω2
2 − ω2

1) 〈ξ1, ξ2〉 .

Consider a sub-interval (x1, x2) of the complete physical interval, temporarily ex-
ploiting x1 and x2 again to indicate two consecutive zeros of the normal component
ξ1 of ξ1. Let ω2

2 be close to ω2
1, so that ξ2 is close to ξ1 and, hence, 〈ξ1, ξ2〉 > 0 .

We will also choose ξ2 such that ξ2 vanishes at x = x1 . We now wish to find out
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whether or not ξ2 has another zero on (x1, x2) , i.e., we want to investigate whether
ξ2 oscillates faster or slower than ξ1 for a given difference of ω2

1 and ω2
2 . Under

the mentioned conditions all that remains of Eq. (7.169) is

(ω2
2 − ω2

1) 〈ξ1, ξ2〉 = 1
2

(
ξ2

N

D

∣∣∣∣
ω2

1

ξ ′
1

)∣∣∣∣
x=x2

. (7.171)

Let ξ1 > 0 on the open interval (x1, x2) so that ξ ′
1(x = x2) < 0 . If N/D > 0 and

ω2
2 − ω2

1 > 0 , this implies that ξ2(x = x2) < 0 so that ξ2 oscillates faster than ξ1

(Sturmian behaviour). If, on the other hand, N/D < 0 , ξ2 oscillates slower than
ξ1 (anti-Sturmian behaviour); QED.

An important property, directly following from Eq. (7.171), concerns the or-
thogonality of the eigenfunctions of the discrete spectrum. Returning again to us-
ing x1 and x2 for the complete physical interval, if ξ1 and ξ2 both satisfy the left
and the right hand boundary conditions (7.93), the RHS of Eq. (7.171) vanishes,
so that

〈ξ1, ξ2〉 = 0 for ω2
1 �= ω2

2 . (7.172)

Hence, the discrete eigenfunctions form an orthogonal set, which may also be
normalized to obtain an orthonormal set.

(c) Spectral structure From the oscillation theorem it follows that the discrete
spectrum outside the ranges {ω2

A} , {ω2
S} , {ω2

s0} , {ω2
f 0} shown in Fig. 7.14 is

Sturmian for N/D > 0 , so that the eigenvalue ω2 increases with the number of
nodes of the eigenfunction, and anti-Sturmian for N/D < 0 , with opposite be-
haviour of the eigenfunctions. Consequently, the discrete spectrum changes from
Sturmian to anti-Sturmian, and vice versa, every time ω2 crosses one of those
four special frequency regions. Thus, the frequency regions {ω2

s0} and {ω2
f 0} act

as separators of the discrete spectra where non-monotonicity may occur. Conse-
quently, the spectrum of an inhomogeneous plasma slab schematically may look
like that shown in Fig. 7.18; see Goedbloed [82].

In conclusion, compared to the spectrum of eigenoscillations of a uniform
plasma, the spectrum of an inhomogeneous plasma slab exhibits the following
features.

– The infinite degeneracy of the Alfvén point spectrum is lifted and replaced by a con-
tinuum of improper modes; in addition, a finite or infinite number of Sturmian, as
well as anti-Sturmian, discrete Alfvén modes may occur.

– The accumulation point of the slow magneto-sonic point eigenvalues is spread out
into a continuum of improper slow magneto-sonic modes; in addition, a finite or
infinite number of Sturmian discrete slow modes may occur.

– The fast magneto-sonic point spectrum still accumulates at infinity.
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Fig. 7.18. Schematic structure and monotonicity properties of the spectrum of a
slightly inhomogeneous plasma layer with gravity. (Without gravity the Sturmian
slow modes and all discrete Alfvén modes are missing.)

– The cutoff frequencies ω2
s0 and ω2

f 0 are spread out into ranges, which are not part of
the spectrum, where the discrete spectrum may be non-monotonic.

The clear separation of the sub-spectra shown in Fig. 7.18 is only obtained if
the inhomogeneity is not too strong. For strong inhomogeneity the different parts
of the spectrum, and their separators, in general fold over each other so that very
complicated structures may result. To analyse those, one could consider the inho-
mogeneous plasma as consisting of a sequence of thin layers, each of which is
only weakly inhomogeneous. For each of those layers the local modes (continua
and cluster spectra) are well ordered according to the inequalities (7.161), but the
non-local discrete modes may appear at apparently arbitrary positions in the spec-
trum since they may be due to composite structures displaying Alfvénic properties
in one part of the plasma and magneto-sonic properties in another part.

To study the problem of stability, in particular to compute the growth rates of in-
stabilities (ω2 < 0), the relevant part of the spectral structure is extremely simple.
There are no continuous spectra for ω2 < 0 and the discrete modes are Sturmian
there. This is exploited in the shooting method, discussed in Section 7.5.1(b).

7.4.4 Cluster spectra�

To show that all four branches of the Alfvén and slow discrete sub-spectra actually
may occur, we now derive the conditions for clustering at the edges of the Alfvén
and slow continua. To that end, we continue with the analysis of case (b) of Sec-
tion 7.4.1, where ω2 is chosen to correspond with the maximum or minimum of
the Alfvén or slow continuum; see Fig. 7.11(b). According to Eq. (7.128), at such
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an extremum the expression for the singular Alfvén factor

ω2 − ω2
A ≈ −1

2 (ω2
A

′′
)0 s2 , (7.173)

and there is a similar expression for the singular slow factor, which yields a Frobe-
nius expansion with indices ν1,2 given by Eq. (7.138). These indices become com-
plex when the factor under the square root sign is negative, i.e. for

q0 ≡
(

s2 Q

P

)
0

< −1

4
. (7.174)

We will show in Section 7.5.2, for the similar case (c) of a cluster point at marginal
stability, that complex indices imply that ξ oscillates infinitely rapidly when the
singular point is approached (s → ∞). This implies, through the application of
the oscillation theorem, that an infinity of discrete modes is found accumulating at
the chosen values of ω2. We will work out the explicit forms of this inequality for
the extrema of the Alfvén and slow continua.

Recall that P ≡ N/D. For the Alfvén continuum, one then finds from the ex-
pressions (7.91) and (7.92) that(

N

s2

)
0

= f 2b4 · −1
2ρ(ω2

A)′′ , D0 = − f 2g2b4 , Q0 = −ρ′ĝ , (7.175)

so that

q0 = − g2 · ρ′ĝ
1
2ρ(ω2

A)′′
. (7.176)

Hence, in order to have a Sturmian sequence of discrete Alfvén modes clustering at
the lower edge of the Alfvén continuum, i.e. at the minimum of ω2

A (where ω2
A

′′
>

0), the following condition should be satisfied:

g2 · ρ′ĝ >
1

8
ρ(ω2

A)′′ > 0 ; (7.177)

vice versa, for an anti-Sturmian sequence at the upper edge of the Alfvén contin-
uum, i.e. at the maximum of ω2

A (where ω2
A

′′
< 0):

g2 · ρ′ĝ <
1

8
ρ(ω2

A)′′ < 0 . (7.178)

We have encountered an example of the latter in Fig. 7.10, with the cluster spec-
trum given by Eq. (7.122)(b), for the constant α exponential atmosphere (where
ω2

A
′′ = 0). The counterpart of a Sturmian Alfvén sequence was missing there be-

cause that requires an inverted density profile (which is very well possible for more
general equilibria).
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Similarly, for extrema of the slow continua, one finds the following expressions:(
N

s2

)
0

= f 2b4 · 1
2ρ(ω2

S)
′′ , D0 = −ω4

S,

Q0 = ρb2

c2ω2
S

(ω4
S − k2

0 ĝ2) −
(

b2 + c2

c2
ρ ĝ

)′
. (7.179)

Hence, in order to have a Sturmian sequence of discrete slow modes clustering at
the lower edge of the slow continuum, the following condition should be satisfied:

1

b2 + c2

[
− ρ(ω4

S − k2
0 ĝ2) + c2

b2
ω2

S

(
b2 + c2

c2
ρ ĝ

)′ ]
>

1

8
ρ(ω2

S)
′′ > 0 ;

(7.180)

vice versa, for an anti-Sturmian sequence at the upper edge of the slow continuum:

1

b2 + c2

[
− ρ(ω4

S − k2
0 ĝ2) + c2

b2
ω2

S

(
b2 + c2

c2
ρ ĝ

)′ ]
<

1

8
ρ(ω2

S)
′′ < 0 .

(7.181)

We have encountered an example of the latter behaviour for homogeneous plasmas
(where the gravity terms are missing) and of the forms in Fig. 7.10(b), with the
cluster spectrum given by Eq. (7.122)(c), for the exponential atmosphere (where
ω2

S
′′ = 0). Also recall from that example that transition from Sturmian to anti-

Sturmian behaviour occurs for a value of k̄2
0 far to the right of the plotted region in

Fig. 7.10(b).
Hence, for general equilibria, the five discrete cluster spectra indicated in

Fig. 7.18 do actually occur. In the absence of complex indices, the Alfvén and
slow cluster points plus the high n modes will be missing, but global (lower n)
modes may still be present. To compute those requires numerical solution of the
MHD wave equation (7.91).

7.5 Gravitational instabilities of plasmas with magnetic shear

In this section, we apply the stability theory by means of the energy principle, as
presented in Chapter 6, to the plane inhomogeneous gravitating plasma slab. This
also provides another opportunity to illustrate the equivalence of the variational
approach with that of the differential equations, as developed in Sections 7.2–7.4.

We have seen that gravity does not influence the continua (i.e. the essential
spectrum), but it does influence the appearance or disappearance of discrete cluster
spectra (Section 7.4.4). This is clear from the fact that gravity does not appear in
the expressions (7.95) and (7.96) for the genuine and apparent singularities ω2

A, ω2
S ,

ω2
s0, ω2

f 0 of the basic differential equation (7.91). However, gravity does appear in



366 Waves and instabilities of inhomogeneous plasmas

the other coefficients of the ODE determining whether the edge of a continuum is
a cluster point or not. Hence, in the logical exposition of the theory, we first had to
pay attention to the more difficult issue of the singularities (Section 7.4) whereas
the simpler problems of local (related to cluster points) and global stability could
be delayed until the present section.

7.5.1 Energy principle for a gravitating plasma slab

Recall that stability can be determined by just studying the sign of the quadratic
form W [ξ] for the potential energy for all possible perturbations ξ. For conve-
nience, we here repeat the general expression (6.85):

W = 1
2

∫ [
γ p |∇ · ξ|2 + |Q|2 + (ξ∗ · ∇ p)∇ · ξ

+ j · ξ∗ Q − (ξ∗ · ∇�) ∇ · (ρξ)
]

dV .

We now reduce this expression for the special case of a gravitating plasma slab.
This will be the quadratic forms counterpart of the differential equation analy-
sis of Sections 7.3 and 7.4. Of course, the starting point is the same, so that the
equilibrium equations (7.71)–(7.74), the 2D Fourier expressions (7.78) for the per-
turbations, and the projections (7.79)–(7.83) can be maintained. Again, we study
separate harmonics, denoted by ξ(x) exp i(ky y + kzz) .

Note that the integrand of the expression (6.85) for W consists of products of
the unknowns with their complex conjugates. Of course, the energy itself has to
be real so that it should be equal to its complex conjugate. This follows from the
self-adjointness of the force operator. When working out quadratic forms, it is
important to keep track of this reality of the final expression.

(a) Reduction to a one-dimensional variational problem Consider the different
contributions to the integrand of W . Recall that we defined the three components
ξ , η and ζ such that they can be assumed to be real. Hence, the expression for the
compressibility,

∇ · ξ = ξ ′ + gη + f ζ , (7.182)

is real. The Cartesian components of the magnetic field perturbation Q were
worked out in Eq. (7.87):

Qx = i f B ξ , Qy = −(Byξ)′ + kz B η , Qz = −(Bzξ)′ − ky B η ,

(7.183)
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so that Qx is imaginary, whereas Qy and Qz are real. A typical term of the inte-
grand,

j · ξ∗ × Q = jy(ξ
∗
z Qx − ξ∗

x Qz) + jz(ξ
∗
x Qy − ξ∗

y Qx )

= −Bz
′
[
− i

B
(Byη − Bzζ ) Qx − ξ Qz

]
+ By

′
[
ξ Qy − i

B
(Bzη +Byζ ) Qx

]
,

is now easily seen to be real when the expressions (7.183) are inserted. The re-
maining contributions to the integrand are also real:

(ξ∗ · ∇ p) ∇ · ξ = p′ξ ∇ · ξ ,

(ξ∗ · ∇�) ∇ · (ρξ) = −ĝξ (ρ∇ · ξ + ρ ′ξ) .

Putting everything together, and cancelling terms by exploiting the equilibrium
relation (7.74), the following expression for W is obtained:

W = 1
2

∫ [
f 2 B2

k2
0

ξ ′2 +
(

f 2 B2 − ρ ′ĝ − ρ2ĝ2

γ p

)
ξ 2

+ B2
(

k0η + g

k0
ξ ′
)2

+ γ p

(
∇ · ξ − ρ ĝ

γ p
ξ

)2 ]
dV . (7.184)

This quadratic form only depends on ξ , ξ ′, η and ζ so that, upon minimization,
one may expect a differential equation for ξ , and algebraic relations for η and ζ .

	 Exercise. Check all of the above steps for yourself! 


In fact, minimization with respect to the transverse variables η and ζ is algebraic
and, hence, trivial:

η = − g

k2
0

ξ ′ , and ∇ · ξ = ρ ĝ

γ p
ξ ⇒ ζ = − f

k2
0

ξ ′ + ρ ĝ

γ p f
ξ . (7.185)

Consequently, only the first two terms remain in the expression (7.184) for the
energy:

W = 1
2

∫ x2

x1

[
f 2 B2

k2
0

ξ ′2 +
(

f 2 B2 − ρ ′ĝ − ρ2ĝ2

γ p

)
ξ2
]

dx, (7.186)

where we have suppressed again the infinite area A of the horizontal plane by
renormalizing (W ≡ W/A) and dropping the bar. One immediately notices that
the plasma slab is trivially stable in the absence of gravity (ĝ = 0) since W ≥ 0
then. An inequality like this illustrates a typical use of the energy principle since it
has no simple counterpart in the differential equation approach.
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Systematic minimization of the remaining 1D problem (7.186) is a standard
variational problem, as explained in Section 6.6.4, Eqs. (6.198)–(6.201). For a gen-
eral quadratic form

W = 1
2

∫ x2

x1

(
P0ξ

′2 + Q0ξ
2
)

dx , (7.187)

the minimizing solution is a solution of the Euler–Lagrange equation

d

dx

(
P0

dξ

dx

)
− Q0 ξ = 0 , (7.188)

subject to the boundary conditions

ξ(x1) = ξ(x2) = 0 . (7.189)

For the present problem, the Euler–Lagrange equation corresponding to the
quadratic form (7.186) reads

d

dx

(
F2

k2
0

dξ

dx

)
−
(

F2 − ρ ′ĝ − ρ2ĝ2

γ p

)
ξ = 0 , (7.190)

where we now start to exploit the notation F ≡ −iB · ∇ ≡ ky By + kz Bz , already
introduced in Eq. (7.97), to stress the central importance of the parallel gradient
operator in stability theory.

Note that the Euler–Lagrange equation (7.190) is just the marginal equation
of motion, obtained from the general MHD wave equation (7.91) by substituting
ω2 = 0 :

P0 ≡ P(ω2 =0) , Q0 ≡ Q(ω2 =0) . (7.191)

(In contrast to Section 7.4, the index 0 on P0 and Q0 now denotes this substitution.)
This connection nearly closes the circle of our presentation. We just need to inter-
pret the physical meaning of the ‘solutions’ of Eq. (7.190) and of the singularities
that occur when F = k0 · B = 0 somewhere. The latter problem will be addressed
in Section 7.5.2.

(b) Variational procedure (absence of singularities) We put quotation marks on
‘solutions’ since, in general, it is impossible to solve Eq. (7.190) if the boundary
conditions (7.189) are imposed. This follows from the simple fact that there is
no eigenvalue parameter in that differential equation. Hence, all one can do is,
for example, start from the left by satisfying the left boundary condition and then
integrate to the right and check whether or not more zeros are encountered on the
interval (x1, x2). Of course, in general, the right boundary condition will not be
satisfied for that ‘solution’. By means of the calculus of variations, as carried out
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ξa ξb

x1
x0 x2

x

Fig. 7.19. Composite trial function.

systematically by Newcomb [164] for the analogous case of a cylindrical plasma,
one may relate the oscillatory behaviour of ξ to stability as follows.

Insert the ‘solution’ ξ of the Euler–Lagrange equation (7.188) in Eq. (7.187) for
the energy W , and integrate by parts:

W = 1
2

∫ x2

x1

(
P0 ξ ′2 + Q0 ξ2) dx

= 1
2

∫ [
P0 ξ ′2 + ξ (P0ξ

′)′
]

dx = 1
2

[
P0 ξ ξ ′

]x2

x1
. (7.192)

If the interval (x1, x2) is larger than the distance between two consecutive zeros of
a solution to the Euler–Lagrange equation, one may split it into two sub-intervals
(x1, x0) and (x0, x2) such that a solution ξa which vanishes at x = x1 does not
vanish again on (x1, x0) and a solution ξb which vanishes at x = x2 does not
vanish a second time on (x0, x2) . At x = x0 the amplitudes of the two solutions
may be chosen equal (Fig. 7.19). By applying Eq. (7.192) to a solution composed
of ξa on (x1, x0) and ξb on (x0, x2) , one then obtains

W = 1
2

(
P0 ξaξ ′

a

)∣∣∣
x=x0

− 1
2

(
P0 ξbξ

′
b

)∣∣∣
x=x0

= 1
2

(
P0 ξ(ξ ′

a − ξ ′
b)
)∣∣∣

x=x0
< 0 ,

(7.193)

so that the contribution to the energy is negative. In conclusion:

(1) if the ‘solution’ ξ0 of the Euler–Lagrange equation (7.190) (i.e. the marginal
equation of motion) that satisfies the left boundary condition ξ0(x1) = 0 has an-
other zero on the interval (x1, x2), then a trial function ξ1 can be constructed (the
composite function of Fig. 7.19) that satisfies both boundary conditions and for
which the energy W (ξ1) < 0 : the system is unstable;

(2) if ξ0 has no other zeros on the interval, that construction fails and W (ξ1) ≥ 0
for all trial functions: the system is stable.

This is the simple part of Newcomb’s variational procedure, valid in the absence
of singularities (F �= 0 on the entire interval). The complicated part is the proper
handling of those singularities.
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ω2(2)

x

x1

ξ
ω2(1)

x2

•
 ω2(0)

Fig. 7.20. ‘Shooting’ for discrete eigenvalues.

(c) ‘Shooting’ method By means of the oscillation theorem of Section 7.4.3, the
variational procedure can be replaced by a more transparent one related to the
calculation of the growth rates of the instabilities. This approach is just a spe-
cial case of solving for the discrete modes for values of ω2 outside the ranges of
ω2

A(x), ω2
S(x), ω2

s0(x), ω2
f 0(x) on the interval x1 ≤ x ≤ x2 depicted in Fig. 7.14.

In that case, as already alluded to in the introduction of Section 7.4.1, the full
MHD wave equation (7.91) is non-singular and a straightforward method to find
discrete eigenvalues is to apply the so-called shooting method. This amounts to a
procedure in which the second order differential equation (7.91) is first solved as
an initial value problem where a value of ω2 is guessed, say ω2 = ω2(i), so that the
functions appearing in Eq. (7.91) are determined, and the differential equation is
solved numerically starting from the left ‘initial’ data ξ(x1) = 0 , ξ ′(x1) = const.
By some numerical integration scheme the solution ξ(x; ω2(i)) is found. Since the
RHS boundary condition (7.93) will not be satisfied in general, ξ(x2; ω2(i)) �= 0 ,
one needs to shoot again until this boundary condition is satisfied as well (see
Fig. 7.20). To stay with the metaphor: this is not done by changing the inclination
of the gun (i.e., by changing the value of ξ ′(x1), which would just change the
amplitude of the solution and not the location of the zeros) but by changing the
amount of gun powder (i.e., by changing the value of ω2). Since, according
to the oscillation theorem, the eigenvalue ω2 is monotonic in the distance between
the zeros of ξ , one knows precisely in which direction this change has to go: for
Sturmian frequency ranges, one should decrease ω2 to move out the next zero to
the position x = x2 to get a genuine eigenfunction, for anti-Sturmian frequency
ranges one should increase ω2.

Unstable discrete modes are always Sturmian because N/D < 0 for ω2 < 0 .
Since the Euler–Lagrange equation (7.190) is just the marginal form (ω2 = 0) of
the general MHD wave equation (7.91), the connection with the variational pro-
cedure for stability is obvious. Referring to Fig. 7.20: if one shoots with ω2 = 0
and one finds a zero (the curve labelled ω2(0)), there will be a genuine eigenvalue
ω2(2) < 0 so that the system is unstable. On the other hand, if one shoots with
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ω2 = 0 and one finds no zero (the curve labelled ω2(1)), the eigenvalue ω2(2) > 0
so that the system is stable. Hence, the shooting method not only supplies an an-
swer to the stability problem, but also an answer to the question about the ‘danger’
of the instabilities, i.e. a value for their growth rate. In this manner, the global
stability problem appears to have been solved completely for one-dimensional in-
homogeneities.

The singularities F = 0 of the marginal stability equation are absent in the
shooting method as long as ω2 < 0 . From a practical point of view, this is suffi-
cient to solve any stability problem because one can always exploit the σ -stability
concept (Section 6.5.3) to stay away from these singularities (any small σ 2 suf-
fices). However, singularities also offer the advantage of increased analytical in-
sight in stability problems, as will be shown in the next section.

7.5.2 Interchange instabilities in sheared magnetic fields

The remaining problem in the stability theory of gravitating plasmas is the proper
interpretation of the singularities F ≡ k0 · B = 0 of the marginal equation (7.190).
This is again related to the continuous spectrum since the expressions (7.95) for
the Alfvén and slow continuum frequencies both degenerate into the marginal fre-
quency ω2 = 0 when F = 0 . Hence, if there is such a point on the interval [x1, x2],
the Alfvén and slow continua both extend to the origin ω2 = 0 . The physical sig-
nificance of these points is that the horizontal wave vector k0 is perpendicular to
B , so that the perturbations do not disturb the magnetic field. The magnetic part
of the potential energy of the Alfvén wave perturbations vanishes there because
the field lines are not bent. Consequently, these are the positions where the driving
forces of instability are minimally counterbalanced by magnetic tensions so that
instabilities are predominantly localized there.

On the other hand, by means of magnetic shear (F ′ �= 0), the region of minimal
field line bending can be minimized so that stability can be restored, as we will
see. We have already encountered this effect in Section 6.6.4 when discussing the
stabilization of the Rayleigh–Taylor instability of interface plasmas by means of a
magnetic field with different directions in the plasma and the vacuum (Fig. 6.21).
In that particular case, the magnetic shear was entirely localized in the infinitely
narrow surface layer separating plasma and magnetic field. In the present section,
we deal with diffuse plasmas where shear is present everywhere.

To establish the significance of the singularities F(x0) = 0 , we expand all
functions in the neighbourhood of that singularity. Hence, we continue the analy-
sis of case (c) of Section 7.4.1, with the expansion (7.129) of the Alfvén factor,
illustrated in Fig. 7.11(c). Introducing the variable angle ϕ(x) ≡ arccos (Bz/B)
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between the magnetic field and the z-axis (Fig. 7.9(b)), and the constant angle
θ ≡ arccos (kz/k0) between the horizontal wave vector and the z-axis, we have

F ≡ k0 · B = k0 B(x) cos[ ϕ(x) − θ ] . (7.194)

At the singularity

ϕ(x0) = θ ± π/2 ⇒ F ′(x0) = ∓k0(Bϕ′)0 , (7.195)

so that

ρω2
A ≡ F2(x) ≈ (F ′2)0 s2 = k2

0(B2ϕ′2)0 s2 , (7.196)

where s ≡ x − x0 . The quantity ϕ′ represents the shear of the magnetic field,
which is the change of the angle ϕ when x is increased. This is caused by the paral-
lel component of the current: ϕ′ = (By B ′

z − B ′
y Bz)/B2 = −j · B/B2 , according

to Eq. (7.72).
In the neighbourhood of the singularity, the marginal stability equation (7.190)

is approximated by

d

ds

[
s2 (1 + · · ·) dξ

ds

]
− q0 (1 + · · ·) ξ = 0 , q0 ≡ −

(
ρ′ĝ + ρ2ĝ2

γ p

B2ϕ′2

)
0

,

(7.197)

which has the form of the standard differential equation (7.132) of Section 7.4.1.
Consequently, the Frobenius expansion (7.134) may be exploited. To leading or-
der, the solutions of equation (7.197) behave as sν1 and sν2 , where ν1 and ν2 are the
roots of the indicial equation ν(ν + 1) − q0 = 0 , as given by Eq. (7.138). Depend-
ing on whether 1 + 4q0 is positive or negative, the indices are real or complex.

(a) Local stability (complex indices) The most interesting case is obtained for 1 +
4q0 < 0 , when the indices are complex, because the real solutions of the marginal
stability equation are oscillatory then:

ξ1 = s−1/2+iw + s−1/2−iw = 2s−1/2 cos (w ln s) ,

ξ2 = i(s−1/2+iw − s−1/2−iw) = −2s−1/2 sin (w ln s) , (7.198)

where w ≡ 1
2

√−(1 + 4q0) . The kind of oscillatory behaviour obtained is quite
extreme, since the solutions not only oscillate infinitely rapidly but their amplitude
also blows up when s → 0 , as schematically illustrated in Fig. 7.21(a). Accord-
ing to the oscillation theorem of Section 7.4.3(b), such marginal ‘solutions’ signal
instability, since the zeros of the solutions of the full MHD spectral equation are
peeled off one by one as the value of ω2 is decreased from 0 to the actual growth
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Fig. 7.21. Violation of the interchange criterion: (a) marginal mode (ω2 = 0 ,
n = ∞), (b) associated most global mode (ω2 < 0 , n = 1).
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n=1 2 3 4 ....

ω    2
0

Fig. 7.22. Violation of the interchange criterion: appearance of a cluster point at
ω2 = 0 .

rate(s). Consequently, one obtains an infinity of unstable point eigenvalues, accu-
mulating at ω2 = 0 for n → ∞, where n is the number of nodes of the correspond-
ing eigenfunctions: when the indices are complex, the marginal point is a cluster
point of the unstable modes of the discrete spectrum (Fig. 7.22). This should not
distract the attention from the most important physical fact, viz. that the fastest
growing instability is obtained for n = 1. Although the condition for instability is
local, that n = 1 instability need not be local at all, as illustrated by Fig. 7.21(b).
Generally, the width of this mode is determined by the width of the region over
which the local stability criterion is violated.

To avoid these instabilities, one should demand that 1 + 4q0 > 0 , so that the
indices are real. This leads to the following stability criterion for interchange
modes:4

ρ′ĝ + ρ2ĝ2

γ p

(
≡ −ρN 2

B

)
≤ 1

4 B2ϕ′2 . (7.199)

The three respective terms represent the driving force of the gravitational or
Rayleigh–Taylor instability (heavy fluid on top of a lighter one), modified by adi-
abatic effects (term with γ ), and stabilized by magnetic shear (term on the right

4 A rather imprecise term dating from the early days of fusion research when there were hopes of confining
extremely high-β plasmas, where the plasma and the magnetic field are nearly completely separated in space.
Such plasmas are virtually always unstable with respect to ‘interchange’ of plasma and magnetic field.
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hand side). To return to our introductory discussion of Section 6.1.1: a glass of
magnetized plasma may be turned upside down without the contents dropping out,
if the magnetic shear is large enough! Note that the criterion reduces to the HD
criterion (7.40) of Section 7.2.2 for convective stability, N 2

B > 0, when ϕ′ = 0 .
Here, N2

B is the square of the Brunt–Väisäläa frequency, which also turned up in
the condition (7.110) of Section 7.3.3 for the stability of gravito-MHD modes.

The analysis has been a local one, so that it may be repeated for every point
on the interval [x1, x2]. Hence, for overall stability, one should at least demand
that the inequality (7.199) is satisfied everywhere: the criterion is a necessary one
for stability. A local criterion of this kind, known as Suydam’s criterion, was first
derived by Suydam (1958) [222] for a diffuse cylindrical plasma column (pinch)
where the driving force of the instability is the pressure gradient in combination
with curvature of the magnetic field lines. The derivation is completely analogous
to the one given here. We will discuss it more extensively in Chapter 9.

(b) Global stability (real indices) For 1 + 4q0 > 0 , when the indices are real, the
two solutions at the singularity behave as

ξs ∼ sνs , νs = −1
2 + 1

2

√
1 + 4q0 > −1

2 (‘small’ solution) ,

(7.200)
ξ� ∼ sν� , ν� = −1

2 − 1
2

√
1 + 4q0 < −1

2 (large solution) .

Hence, the large solution ξ� always blows up at s = 0 , whereas the ‘small’ solu-
tion may or may not blow up depending on whether the square root is smaller or
larger than 1. Similar to the singularities for ω2 > 0, discussed in Section 7.4.2,
the present ones (at ω2 = 0) also split the interval (x1, x2) into independent sub-
intervals (x1, x0) and (x0, x2), in the following sense. Consider the sub-interval
to the left of the singularity. According to Eq. (7.192), the contribution of that
sub-interval to the energy is:

W (x1, x0) = 1
2

[
P0ξξ ′

]x0

x1
. (7.201)

At the singularity, this expression behaves as

W (x0) = 1
2

(
P0ξξ ′

)
(x0) ∼ s2ν+1 →

{
0 for ν = νs ,

∞ for ν = ν� , (7.202)
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so that the energy contribution of the large solution diverges, but that of the ‘small’
one vanishes (hence: ‘small’, also when −1

2 < νs < 0). Consequently, testing for
stability while keeping the energy of the perturbations finite implies that we have
to exclude the large solution. This means that a kind of internal boundary condition
is to be imposed at the singularity, viz. that ξ should be ‘small’ there. This can be
done since jumps in the ‘small’ solution are allowed by an argument similar to that
of Section 7.4.2. Such jumps do not contribute to the energy:

P0ξs H(s)
[
ξs H(s)

]′ ∼ sν+2 H(s)
[
νsν−1 H(s) + sνδ(s)

]

= s2ν+1
[
νH(s) + sδ(s)

]
H(s) → 0 . (7.203)

Therefore, the intervals (x1, x0) and (x0, x2) may be tested separately with re-
spect to stability (i.e. the sign of W ) by means of trial functions that are ‘small’ at
x = x0 and vanish identically either to the right or to the left of x = x0.

The stability test is carried out with the following modification of the non-
singular case (described in Section 7.5.1(b), Fig. 7.19), where we now exploit the
symbol xs for the singularity and x0 for an ordinary interior point. Consider a solu-
tion ξa of the Euler–Lagrange equation (7.190) which vanishes on the left interval
(x1, xs) , is ‘small’ to the right of the singularity x = xs , and vanishes once in the
interval (xs, x2) . Such a solution may be joined at a point x0 in between the singu-
larity xs and the zero point of ξa to another solution ξb which vanishes at the right
endpoint x = x2 , but does not vanish in the open interval (x0, x2) (Fig. 7.23). The
energy of the Euler–Lagrange solution consisting of ξ = 0 on (0, xs) , ξ = ξa on
(xs, x0) , and ξ = ξb on (x0, x2) may be shown to be negative by a completely
analogous argument to that used in the derivation of Eq. (7.193). Hence, on inde-
pendent sub-intervals the ‘smallness’ of a solution should be counted as a zero,

ξa

s

ξb

x

ξ

x0xs x2x1

l

Fig. 7.23. Composite trial function in the presence of a singularity.
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so that for stability a solution that is ‘small’ at the singularity should not vanish
somewhere in the interval. Thus, using Newcomb’s wording, we obtain the follow-
ing stability theorem for the case that the interval (x1, x2) contains one singularity
F = 0 at x = xs .

Theorem. For specified values of ky and kz such that F ≡ ky By + kz Bz = 0 at
some point x = xs of the interval (x1, x2) , the gravitating plasma slab is stable
if, and only if, (1) the interchange criterion (7.199) is satisfied at x = xs ; (2) the
non-trivial solution ξL of the Euler–Lagrange equation (7.190) that is ‘small’ to
the left of x = xs does not vanish in the open interval (x1, xs); (3) the non-trivial
solution ξR that is ‘small’ to the right of x = xs does not vanish in the open
interval (xs, x2) .

Of course, if there is more than one singularity, there will be more than two in-
dependent sub-intervals that have to be tested for oscillatory behaviour in the
extended sense.

7.5.3 Interchanges in the absence of magnetic shear

A special case occurs when the magnetic field has no shear, i.e. it is uni-directional
(like the exponential atmosphere considered in Section 7.3.3). Then, perturbations
may be found with F ≡ 0 over the whole domain, so that the horizontal wave
vector k0 is perpendicular to the magnetic field everywhere. Naively, one would
expect this to be the worst case scenario with stability determined by the condition
(7.199) in the no-shear limit (ϕ′ = 0), i.e. the familiar condition N 2

B ≥ 0. However,
if F ≡ f B = 0, the variable ζ disappears from the expression (7.182) for ∇ · ξ

and, thereby, also from the expression (7.184) for the energy. Hence, the two last
terms of Eq. (7.184) cannot be considered as independent, so that the minimization
proceeds differently than for the case with shear. For f = 0, g = k0, the expression
for the energy reduces to

W = 1
2

∫ [
−
(

ρ′ĝ + ρ2ĝ2

γ p

)
ξ2 +B2

(
k0η + ξ ′

)2+ γ p

(
ξ ′ + k0η − ρ ĝ

γ p
ξ

)2 ]
dV

= 1
2

∫ {
−
(

ρ′ĝ + ρ2ĝ2

B2 + γ p

)
ξ2

+ k2
0(B2 + γ p)

[
η + (B2 + γ p)ξ ′ − ρ ĝξ

k0(B2 + γ p)

]2 }
dV . (7.204)
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By minimization with respect to η, the last term disappears and we get

W = −1
2

∫ (
ρ′ĝ + ρ2ĝ2

B2 + γ p

)
ξ2 dx , (7.205)

so that the stability criterion becomes

ρ′ĝ + ρ2ĝ2

B2 + γ p

(
≡ −ρN 2

m

)
≤ 0 . (7.206)

Consequently, the stability criterion obtained, for stability with respect to pure
interchanges, is less severe than the condition (7.199) in the no-shear limit. The
expression is again familiar: N 2

m ≥ 0 , where N 2
m is the square of the magnetically

modified Brunt–Väisäläa frequency defined in Eq. (7.114) of Section 7.3.3.
The criterion N 2

m ≥ 0 is automatically satisfied for the exponential atmosphere
analysed in that section, consistent with the stability of the solutions (7.113) for
perpendicular propagation. However, we also found out there, in the intriguing
equation (7.125) where both N 2

B and N2
m appeared, that the worst instabilities

sometimes occur for near-perpendicular, not for purely perpendicular, propaga-
tion. This subtlety in the stability of general (not restricted to exponential profiles)
shearless magnetic fields was already pointed out in 1961 by Newcomb [165]. We
summarize the results of that paper since it throws light on the relationship between
stability and spectral analysis.

As is clear from Section 7.3.3, the relevant modes for instability are the low-
frequency Alfvén and slow modes. Hence, it is expedient to get rid of the high-
frequency fast modes by means of an ordering. This we do by introducing a scale
length L of the equilibrium variations,

L−1 ≡ ρ ĝ

p + 1
2 B2

(7.207)

(the parameter α of Section 7.3.3), and imposing the following ordering on the
frequencies and wave numbers:

ρω2 ∼ L−1ρ ĝ ∼ f 2b2  k2
0b2 . (7.208)

This implies that we assume near perpendicular propagation of the modes (| f | 
|g|). The MHD wave equation (7.91) then reduces to

d

dx
ρ(ω2 − f 2b2)

dξ

dx

− k2
0

[
ρ(ω2 − f 2b2) + ρ′ĝ + ρ ĝ2 ω2 − f 2b2

(b2 + c2)ω2 − f 2b2c2

]
ξ = 0. (7.209)
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This equation still contains the exact marginal stability equation (7.190) for ω2 →
0 . We solve it for local modes, varying rapidly over the length scale L:

ξ ∼ eiqx , q L � 1 . (7.210)

This yields the following dispersion equation:

ω4 −
(

b2 + 2c2

b2 + c2
f 2b2 + k2

0

k2
0 + q2

N 2
m

)
ω2

+ c2

b2 + c2
f 2b2

(
f 2b2 + k2

0

k2
0 + q2

N 2
B

)
= 0 , (7.211)

having two qualitatively different solutions. For F2/ρ ≡ f 2b2  |N 2
B | ∼ |N 2

m |,
we recover the solutions (7.125) found in Section 7.3.3:

ω2
1 ≈ k2

0

k2
0 + q2

N 2
m , ω2

2 ≈ γ p

γ p + B2

N2
B

N2
m

F2/ρ . (7.212)

The first mode is a pure interchange (F = 0) which becomes unstable when
N 2

m < 0 . The second mode is called a quasi-interchange (F �= 0) since only fi-
nite segments of the field lines can be involved in interchanging plasma and mag-
netic field. They become unstable when N 2

B < 0 . Since this is the more severe
criterion, it should be considered as the overall boundary for stability of grav-
itational instabilities in shearless magnetic fields. With the consideration of the
quasi-interchanges, the discrepancy in the stability criteria between sheared mag-
netic fields in the limit ϕ → 0 and shearless magnetic fields disappears.

To establish the danger of instabilities, it is not sufficient to derive stability cri-
teria, one should also calculate the maximum growth rate to find out which mode
dominates. This involves maximizing the growth rate obtained from Eq. (7.211)
with respect to the mode numbers f , g and q. This is left as an exercise for the
reader. It is expedient to introduce the following notation:

� ≡ −ρ′

ρ
ĝ , �B ≡ ρ ĝ2

γ p
, �m ≡ ρ ĝ2

γ p + B2
, �0 ≡ γ p ρ ĝ2

(γ p + B2)2
,

(7.213)

where it is to be noted that �B ≥ �m ≥ �0 . The result of the optimization can then
be summarized as follows:

(1) if � ≥ �B , the plasma is stable;

(2) if �0 ≤ � < �B , the most unstable mode is a quasi-interchange (k‖ �= 0) with
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growth rate

ω2 = −ρ ĝ2

B2

(
1 −

√
�/�B

)2 ; (7.214)

(3) if � ≤ �0 , the most unstable mode is a pure interchange (k‖ = 0) with growth
rate

ω2 = � − �m ≡ N 2
m . (7.215)

Hence, calculating the eigenfrequencies of the modes not only removes apparent
discrepancies from stability theory, but also introduces new transitions (� = �0)
that are relevant for the description of the dynamics. Spectral theory is not only a
mathematical beauty but also a physical necessity for understanding the dynamics
of inhomogeneous plasmas.

7.6 Literature and exercises

Notes on literature

Hydrodynamics of the solar interior and corona:

– Priest, Solar Magnetohydrodynamics [190], Chapter 4 on waves.
– Stix, The Sun [217], Chapter 2 on internal structure of the Sun, Chapter 5 on oscilla-

tions.
– Christensen-Dalsgaard, Stellar Oscillations [56], Chapter 2 on the analysis of oscil-

lation data, Chapter 5 on properties of solar and stellar oscillations.

Spectral theory of gravitating plasma slab:

– Goedbloed [81], in a series of papers on ‘Stabilization of magnetohydrodynamic in-
stabilities by force-free magnetic fields’, derives the MHD wave equation for a grav-
itating plasma slab (I), and discusses quasi-interchanges in shearless magnetic fields
(III).

– Goedbloed & Sakanaka [89], in a ‘New approach to magnetohydrodynamic stability’,
prove the oscillation theorem for the MHD wave equation and introduce the concept
of σ -stability.

– Lifschitz, Magnetohydrodynamics and Spectral Theory [146], Chapter 7 on MHD
oscillations of a gravitating plasma slab.

Singular differential equations:

– Ince, Ordinary Differential Equations [115], Chapter 18 on the solution of linear
differential equations in series.

– Bender & Orszag, Advanced Mathematical Methods for Scientists and Engin-
eers [23], Chapter 3 on approximate solutions of linear differential equations.

Gravitational instabilities:

– Newcomb [165], on quasi-interchanges in ‘Convective instability induced by gravity
in a plasma with a frozen-in magnetic field’.
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– Parker [175], on the Parker instability in ‘The dynamical state of the interstellar gas
and field’.

– Mouschovias [160], on ‘The Parker instability in the interstellar medium’.

Exercises

[ 7.1 ] The Sun – energy source

The Sun appears to be a regularly shaped sphere subject to the laws of hydrodynamics.
– Describe the mechanism which produces this shape. Looking at the Sun more care-

fully, it appears flattened at the poles. Why is that?
Before nuclear physics was understood, it was thought that the energy of the Sun comes
from slow contraction due to gravity.

– Using the Sun’s luminosity and Newton’s law of gravity, estimate the speed at which
the Sun would have to shrink. How long would the Sun be able to burn like this?

The light emanating from the Sun exerts pressure.
– Using physical arguments, find the maximum luminosity (called the Eddington lumi-

nosity) the Sun could have before it would blow away its outer layers.
– Using the luminosity of the Sun, calculate the heat flux at the Earth. Estimate the

surface of exposed skin on your body. When sunbathing for 15 minutes, how much
energy would have been transported to your body? How long could a light bulb of 60
watts burn on that amount of energy?

The source of all this radiation is not located near the surface of the Sun.
– Draw a cross-section of the Sun, indicate how and where this energy is produced, and

name the different regions resulting from that.

[ 7.2 ] The Sun – radiative transport

The transport of radiation through a medium can be regarded as a random walk process.
On average, a photon will travel one mean free path λmfp and collide with a particle, which
redistributes it into a random direction. Due to the gradient in particle density, the net flux
of radiation will be pointing outward. (This process is often compared to a drunkard trying
to make his way through a crowded room.)

– The mean free path is defined by λmfp ≡ (κρ)−1. Choosing the value κ =
0.12 m2 kg−1 for the opacity (also called the Rosseland absorption coefficient),
calculate the mean free path of a photon, using the solar radius and mass.

– In n steps, the photon travels a distance d = √
n λmfp. Estimate the number of steps

needed for a photon to travel one solar radius and the time needed to cover this
distance.

[ 7.3 ] The Sun – convection

At some radius, the energy produced no longer escapes as radiation, but is transported by
convection. We are going to derive the Schwarzschild criterion for the onset of convection.

– Write down the equation of state for an ideal gas in terms of ρ and T , and derive the
temperature gradient from this.

– The bulk motion of gas is only stable if the specific entropy, S ≡ pρ−γ , is constant
in space. Derive the density gradient and the isentropic temperature gradient from
this.
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– By comparing these temperature gradients, the criterion for instability is obtained.
Convert this criterion by means of the gravitational equilibrium equation to another
form, relating to an apparently different instability. Which one is it?

[ 7.4 ] Waves in a gravitating hydrodynamic slab

Derive the HD wave equation for a plane parallel atmosphere from the nonlinear equations
for the density, pressure, and velocity, ignoring non-adiabatic effects.

– What does the latter assumption imply for the description of the Sun?
– Using the Cowling approximation (what does that mean?), derive the differential

equations in terms of the displacement field ξ for the appropriate horizontal Fourier
modes.

– Rotate the coordinate system such that one of the axes is in the direction of the hori-
zontal wave vector (why is that expedient?), and then derive the second order differ-
ential equation for the vertical displacement.

[ 7.5 ] HD waves in an exponentially stratified atmosphere

We continue with the HD wave equation obtained in the previous exercise.
– What is the physical significance of choosing exponential dependence on height,

e−αx , for both the pressure and the density? What does it imply for the sound speed?
Using the equilibrium condition, express α in the gravitational parameter ĝ.

– Derive the second order differential equation for ξx in terms of the Brunt–Väisäläa
frequency, N2

B = αĝ − ĝ2/c2. Obtain the dispersion equation from it and solve it.

[ 7.6 ] MHD waves in an exponentially stratified atmosphere

Look up the MHD wave equation for general one-dimensional inhomogeneity.
– In addition to the exponential pressure and density profiles of the previous exercise,

introduce the appropriate form of the magnetic field as a function of the vertical
coordinate to have an atmosphere with constant Alfvén speed. Calculate the new ex-
pression for α and use it to simplify the MHD wave equation and resulting dispersion
equation.

– For these magnetic field, pressure, and density profiles, calculate the different MHD
singularities. What do they represent?

– Give the solutions for purely parallel and purely perpendicular propagation of the
waves, exploiting the magnetically modified Brunt–Väisäläa frequency, N 2

m = αĝ −
ĝ2/(b2 + c2), as well as N 2

B . Which wave may become unstable? Why not the other
one as well?

[ 7.7 ] � Dispersion equation for gravito-MHD waves

Write a numerical program, exploiting the explicit solutions given in the text, to
solve for the three gravito-MHD waves in an exponential atmosphere of magnetized
plasma.

– Plot the three branches ω̄2(k̄2
0), similar to Fig. 7.10, for ᾱ = 20, β = 1, ϑ = π/2 −

0.1 with q̄ = π, 2π, . . .. How wide is the unstable region? What kind of modes are
they?

– Estimate the value of k̄2
0 where the slow modes change from Sturmian to anti-

Sturmian. Continue the numerical scan to that value to check the answer. What do
you learn?
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[ 7.8 ] � Continuous spectra and spectral structure
Assuming weak inhomogeneity of the equilibrium, make a sketch of a possible normal
dependence of the singular frequencies ω2

A and ω2
S . Also make a sketch of the associated

MHD spectrum, indicating continua, discrete spectra, and the separating non-monotonicity
regions.

– Starting with the first picture: the second order differential equation (Pξ ′)′ − Qξ =
0 for the MHD spectrum becomes singular at a point x = x0 where ω = ωA(x0),
giving rise to the Alfvén continuum. Expand ω2 − ω2

A around that singularity, use
it to express P ≡ N/D ∼ s ≡ x − x0, and expand the other function, Q, as well
(only the constant is needed). Solve the differential equation by means of Frobenius’
method and discuss the meaning of the two solutions obtained.

– Concerning the second picture: what is the difference between the solutions of the
Alfvén and slow continua and those of the turning point frequencies?

– Indicate Sturmian and anti-Sturmian regions in the diagram. (What do those terms
mean?) How does the picture change when gravity is introduced? Show that gravity
does not influence the continua, but it may effect the appearance of discrete spectra.

[ 7.9 ] Spectrum of an incompressible gravitating slab

Derive the MHD wave equation for an incompressible (γ → ∞) gravitating plasma slab
from the general wave equation. (This is a significant simplification, but watch out with the
confluences!)

– Show that the Alfvén and slow singularities coincide so that the two continua are
degenerate. How do the associated ‘improper’ modes differ?

– Neglecting gravity, assuming ρ = const, and a linear dependence of ω2
A(x) about the

singularity at x = x0, show that the wave equation reduces to the zero order modified
Bessel equation,

ξ ′′ + z−1ξ ′ − ξ = 0 , z ≡ k0(x − x0) ,

with solutions

I0 = 1 + 1
4 z2 + 1

32 z4 + · · · ,

K0 = −[ln( 1
2 z) + γ0] I0(z) + 1

4 z2 + 3
128 z4 + · · · (γ0 ≈ 0.5772 is Euler’s constant) .

Are there any ‘solutions’ other than the ones associated with the continua?
– What changes when you allow for gravity?

[ 7.10 ] � Shooting method

One can investigate the discrete spectrum without worrying about the singular solutions by
exploiting the ‘shooting method’, outside the ranges of the continua.

– Explain how this method works.
– In a numerical shooting procedure, what complications do you foresee when solving

in the ranges of the turning point frequencies? How would you handle that?

[ 7.11 ] Interchange instabilities

Unstable modes have frequencies that are automatically outside the ranges of the continua,
at least when their growth rate is finite. At ω2 = 0, one may exploit the potential energy of
the perturbations to investigate stability, but one has to worry about a particular singularity.
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– Assume we have a plane gravitating plasma with a sheared magnetic field. Write
down the expression for the potential energy, W , and reduce it to a one-dimensional
form.

– Explain why, usually, instabilities are localized at positions x = x0 where F(x0) =
0, when F ≡ k0 · B. Expand F around x = x0 exploiting the angle ϕ(x) ≡
arccos(Bz/B).

– Insert this expansion in the Euler–Lagrange equation, and solve by means of a
Frobenius expansion. Show that this yields a leading order equation of the form
(s2ξ ′)′ − q0ξ = 0 with indicial equation ν(ν + 1) − q0 = 0, where q0 ≡ −(ρ′ĝ +
ρ2ĝ2/γ p)0/(B2ϕ′2)0.

– How do you obtain the stability criterion for interchange modes from that equation?
Explain the meaning of the three terms.
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Magnetic structures and dynamics

8.1 Plasma dynamics in laboratory and nature

In this chapter we will make an excursion to the vast territory of magnetic struc-
tures and dynamics of the different plasmas encountered in the solar system, in
particular the Sun and the planetary magnetospheres. While laboratory plasma
confinement for the eventual goal of energy production also provides a rich di-
versity of magnetic structures, their topology and dynamics is always constrained
by the presence of a fixed set of coils with programmed currents that should con-
trol the spatial and temporal behaviour of the magnetic fields. The reason is clear:
for the success of thermonuclear energy production, plasma dynamics and com-
plexity are not really desired. The best thing would be to extract energy from a
plasma that just sits quietly inside a toroidal vessel and the engineering approach
to plasma confinement is to try to approach this ideal as closely as possible. The
history of thermonuclear fusion research demonstrates impressive progress along
this line but also the immense obstacles, due to complex plasma dynamics, that
have to be overcome. In astrophysical plasmas, on the other hand, no such human
engineering constraints exist: plasmas and their associated magnetic structures ap-
pear to be almost free to exhibit the bewildering variety of different dynamics that
are observed on virtually all length and time scales.

Space missions in the second part of the twentieth century have played an im-
portant role in demonstrating the different magnetic structures and dynamics of
plasmas in the solar system. The Skylab missions of 1973 revealed new solar struc-
tures in X-rays (like coronal holes) due to magnetic fields, the Voyager missions
of the 1980s and 1990s provided completely new facts on the magnetic fields and
magnetospheres of the planets, while the SOHO satellite, launched in 1995, pro-
vided visualizations of the dynamics of the solar corona that have become box
office and website hits.

384
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With the tremendous progress in satellite and ground-based observations of
solar system plasma dynamics, the need for a theoretical framework to describe
it all has become pressing. At this point, it is probably wise not to hide the embar-
rassment about the absence of such an all-encompassing vision. Theory is lagging
far behind observations at the present moment. Frequently, cartoons representing
a particular plasma phenomenon take the place of genuine theoretical analysis.
Whereas cartoons may be a useful way of communicating ideas, they cannot re-
place genuine physical understanding based on mathematical analysis. (Just recall
how the Bohr picture of the electron orbits in atomic theory had to be replaced
by the quantum mechanical picture ‘Hψ = Eψ’, standing for an extensive body
of theoretical analysis which is much closer to physical reality than the cartoon it
replaced.) Computational MHD, stimulated by recent programs on space weather,
is presently filling in some gaps. The positive way of looking at it is that the field
is open for lots of new ideas.

Hence, the purpose of this chapter is not to provide a detailed description of the
observational facts (excellent textbooks exist: Parker [176], Priest [190], Friedman
[75], Zirin [250], Stix [217], Foukal [69], Mestel [154], Schrijver and Zwaan
[204], from which we have freely borrowed in this chapter), but just to remind
the reader that all theory eventually has to be confronted with empirical reality.
This should lead to an attempt to answer the following questions: ‘Is the MHD
model developed in Chapters 4–7 an adequate starting point for the description
of observed plasma dynamics?’, ‘Are important theoretical pieces missing in this
approach?’, and ‘What should be the main goals to be pursued in the following
chapters?’ The phenomenology of magnetic structures and associated dynamics
presented in the present chapter is used in later chapters, on the dynamics of in-
homogeneous plasmas, to provide some flesh and blood to the model problems
presented in Section 4.6.

8.2 Solar magnetism

Let us start with the central object of the solar system, the Sun, and ask the cen-
tral question: where does its magnetism come from? To answer that question, we
first recall some basic facts about the solar structure and then discuss some of the
observational evidence leading to a model of solar magnetism.

Recall the standard solar model depicted in Fig. 8.1, which we already encoun-
tered in Chapter 7. The interior of the Sun cannot be observed directly and our
knowledge of its structure is based on theoretical models and helioseismology. On
the basis of differences in physical properties, the dense interior of the Sun can be
divided into three layers, viz. the core, the radiative zone and the convection zone.
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Fig. 8.1. Global model of the Sun showing gravity waves (g-modes) and
sound waves (p-modes) propagating in the interior, and photospheric, chro-
mospheric, and coronal magnetic features in the exterior. (Courtesy of SOHO
(ESA-NASA).)

The core of the Sun (r ≤ 0.25 R�) is the region where the solar energy is generated
by means of thermonuclear conversion of hydrogen into helium (see Section 1.2.1).
This region is surrounded by the radiative zone (0.25 R� ≤ r ≤ 0.71 R�) where
the produced energy is radiatively transported outward. Finally, in the relatively
shallow convection zone (0.71 R� ≤ r ≤ R�) the temperature gradient is so steep
that the plasma becomes convectively unstable. This region is considered to be the
seat of the solar dynamo (see Section 8.2.1).

Recent results of helioseismology have led to the idea that the shear in the differ-
ential rotation, which is the main driving force of the solar dynamo, is concentrated
at the bottom of the convection zone in a relatively thin ( just 13 000 km thick) and
narrow (25–30◦ latitude) layer. Estimates of the azimuthal field strength in that
shear layer yield fields up to 5–10 T. However, there is no explanation yet for such
high fields at the bottom of the convection zone.

The visible atmosphere of the Sun also consists of three layers. The photosphere
is the region where the visible light of the Sun escapes. It is only 500 km thick.
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At the bottom of the photosphere the temperature is about 6600 K and it decreases
to about 4300 K at the top (see Fig. 8.14). The next layer is the chromosphere,
with a thickness of about 2500 km, where the temperature starts to increase again
(from 4300 K to about 106 K) connecting smoothly onto the very hot (millions of
degrees) and very tenuous corona, which stretches out into the whole heliosphere.
The mechanism for this dramatic temperature rise is one of the major, as yet not
really resolved, issues of solar MHD but it is generally agreed that the magnetic
field in the corona is the essential carrier of the energy transport.

According to our present knowledge all of the mentioned regions, except for
the core and the radiative zone, form the scene of spectacular magnetic activity
of different kinds which are characteristic for each of them. Since the magnetism
of the solar atmosphere is a result of that of the solar interior it is appropriate
to consider the latter first, even though it presents the hardest of all theoretical
questions, viz. the mechanism of the solar dynamo.

8.2.1 The solar cycle

(a) Sunspots Throughout the centuries people have been observing dark spots on
the Sun: the sunspots (in fact, they were already mentioned in Chinese chroni-
cles of 800 BC). Since they have typical sizes in the order of the diameter of the
Earth and sometimes as large as 40 000 km, they can be seen with the naked eye,
e.g. at sunset or sunrise during hazy weather. When the telescope was invented in
the seventeenth century it was immediately put to use (by Fabricius, Galilei and
Scheiner) to observe these structures. It was found that they can last from 2 to
30 days, i.e. long enough to observe their systematic motion from west to east
across the disc, demonstrating that the Sun is actually rotating about a fixed axis.
Moreover, these early astronomers observed that the sunspot motion depends on
the solar latitude: they occur in two bands around the equator and they move faster
at the solar equator (with a rotation period of 25 days) than at higher latitudes
(with periods of 27 days at 40◦ and 30 days at 70◦). Hence, already the very first
observations – with very primitive telescopes, according to present day standards –
revealed the basic fact behind solar magnetism, viz. that the Sun rotates differen-
tially.

The association of sunspots with magnetic fields only came in the twentieth
century, notably through the spectroscopic work of George Ellery Hale at the
Mt Wilson Observatory (1908) and culminating in the development of the magne-
tograph by Harold Babcock (1953). Whereas the magnetic fields inside sunspots
are relatively easy to measure because they are so intense (1000–4000 gauss),
the magnetograph enables one to measure the Zeeman splitting by the much
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weaker magnetic fields outside the sunspots. Thus, the spatial variation of the mag-
netic field across sunspots may be determined. It has been firmly established that
sunspots represent the most intense magnetic flux concentrations on the surface of
the Sun. The average field strength increases with the area of the spot.

From the numbers quoted above one easily calculates that the speed of sunspots
(i.e., the solar rotation rate) at the equator is about 2 km s−1, which corresponds
to 10′′ h−1. However, this simple dynamics is embedded in the much more com-
plicated one of the surrounding photosphere which exhibits a cellular convec-
tion pattern due to the thermal instability of the underlying convection zone.
High-resolution photographs of the photosphere by means of telescopes on board
balloons (early 1960s) and dedicated solar telescopes (like the Dutch Open Tele-
scope at present, see Fig. 8.8) reveal the different scales of the granules with a
typical size of 1000 km, horizontal flow velocities of 1.5 km s−1, and a turnover
time (≈ a life time) of the eddies of the order of 5 min and of the supergranules
with characteristic sizes of 30 000 km, flow velocities of 0.5 km s−1, and turnover
times of the order of 20 hours. The latter structures are the result of an outflowing
velocity field pushing the upwelling magnetic field to the boundaries of the eddies,
which become visible as the photospheric network. Note that these convective mo-
tions take place at widely separated space and time scales.

Returning to the sunspots, the most important aspect of solar magnetism is yet
to be mentioned, viz. the long time scale periodicity of the large scale solar mag-
netic field and the associated magnetic activity: the solar cycle. This periodicity
was discovered by Heinrich Schwabe, who systematically recorded the occurrence
of sunspots during the period 1826–1851 in the hope of detecting a planet inside
the orbit of Mercury. Instead, he found the more lasting result that the number of
sunspots varies periodically in time with a periodicity of about 11 years. Important
for our subject is the observation that maxima and minima of sunspot numbers
coincide with increased and decreased magnetic activity of the Sun as a whole
so that they are appropriately called solar maxima and solar minima. By means
of historical records one has been able to reconstruct the solar cycle back to the
time of Galilei (Fig. 8.2). The periodicity is not precise, shorter and longer pe-
riods do occur (from 7 to 17 years). Also, the amplitudes vary considerably. A
particularly quiet time occurred in the second part of the seventeenth century, the
Maunder minimum, which coincided with the cold period of the little ice age on
Earth.

Most sunspots appear in two belts between the equator and the latitudes ±35◦.
However, in 1859 Christopher Carrington discovered that the average latitude of
occurrence of the sunspots depends on the phase of the solar cycle. During the
11 year period the sunspots gradually drift from latitudes between 25–30◦, where
they first appear, to the equator, where they disappear again at the end of the cycle.
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Fig. 8.2. The solar cycle: number of sunspots versus time. (Courtesy of David
H. Hathaway (NASA, Huntsville).)

Fig. 8.3. Butterfly diagram: daily sunspot area averaged over individual solar
rotations. Detailed observations of sunspots have been obtained by the Royal
Greenwich Observatory since 1874. These data show that sunspots are con-
centrated in two latitude bands which first form at mid-latitudes, widen, and
then move toward the equator as each cycle progresses. (Courtesy of David H.
Hathaway (NASA, Huntsville).)

This drift towards the equator (called Spörer’s law) yields the butterfly diagram
(see Fig. 8.3).

Again, these phenomena would only be associated with magnetic fields in the
twentieth century. In particular, only when the polarity of the fields was taken
into account, it was realized that the physically relevant period of the solar cycle
is actually 22 years with a reversal of the overall magnetic field direction every
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Fig. 8.4. Babcock model for solar magnetism. (From P. Foukal [69], after
H. Babcock, Astrophys. J. 133, 572 (1961).)

11 years. In general, sunspots occur in pairs with a leading spot of a certain polarity
and a following one at a slightly higher latitude of opposite polarity. Moreover, it
was found by Hale and Nicholson (1925) that the leading sunspots on the northern
hemisphere all have the same polarity whereas those on the southern hemisphere
all have the opposite polarity during the first 11 years of the cycle, and the roles
are reversed during the second period of 11 years. Hence, adding the sign of the
sunspot magnetic field to the picture given in Fig. 8.3 reveals that the solar cycle
is really a magnetic oscillation.

(b) The solar dynamo By way of introduction, consider a particular example of the
cartoon approach to dynamo action provided by the Babcock model of the solar cy-
cle (Fig. 8.4). Due to differential rotation and the ‘frozen in’ condition of magnetic
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fields in highly conductive plasmas, an initially poloidal magnetic field (like the
usual dipole field created by toroidal currents in the convection zone) is stretched
and wound up at the equator. After many periods of the solar rotation, the toroidal
magnetic field component, which was negligible at first, now has become the dom-
inant one. This field is expelled from the convection zone and breaks through the
photosphere at isolated places where it forms sunspots with preceding (p) and fol-
lowing (f) polarities of different but fixed signs on the northern hemisphere, and
of the opposite signs on the southern hemisphere. The outer portions of the flux
loops expand into the corona and reconnect with the original poloidal field. This
results in reversal of the direction of the latter field: the second half of the solar
cycle has started. Note that reconnection, i.e. breaking and rejoining of field lines
due to some anomalous resistive process in the corona, is necessary here.

We have seen that the Sun rotates differentially, that the photospheric surface
exhibits cellular convection patterns characteristic of thermal convection, and that
the solar magnetic field is periodic in time. These are the main facts behind the
solar dynamo, i.e., the conversion of mechanical energy into magnetic energy. We
now come to one of the main questions, viz. can all this be explained by the MHD
equations? Recall the (near) conservation laws of Sections 4.1 and 4.4:

∂ρ

∂t
= −∇ · (ρv) (mass), (8.1)

ρ
Dv
Dt

= −∇ p − 1

µ0
B × (∇ × B) + ρg (momentum), (8.2)

Dp

Dt
= −γ p∇ · v + (γ − 1)

[
H − ∇ · h

]
(entropy), (8.3)

∂B
∂t

= ∇ × (v × B) − ∇ ×
[

η

µ0
(∇ × B)

]
, ∇ · B = 0 ( f lux). (8.4)

Here, the terms in square brackets are the ones which spoil the conservation of en-
tropy and magnetic flux. In particular, the pressure evolution equation (8.3), which
expresses (near) entropy conservation, and which also can be expressed in terms
of the internal energy e ≡ p/[(γ − 1)ρ ] or the temperature T ≡ e/CV , contains
the generated heat per unit volume, H , and the heat flow h. For Ohmic dissipa-
tion, H = η j2, with j = µ−1

0 ∇ × B , and h = −λ∇T , where λ is the coefficient
of thermal conductivity1 ([λ] = W K−1 m−1). The resistive term in the (near) flux
conservation equation (8.4) results in magnetic field diffusion. Clearly, our use of

1 Recall that we replaced the symbol κ , introduced in Section 4.4.2 for the thermal conductivity, by λ in
Section 7.1.1.
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the words ‘near conservation’ implies that the transport coefficients λ and η are
considered to be small.

One part of the dynamo problem involves the combined effects of differen-
tial rotation, gravitational contraction, and the presence of a highly conducting
medium. This part is well described by the combined equations of gas dynam-
ics and electrodynamics, i.e. by the partial differential equations (8.1)–(8.4) of
magnetohydrodynamics. The other part, which is just as important, involves the
coupling to the external world through the boundary conditions. Together this con-
stitutes a complicated nonlinear problem in space and time which is essentially
four-dimensional and, hence, necessarily numerical.

Let us approach this problem in three steps. First, the crudest approximation
would be to neglect the velocity v. Eq. (8.2) then results in the magneto-static
equilibrium equation where gravitational forces are to balance pressure gradients
and magnetic expansion forces (so-called magnetic buoyancy by which flux tubes
are expelled from the solar interior). The equations (8.3) and (8.4), with v = 0 ,
are diffusion equations for the pressure (or temperature) and the magnetic field. In
particular, assuming constant resistivity for simplicity, Eq. (8.4) becomes

∂B
∂t

= −∇ ×
[

η

µ0
(∇ × B)

]
= − η

µ0
∇ × ∇ × B

(A.5)= η

µ0
∇2B ≡ η̃ ∇2B ,

(8.5)

where the reference to Eq. (A.5) above the last equal sign refers to a vector identity
of Appendix A. Hence, the inhomogeneity of the magnetic field (created by cur-
rents) will decay on a time scale τD determined by the resistivity η and the length
scale l0 ∼ ∇−1 of the inhomogeneity:

τD = µ0l2
0/η = l2

0/η̃ . (8.6)

We have introduced a new quantity η̃ ≡ η/µ0 = η/(4π × 10−7) which just ab-
sorbs the awkward factor µ0. It is called the magnetic diffusivity and it has the con-
venient dimension of m2 s−1 (since [η] = 
 m and [µ0] = H m−1 = 
 s m−1). In
the astrophysical literature the tilde on η̃ is usually omitted and the conductivity
σ ≡ 1/η rather than the resistivity η is exploited. Here, we stick to the plasma
physics convention by considering the resistivity η as the basic parameter from
which the magnetic diffusivity η̃ is derived.

The very first question to be answered is: what value to take for the resistivity?
Spitzer and Härm (1953) [214] derived an expression for the resistivity of plas-
mas due to collisions between electrons and ions which has become known as the
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Spitzer, or classical, resistivity for reasons that soon will become apparent:

η‖ = e2√me

6ε2
0(2πk)3/2

Z ln  T −3/2
e ≈ 65 Z ln  T −3/2

e . (8.7)

Here, [η] = 
 m, [Te] = K, Z is the charge number of the ions, and ln  is the
Coulomb logarithm, which only weakly depends on the electron temperature Te

and the particle density n. It has a value between 10 and 20 for plasmas of interest.
For the solar corona, with Te ≈ 106 K , ne ≈ 1016 m−3 (see Table B.5), ln  ≈

18 , and the resistivity η ≈ 10−6 
 m (i.e. η̃ ≈ 0.8 m2 s−1), so that τD ≈ 1014 s ≈
3 × 106 y for a loop with a transverse length scale l0 ≈ 10 000 km .2

For the solar interior, in particular the bottom of the convection zone (at present
considered to be the origin of the solar dynamo), where Te = 1.9 × 106 K and
n = 1.9 × 1029 m−3, the value of the resistivity η ≈ 1.7 × 10−7 
 m (i.e. η̃ ≈
0.14 m2 s−1) and the length scale of the inhomogeneity l ≈ R� = 700 000 km, so
that τD ≈ 3.6 × 1018 s ≈ 2 × 1011 y ! It is clear that the factor l2

0 in the expres-
sion (8.6) for τD beats everything. In astrophysical plasmas, effects of classical
resistivity are extremely small, so that ideal MHD (i.e. η = 0) is an excellent ap-
proximation for many purposes. However, for the present purpose of explaining
why the solar dynamo has a 22 year period, it is clear that classical resistive dif-
fusion cannot be the controlling factor since it is completely negligible. We would
be left with a static equilibrium at this point: certainly not a dynamo.

The second step is to add flow. One would have hoped that the apparent ro-
tational symmetry of the differential rotation of the Sun would get us rid of at
least one coordinate so that we could assume this flow to be axi-symmetric. How-
ever, it is clear from the behaviour of the polarity of the magnetic field that this
symmetry is not respected by the solar cycle. In fact, it cannot be respected since
axi-symmetric motion does not lead to a dynamo. The latter statement is the con-
tent of Cowling’s theorem, which we will not prove here. Thus, non-axi-symmetry
of the flow is the necessary third step to get dynamo action. Such a flow is created
automatically by the convective motions of the convection zone. Here, the main
complication is the fact that these motions are turbulent, involving the interaction
of many small scale vortices. It is generally assumed that these turbulent processes
are also responsible for an anomalous increase of the magnetic diffusivity and asso-
ciated decay of the magnetic field so as to correspond to the time scales of the solar
cycle. Note that this implies an increase from the classical value computed above,
η̃class ∼ 0.1 m2 s−1, to η̃turb ∼ 109 m2 s−1, i.e. an increase by a factor of 1010!

2 Yet, coronal loops may disrupt in a solar flare on a time scale of minutes: this certainly cannot be described by
classical resistive diffusion.
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Although the latter fact leads us far away from our present theme (which is
to present a simple survey of solar phenomena which are, in principle, tractable
by means of the equations of magnetohydrodynamics), we will just indicate the
kind of arguments involved in the analysis of a dynamo based on turbulent eddy
magnetic diffusivity. This theory is based on the idea that in a turbulent fluid the
mean values of the variables can be distinguished from the fluctuating, turbulent,
ones. Thus, one writes

v = 〈v〉 + v′ , B = 〈B〉 + B′ , (8.8)

where angular brackets denote average values and primes denote fluctuating parts.
Averaging is to be understood in a statistical sense but, in the solar case, it could
be interpreted as averaging over a solar rotation period (∼ 27 days). Inserting the
expressions (8.8) into Eq. (8.4), one obtains the following averaged form of the
induction equation:

∂〈B〉
∂t

= ∇ ×
(
〈v〉 × 〈B〉

)
+ ∇ × 〈v′ × B′〉 − ∇ ×

(
η̃∇ × 〈B〉

)
. (8.9)

Obviously, all complications of the theory are hidden in the second term on the
right hand side which involves the average cross-product of the fluctuating parts
of the velocity and the magnetic field. These quantities have to come from the
counterparts of Eq. (8.9) describing the evolution of the turbulent variables v′ and
B′. In particular, by means of a number of drastic assumptions, this cross-product
is written as

〈v′ × B′〉 ≈ α 〈B〉 − β ∇ × 〈B〉 + · · · , (8.10)

where the coefficients α and β are correlation functions of the turbulent velocity
v′. This transforms Eq. (8.9) into the following form:

∂〈B〉
∂t

= ∇ ×
(
〈v〉 × 〈B〉

)
+ ∇ ×

(
α 〈B〉

)
− ∇ ×

[
(η̃ + β) ∇ × 〈B〉

]
. (8.11)

This equation describes both magnification of the magnetic field, i.e. possible dy-
namo action, through the term with α, and decay due to turbulent magnetic diffu-
sivity η̃turb = η̃ + β ≈ β , through the term with β. Needless to say, everything is
hidden now in the derivation of expressions for the coefficients α and β. Order of
magnitude estimates based on the length scale l ∼ 1000 km and the time scale τ ∼
1000 s of the turbulent velocity fluctuations v′ ≈ l/τ ∼ 1 km s−1 are α ∼ l 
 ∼
3 m s−1 (where 
 ∼ 2.6 × 10−6 rad s−1 is the angular velocity corresponding to
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a solar rotation period of 27 days) and η̃turb ≈ β ∼ v′ l ∼ 109 m2 s−1. The mira-
cle has been performed: the required enhancement factor of 1010 for η̃ has been
obtained!

For the demonstration of an α-effect and a turbulent diffusivity, the back-
reaction of the magnetic field on the plasma flow has been ignored. This reduced
problem is called the kinematic dynamo problem. Even if this part is taken for
granted, one still has to solve the full nonlinear MHD dynamo problem, i.e. one
needs to show that plasma motion and a quasi-oscillatory magnetic field can
maintain each other. This is presently a ‘hot’ item in computational plasma-
astrophysics, involving large scale numerical simulations. Nevertheless, the sub-
ject of solar and stellar dynamo theory is far from nearing completion.

8.2.2 Magnetic structures in the solar atmosphere

The resulting magnetic structures and their dynamics in the solar atmosphere will
now be described.

(a) Photosphere and chromosphere The energy radiated by the Sun comes from
the photosphere. The Sun emits a continuous spectrum but in the spectrum re-
ceived on Earth dark absorption lines occur, the Fraunhofer lines. They are dark
because the lower gas transparency, due to the absorption at specific wavelengths
by specific particles such as iron atoms, causes radiation escape at greater height
where the temperature is lower. Most of the absorption lines are formed in the
photosphere. In the optical solar spectrum there are about 20 000 of these Fraun-
hofer spectral lines. Many of them are overlapping but sufficient of them are single.
From the comparison with laboratory experiments these absorption lines allow us
not only to study the abundance of the elements of the Sun (all 92 elements are
present although most of them are very rare), but they also allow us to measure
density, temperature, velocity and field vectors.

The intensity of the absorption lines in the solar spectrum provides us with in-
formation on the temperature, their Zeeman splitting provides information on the
strength of the magnetic field, and their Doppler shifts provide information on the
velocity along the line of sight. Different absorption lines are formed at different
heights so that one can look at different levels in the solar atmosphere by using
different filters. For instance, selecting the Hα Balmer line (due to a transition in
hydrogen atoms from the second to the third quantum level) one can look at the
middle chromosphere. By observing in the Ca+ K line one sees the low chromo-
sphere, and in soft X-rays one gets a direct view of the corona.
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Fig. 8.5. Image of the Sun taken through a filter centred on a spectral line of
hydrogen (Hα, wavelength = 6563 Å). This line forms above the surface of the
Sun, but large sunspots are still visible and active regions and plages show up
brighter than their surroundings. Also visible are condensations of cooler gas high
up in the solar atmosphere which show up as filaments, dark string-like structures
visible on the disc, and prominences, bright structures extending outward over the
limb. (Courtesy of National Solar Observatory/Sacrament. Peak.)

Fig. 8.5 is an Hα picture of the lower chromosphere. The bright areas are active
regions (above sunspots). The elongated dark filaments are prominences which, in
the line of sight, appear to be vertically flat structures. Their protruding shape is
visible though in observations of the limb (see below).

In Section 8.2.1 sunspots were just considered as ‘tracers’ of the magnetic pro-
cesses going on in the interior of the Sun. However, sunspots can also be studied as
entities by themselves. They are also of interest as emerging magnetic flux. Most
sunspots disappear again after a couple of days but the larger ones can last much
longer, even up to several months. These large sunspots have diameters between
40 000 km and 60 000 km. Such a large sunspot is displayed in Fig. 8.6. The central
dark area is called the umbra. It has a diameter of 10 000–20 000 km (about 40%
of the total diameter of the spot) and the magnetic field and the temperature are
almost uniform in the umbra. The magnetic field is typically 2000–3000 gauss but
can be as high as 4000 gauss. The temperature is typically 3700 K, which is lower
than the temperature of the surrounding photosphere. This is the reason why the
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Fig. 8.6. Mature sunspot, observed with the Dutch Open Telescope on La Palma,
1 May 2003. Axes: arcsec (1 arcsec = 725 km on the Sun). Upper: Ca IIH (3968 Å)
sampling the low chromosphere. Lower: G band around 4305 Å sampling the deep
photosphere. At the photospheric level the solar magnetic fields are very finely
structured; they spread and become more diffuse in the chromosphere. (Courtesy
of R. Rutten (Utrecht University).)

umbra appears dark: the brighter surroundings dictate short exposure times. By it-
self, against a non-emitting background, the umbra would be bright. Longer expo-
sure times reveal that the umbra is not uniformly dark. Bright dots with diameters
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Fig. 8.7. Parker’s sunspot model. (Courtesy of E. N. Parker, Astrophys. J. 230,
905 (1979).)

of 150–200 km and life times of typically 20 minutes occur in the umbra and may
be indications of the ‘spaghetti model’ (see below). The umbra is surrounded by
the penumbra which consists of light and dark radial filaments. These filaments
are 5000–7000 km long and 300–400 km wide and live from half an hour up to six
hours. The magnetic field strength decreases in the penumbra and at the interface
between the penumbra and the photosphere it is about 1000–1500 gauss.

Standard magnetohydrostatic models of the equilibrium configuration of sun-
spots picture them as a single ‘monolithic’ flux tube with almost vertical magnetic
field lines under the photosphere. Above the photosphere the external pressure de-
creases exponentially with height and, as a result, the magnetic field lines fan out
in the chromosphere. However, even the most sophisticated sunspot models based
on such monolithic flux tube configurations are not compatible with the observed
external pressure stratification. Moreover, these standard models yield no expla-
nation for the non-axi-symmetric fine structure of the penumbra. In 1979 Parker
suggested an alternative model for sunspots, depicted in Fig. 8.7. In this alternative
model, the single flux tube splits up into a large number of narrow flux tubes at a
depth of about 1000 km under the photosphere. This bundle of magnetic flux tubes
is held together by the convective motions at the granulation boundaries, indicated
by the dashed arrows in the figure. The mentioned bright dots in the umbra are
interpreted as observational evidence for this ‘spaghetti model’ for the sunspot.
This structure is at present investigated by means of a new branch of solar physics
called sunspot seismology (to be discussed in Section 11.3.3), which exploits the
fact that p-modes (the pressure driven acoustic oscillations of the Sun as a whole)
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sample the different layers of the Sun. These modes are scattered and absorbed
by sunspots so that one can learn something about the internal structure of the
sunspots. The radial structure can be simulated by 1D models, but the difficult
(2D) part is the dependence on the vertical inhomogeneity (along the magnetic
field).

The solar photosphere is covered by 3 to 4 million granules at any time. A close-
up of the granulation pattern is shown in Fig. 8.8: clear evidence of the nonlinear
dynamics of the underlying convection zone. The granules are the tops of convec-
tion cells overshooting the convection zone. Their centres appear brighter because
of the hot, rising plasma there. The diameter of these cells is typically for 1 to 2′′,
corresponding to 700–1500 km. They exist typically for 5 minutes, i.e. shorter than
the turnover time.

In the quiet photosphere, the magnetic field is concentrated in intense flux tubes
in the intergranular lanes, i.e. the downdrafts of the granulation. They are driven to
the boundaries of the supergranulation cells by horizontal outflows, as indicated in
Fig. 8.9. Supergranulation cells were discovered by studying the vertical motions
of the photosphere by means of the Doppler shifts of the absorption lines in the
spectrum. Horizontal outflows and large-scale velocity patterns were identified as
the tops of large convection cells. The diameter of these supergranules varies from
20 000 to 54 000 km and is about 30 000 km on average. In the centre, hot plasma
rises and then flows out horizontally at 1.3–1.5 km s−1. The typical life time of
the supergranules is 1 to 2 days and the turnover time is of the same order of
magnitude. Their boundaries are very prominent in the chromosphere in which the
magnetic field lines fan out due to the decrease of the external plasma pressure. As
a result, the magnetic field becomes more uniform in the upper chromosphere and
corona, as illustrated in Fig. 8.9, which also displays the temperature contours in
the atmosphere above a supergranule cell.

(b) Corona Spectacular evidence for magnetic fields in the corona comes from
the shapes of prominences and loops protruding into the corona. An old example
(from 1871!) is shown in Fig. 8.10(a), where coronal loops and chromospheric
spicules (shooting jets) are drawn from spectrohelioscope observations. A modern
counterpart is shown in Fig. 8.10(b). The loops extend to heights of 500 000 km
and contain hot plasma that is heated and rises along the magnetic field and then
cools again and falls back with speeds of about 100 km per second. We now know
that we are looking at magnetic structures with properties that are extremely well
known. However, even though we now have these high-resolution observations,
a satisfactory theory describing the dynamics and the heating of these loops, and
predicting when they develop into flares, does not yet exist.
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Fig. 8.8. Granulation with network of the quiet Sun, observed with the Dutch

the Sun). Upper: Ca II H (3968 Å) sampling the low chromosphere. The mag-
netic flux tubes become relatively bright at this height due to a not understood
heating mechanism. The granulation is replaced by a brightness pattern due to
convective overshoot, acoustic waves and gravity waves. Lower: G band around
4305 Å sampling the deep photosphere. The solar surface granulation is caused
by the abrupt transition from convective to radiative energy transport. The tiny
bright points in some dark intergranular lanes mark magnetic flux tubes with field
strengths around 1400 gauss. (Courtesy of  R. Rutten (Utrecht University).)

Open Telescope on La Palma, 3 July 2002. Axes: arcsec (1 arcsec = 725 km on
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Fig. 8.9. Canopy fields. (From A. H. Gabriel, Phil. Trans. Roy. Soc.
London A281, 339 (1976).)

In Fig. 8.5, prominences showed up as thin, dark, filaments in Hα pictures of the
photosphere but we now consider their extension in the corona. In eclipse or coro-
nagraph pictures they appear bright at the limb. Prominences are cool and dense
structures. Their temperature is about 100 times lower than that of the surrounding
corona and their density is 100 to 1000 times higher than coronal values. There
are two types of prominences: quiescent and active. The active prominences are
located in active regions and exhibit violent motions that may give rise to solar
flares. An example of an erupting prominence is shown in Fig. 8.11. Active promi-
nences exist for minutes or hours. Quiescent prominences, on the other hand, can
last much longer, up to 200 days. These huge structures are typically 200 000 km
long, 50 000 km high, and 6000 km wide.

Solar flares are amongst the most impressive explosive phenomena generally
believed to result from the release of huge amounts of magnetic energy. Frequently,
the irrelevant, but anyway impressive, comparison is made with nuclear explosions
(with energy releases of 1013–1015 J). Large solar flares of 1024 J release the energy
equivalent to a billion hydrogen bombs. Of course, the relevant comparison is with
the solar luminosity L� = 4 × 1026 J s−1, which is hardly affected by a large flare
on a time scale of minutes. However, recently discovered superflares of 1026–1031 J
on ordinary main-sequence stars, including those that were discovered to have
planets, have evoked some discussion on the consequences for possible life on
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Fig. 8.10. (a) Coronal loops drawn by A. Secchi in 1871 (from C. Young,
The Sun (London, 1882)). (b) Coronal loops observed in unprecedented de-
tail with NASA’s Transition Region and Coronal Explorer (TRACE) spacecraft.
Coronal heating is deduced to be located at the bases of these loops. (From
Vestige.lmsal.com/TRACE.)

those planets (Schaeffer, King and Deliyannis [202]). For our subject, the effects
on our own magnetosphere of coronal mass ejections (CMEs), often concomitant
with solar flares, are more relevant for human enterprises like radio communication
and power transmission.
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Fig. 8.11. Erupting prominence. (From www.solarviews.com.)

The solar corona emits thermally in soft X-rays. This means that it can be ob-
served directly in this frequency range since the contribution of the much colder
lower atmosphere is negligible. Soft X-ray pictures of the solar corona, such as
routinely taken since the Skylab missions in 1973, show that the corona is highly
inhomogeneous and structured. Based on the topology of the magnetic field, the
corona can be divided into two types of regions, viz. open and closed regions.
These regions are associated with magnetic field lines that either are fanning out
into interplanetary space or return to the photosphere, forming closed magnetic
loops. The ‘open’ regions are colder and, hence, appear dark on soft X-ray pic-
tures of the whole Sun. They are called coronal holes since the solar wind escapes
here along the ‘open’ field lines and is accelerated to enormous speeds (e.g. at
1 AU the wind speed is about 400 km s−1). The closed or active regions appear
brighter because they are hotter. They consist of bundles of hot magnetic loops
with temperatures of 2 to 3 million Kelvin. They are typically 200 000 km long
and have a life time of the order of 1 day, although a system of loops may last for
many months.

In white light the corona can only be seen during an eclipse or by means of a
coronagraph (a telescope with a small disc in it which creates an artificial eclipse)
because the much higher photospheric emission in white light completely over-
whelms the coronal emission. Fig. 8.12 displays a white-light eclipse photograph
of the corona. In general, such photographs show radial structures, stretching out to
1–10 R�, which are called coronal streamers. Special ones are the ‘helmet stream-
ers’, that exhibit a cusp-like structure and usually appear above prominences. Near
the poles one sees ‘polar plumes’, but otherwise these regions are dark and as-
sociated with ‘coronal holes’. In Fig. 8.13 a predicted polarization brightness is
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Fig. 8.12. Total solar eclipse of 11 July 1991 as seen from Baja California. This
digital mosaic is processed by Steve Albers (Boulder, CO) and derived from five
individual photographs, each exposed correctly for a different radius in the so-
lar corona. It shows helmet streamers, prominences and coronal holes. (From
www.solarviews.com.)

shown together with magnetic field line traces for the total solar eclipse in 1999.
This illustrates the correspondence between the open or closed magnetic field
configurations and the coronal structures, and convincingly shows that these struc-
tures are due to these two types of magnetic fields. The 3D MHD simulation was
performed before the eclipse to predict what the solar corona would look like dur-
ing the eclipse.

The closed and open magnetic field configurations have been the subject of
many investigations. It has been remarked by B. C. Low [148] that the helmet
streamer structure plays an important role in the dynamics of coronal plasmas. It
both represents the large scale relaxed state of the quiescent corona and acts as an
agent for coronal reconfiguration by flows and CMEs. Concerning the underlying
filament-prominence configuration, it has been noted by Martens and Zwaan [152]
that they are usually found at the location of inversion of the magnetic polarity
in the active regions of the photosphere. At those locations, emergent magnetic
flux produces loop-like filaments with helical magnetic field lines that are sta-
ble through line-tying to the photosphere. Through some form of reconnection,
several such filaments with the same sense of helicity of the magnetic field join
to form long structures that cannot be stabilized any more by line-tying so that
they erupt. Clearly, the subject of erupting magnetic structures is a treasury for
solar MHD.
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Fig. 8.13. Comparison of an MHD model prediction with a photograph for the
total solar eclipse on 11 August 1999 in central Europe, the Middle East and In-
dia. The 3D MHD simulation was performed on 28 July 1999. The prediction
model used photospheric magnetic field data from Carrington rotation 1951 cor-
responding to 24 June–21 July 1999. Top: eclipse image constructed by adding
22 separate photographs taken in Turkey at different exposures to compensate for
the rapid radial fall-off of the brightness in the corona and digitally processed to
enhance the fine details of the corona (from F. Espenak). Bottom left: predicted
polarization brightness for 11 August 1999 at 11:38 UT, corresponding to totality
in Eastern Turkey. Bottom right: magnetic field line traces in the 3D MHD model
prediction (courtesy of Z. Mikic, haven.saic.com/corona).

At the surface of the Sun, the temperature is about 6600 K and it decreases
further in the photosphere to about 4300 K at the top of the photosphere. Above
the photosphere, however, the temperature starts to increase again, as shown in
Fig. 8.14 computed by Athay. (Note the logarithmic scaling of the vertical axis.)
In the lower and middle chromosphere the temperature first increases relatively
slowly, but in the higher chromosphere and the transition region to the corona the
final increase to T ∼ 2–3 × 106 K is so counter-intuitive from a thermodynamic
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Fig. 8.14. Coronal temperature variation with height. (From R. G. Athay, The
Solar Chromosphere and Corona: Quiet Sun (Reidel, Dordrecht, 1976).)

point of view that it has become known as the coronal heating problem. We
have already mentioned that the mechanism behind this increasing temperature
with increasing distance from the Sun is still one of the major problems in solar
MHD research. It will be more extensively discussed in later chapters (Chapters 10
and 11).

(c) Heliosphere We mentioned that the solar wind escapes from the solar coro-
nal holes along the open field lines. These field lines again form a giant magnetic
structure. Looking down to the Sun from a position above one of the poles, one
would see that the wind rotates with the Sun and that the magnetic field lines
form so-called Archimedes spirals. Since the magnetic field has a different polarity
in the two hemispheres, a thin magnetically neutral current sheet separates these
opposite polarities. Because the flux in the solar wind is not nicely up–down sym-
metric, this neutral current sheet is warped. Magnetometers on board satellites in
the 1960s have shown that the rotating solar wind had four magnetic sectors at
that time. During the Skylab mission in the summer of 1973, this warped neutral
current sheet looked schematically as shown in Fig. 8.15. Clearly, this large scale
rotating magnetic structure already provides a very complex system by itself, but
at the planetary magnetospheres it produces solar wind magnetic field orientations
that systematically change direction with respect to the dipolar fields of the planets.
We will return to this large scale structure of the solar wind and the interaction with
the magnetospheres in Section 8.4, after the exposition of the planetary magnetic
fields.
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Fig. 8.15. Neutral current sheet. (From A. J. Hundhausen, in Encyclo-
pedia of Science and Technology (McGraw-Hill, 1981).)

8.3 Planetary magnetic fields

We now turn to the magnetic fields of the planets. From the numbers presented in
Table B.8 it is clear that the largest magnetic fields are found for the Earth and
the Jovian or giant planets. Of the latter, Jupiter has by far the largest magnetic
dipole moment and, consequently, the most extended magnetospheric system. The
question of why these planets have large magnetic fields, whereas the fields of the
remaining terrestrial planets are very weak, is a difficult one that has not been satis-
factorily answered yet. The answer would require a detailed knowledge of both the
interior structure of the planets and of the theoretical solutions of the nonlinear dy-
namo equations. In a sense, these problems are mathematically ill-posed: solutions
depend extremely sensitively on the boundary conditions imposed on the outside,
which is the only place where magnetic field or seismological measurements can
be made. It is beyond the scope of the present book to analyse these problems in
detail. We will be content with a phenomenological approach.

For many purposes we do not need to go into the details of the dynamo mech-
anism of the planetary magnetic fields. It is sufficient to have an equivalent rep-
resentation of the magnetic field which is valid on time scales shorter than the
dynamo period (which is much longer for the planets than for the Sun).

First, consider the magnetic field produced by a current flowing in a straight
infinitely long wire (Fig. 8.16(a)). According to the law of Biot and Savart,

B = µ0 I

2πr
. (8.12)
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Fig. 8.16. Currents and associated magnetic fields.

Insert for the distance r the radius of the Earth, RE = 6.4 × 106 m, and for the
current I = 1000 MA. This gives a magnetic field strength B = 3 × 10−5 T (=
0.3 gauss), which is the magnitude of the geomagnetic field at the equator (see
Table B.8). Of course, we do not suggest that the magnetic field of the Earth is
produced in this manner, but equation (8.12) does give an impression of the amount
of current that is needed to produce magnetic fields of the right order of magnitude.

We come a little closer to reality by considering a magnetic dipole produced by
a current loop (Fig. 8.16(b)):

B = µ0 I

2r
. (8.13)

Again inserting the radius of the Earth for r and a current of I = 630 MA this
time, we find B = 6.2 × 10−5 T (= 0.62 gauss), which is the magnitude of the
geomagnetic field at the magnetic poles. For such a loop we may define the
magnetic dipole moment, which is the current in the loop multiplied by the area
spanned by the loop:

m ≡ πr2 I . (8.14)

(In Section 2.2.3, Eq. (2.33), we have exploited the symbol µ for this quantity.)
Inserting the same values for r and I as above, the magnetic moment of the loop
is m = 8.1 × 1022 A m2 (= 8.1 × 1025 gauss cm3), which is the magnetic dipole
moment of the Earth (see Table B.8). The idea is to consider the magnetic field
external to the Earth to be produced by an equivalent magnetic dipole situated
at the centre of the Earth. This imaginary dipole is the limit of a current loop in
which the current I → ∞ and the radius r → 0 in such a manner that the value of
the magnetic dipole moment given by Eq. (8.14) is kept fixed. The magnetic field
produced by such a dipole is given by the expression

B(r) = µ0

4πr3
(3m · er er − m) , (8.15)
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Fig. 8.17. Magnetic field of a dipole.

where m is the magnetic dipole moment vector,3 er is the unit vector in the direc-
tion of the position vector r, and r ≡ |r|. Whatever the actual mechanism by which
the geomagnetic field is generated, it turns out that Eq. (8.15) with the given value
of m reproduces the magnetic field external to the Earth quite well. Note that the
magnetic field lines point to the magnetic north pole so that the equivalent dipole
at the centre of the Earth should be pointing south, i.e. mE = −mE ez , where ez

is the unit vector pointing north (Fig. 8.17). For Jupiter, which has a magnetic
dipole moment of 1.5 × 1027 A m2 pointing approximately north (with respect to
the ecliptic) we find: Bpole = 8.4 × 10−4 T and Bequator = 4.2 × 10−4 T.

8.3.1 The geomagnetic dynamo

The Earth (Fig. 8.18) probably consists of a solid inner core of iron and nickel
(0 < R < 1300 km), a fluid outer core of liquid iron (1300 < R < 3400 km), a
solid mantle of silicates (3400 < R < 6400 km), and, outermost, a rocky crust of
some tens of kilometres thick. The fluid outer core is considered to be the seat of
the geodynamo, which maintains the magnetic field against resistive decay. This
dynamo operates when an electrically conducting fluid is kept in motion by some
source (in this case, heat from radioactive decay and rotation of the Earth). In the
presence of a magnetic field, this fluid flow generates electric fields and currents
which, in turn, may amplify the existing magnetic field. Magnetohydrodynamics
(MHD) is the theoretical tool to describe the motion of a conducting fluid in a
magnetic field. However, one needs substantial computer programs for the solution

3 Note that it is convenient to define another quantity M ≡ (µ0/(4π)) m to get rid of the awkward factor
µ0/(4π) = 10−7 H m−1. This quantity is also called the magnetic dipole moment by some authors. In the
Gaussian system of units there is no need for this distinction since the connection between B and m is then
given by an equation like (8.15), however without the factor µ0/(4π). Consequently, the values of the planetary
dipole moments given in Table B.8 should be multiplied by 10−7 to get the values of M in T m3 and by 103

to get the values of m in gauss cm3.



410 Magnetic structures and dynamics

Fig. 8.18. Interior of the Earth.

because the dynamo is essentially nonlinear and the required solutions are truly
three-dimensional, i.e. they do not exhibit a symmetry.

Paleomagnetic research, i.e. the study of the magnetization of ancient rocks,
has revealed that the geomagnetic field reverses sign about every 400 000 years,
whereas the reversal itself requires some 10 000 years to take place. Investiga-
tion of the magnetization of historical artefacts (e.g. magnetized iron particles in
Roman pottery) has shown that the magnetic field of the Earth is at present de-
caying at a fast rate, implying that it would reverse sign in the next 1500 years.4

Moreover, about 10% of the field at the surface of the Earth is non-dipolar, i.e. de-
viates from the form given by Eq. (8.15). Retracing the geomagnetic field from
the surface of the Earth back to the outer core (a procedure where the caveat of
ill-posedness should be heeded!) one finds so-called magnetic core spots where
the polarity of the field is reversed. These spots might grow and eventually cause
a global field reversal.

The described time-dependence and inhomogeneity of the geomagnetic field
clearly cannot be explained by a stationary electrodynamic model without fluid
flow (v = 0) and only having electric currents flowing in the molten iron outer core
of the Earth. Such a model would again lead to Eq. (8.5), which implies that an in-
homogeneous magnetic field will decay with a time scale determined by the resis-
tivity η and the length scale l0 ∼ |∇|−1 of the inhomogeneity. The latter is related
to the amount of current flowing in the medium: | j | ∼ |B|/(µ0l0). Equation (8.5)
then provides the simple estimate of the decay time of the current and, hence, of the

4 Subsequent issues of Scientific American provide an interesting account of present knowledge on this subject:
G. N. Parker, Scientific American (August 1983) 44, ‘Magnetic fields in the cosmos’; R. Jeanloz, Scientific
American (September 1983) 56, ‘The earth’s core’; K. A. Hoffman, Scientific American (May 1988) 50, ‘An-
cient magnetic reversals: clues to the geodynamo’; J. Bloxham and D. Gubbins, Scientific American (December
1989) 30, ‘The evolution of the earth’s magnetic field’.
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associated magnetic field5 already given in Eq. (8.6). Taking values characteristic
for the outer core, viz. the resistivity of molten iron, η ∼ 10−5 
 m, and the size of
the outer core, l0 ∼ 2000 km, this gives τD ∼ 5 × 1011 s = 16 000 years. Now, we
have an entirely different situation than in the solar case. The time scale of resis-
tive decay is much shorter than the time scale of the periodicity of the geomagnetic
field. One needs to explain why the field would recover its initial strength and be
maintained during times of the order of 500 000 years (until the next reversal).

To explain that one needs dynamo theory, i.e. equations describing fluid motion,
in much the same way as the treatment of the solar dynamo with the Eqs. (8.1)–
(8.4). In particular, one should exploit the appropriate form of Ohm’s law for a
moving conducting fluid:

E + v × B = η j . (8.16)

(Note that, since molten iron is not a plasma, we do not expect, nor do we need,
a huge anomalous increase of the resistivity η as in the solar case.) Now, fluid
flow introduces a magnetic field evolution that is entirely different from simple
resistive decay due to the first term on the RHS of Eq. (8.4). Resistive decay may be
counteracted by convection of magnetic field through fluid motion. As for the solar
dynamo problem, Eq. (8.4) for the evolution of B is to be considered together with
the equations (8.1)–(8.3) which describe the evolution of the density ρ, the velocity
v, and the pressure p. Most important, one has to show that this system confined
within the boundaries of the solid inner core and the mantle, which both may be
considered as electric insulators but which do exchange heat with the fluid, gives
rise to solutions exhibiting the highly non-stationary behaviour of the geomagnetic
field described above.

The fluid flow may be driven either by heat from radioactive decay of potassium
nuclei in the inner core or, according to an alternative theory, by the unmixing of
the dense iron crystals forming at the interface of the inner and outer core from the
remaining lighter fluid. In both cases there is enough energy available to regenerate
the magnetic field. This happens through a highly turbulent process in which the
upwelling fluid is put into cyclonic motion by the non-uniform rotation of the outer
core, as schematically shown in Fig. 8.19. As a result, the field lines, carried with
the fluid, are first stretched out in the equatorial direction so that an azimuthal

5 A more explicit example of such decay may be obtained for the special model of a force-free magnetic field,
obeying j × B = 0 so that ∇ × B = α B. (Do not confuse the force-free field parameter α with the dynamo
parameter α of Section 8.2.1. Unfortunately, both notations are standard in their respective contexts.) If, by
some magic, α = const in space and time, Eq. (8.5) would lead to

∂B
∂t = −α2η

µ0
B ,

so that B ∼ exp(−t/τ) with τD = µ0/(α2η). Since α measures the current and, hence, the inhomogeneity of
the field: α ∼ 1/ l0, and we recover Eq. (8.6).
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Fig. 8.19. A snapshot of the 3D magnetic field structure simulated with the
Glatzmaier–Roberts geodynamo model. The rotation axis of the model Earth is
vertical and through the centre. A transition occurs at the core–mantle boundary
from the intense, complicated field structure in the fluid core, where the field is
generated, to the smooth, potential field structure outside the core. The field lines
are drawn out to two Earth radii. (Courtesy of Gary A. Glatzmeier (UCSC) and
Paul H. Roberts (UCLA).)

magnetic field component develops (directed W → E on the northern and W ←
E on the southern hemisphere). Next, this azimuthal field is deformed into helices
having a meridional component (in the same direction on both hemispheres) which
would amplify the original dipolar field.

Of course, this qualitative argument cannot replace genuine analysis. In partic-
ular, it does not explain why and when the field reverses sign. Some kind of a
nonlinear triggering mechanism is needed here. Recently, such reversal has been
found in computer simulations of the geodynamo (G. A. Glatzmaier and P. H.
Roberts [79]).

For the purpose of the present chapter we do not need to go into more detail
about the geodynamo problem because we will be concerned mainly with magne-
tospheric physics where the relevant phenomena occur on time scales of the order
of hours (magnetospheric substorms), days (solar flares and geomagnetic storms),
or, at most, decades (the 11 year cycle of the solar magnetic field). It is clear that
on those time scales the magnetic field of the Earth may be considered as a static
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dipole field of the form given in Eq. (8.15) with a given strength. Spatial deviations
from the dipolar form could be described by adding higher order multipole terms.

8.3.2 Magnetic fields of the other planets

One of the interesting features of the solar system is the variety of the physical
properties of the planets. It is certainly not so that ‘if you have seen one you
have seen them all’. From the discussion of the geodynamo it is clear that the
existence and the strength of a planetary field will depend on the size, the interior
structure and composition, and the rotation of the planet. The relative importance
of these three factors is still far from obvious at present. From this point of view
it is nice that there is more than one planet so that we are prevented from drawing
oversimplified and erroneous conclusions. For example, the fast rotation of the
giant planets correlates well with their sizeable magnetic fields, whereas the slow
rotation of Venus also correlates with the virtual absence of an internal magnetic
field. (See Tables B.7 and B.8.) However, the similarity in the rotation periods of
Mars and Earth does not give a clue as to why the magnetic field of Mars is three
orders of magnitude smaller. Also notice that the smaller planet Mercury, which
also rotates much slower than Mars, still has a magnetic field larger than that
of Mars.

With respect to size and interior structure, Eq. (8.5) shows that we need a rela-
tively large cross-sectional area of a well-conducting material where currents can
flow without too much resistive decay so that the generated magnetic field does not
disappear too fast. On the other hand, this material should preferably be in a liquid
phase in order for the magnetic field to be regenerated by means of the dynamo pro-
cess through convective fluid flow. Broadly speaking, these conditions are provided
for the terrestrial planets by the presence of an outer core of molten iron, whereas
the giant planets Jupiter and Saturn have extended outer cores of liquid metal-
lic hydrogen. The relatively smaller fraction of metallic hydrogen as compared to
molecular hydrogen in Saturn could explain its smaller magnetic field. However,
the recently discovered magnetic fields of Uranus and Neptune, which are of the
same order of magnitude as the magnetic field of Saturn, are apparently generated
by a dynamo operating in a quite different environment since these planets are
not supposed to have a metallic outer core but, instead, a thick shell consisting of
water, ammonia and methane.

The magnetic field of Venus, although very small, deserves separate treatment
because it does not originate from an internal dynamo (the rotation period of this
planet is too small as we have noted above) but from the interaction between the
solar wind and the ionosphere of this planet. This interaction induces currents
in the upper atmosphere which are responsible for the observed magnetic field.
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Fig. 8.20. Orientation of the main planetary magnetic moments.

With respect to these magnetospheric properties, Venus resembles more comets
like Giacobini–Zinner and Halley, which also do not have internal magnetic fields
but magnetospheric fields induced by the interaction with the solar wind.

Another interesting feature of the planetary magnetic fields is the orientation
of the magnetic axis with respect to the rotation axis of the planet (see Table B.8
and Fig. 8.20). Since dynamo action requires rotation one would expect that the
two axes would be more or less aligned. This turns out to be the case for most
of the planets, where it should be noted that Mercury and Earth have their mag-
netic moment oriented anti-parallel to the angular momentum vector whereas the
giant planets have an approximately parallel orientation. (For historical reasons,
the latter orientation is indicated with a minus sign in front of the value of the
tilt angle given in Table B.8.) Since dynamo action allows for field reversal one
probably should not make too much of this difference: apparently, two planets are
accidentally in a reversed magnetic state with respect to the others at this particular
moment in time.

An exception to the rule of aligned magnetic and rotation axes is provided by
Uranus, where the orientation of the two axes appears to be totally unrelated. In a
sense, this is too bad since, with alignment, the special orientation of the rotation
axis of Uranus (approximately lying in the ecliptic plane) would have given rise
to the peculiar phenomenon of the solar wind impinging on one of the magnetic
poles of a planet.6 On the other hand, it is good to have this counterexample since
it shows us that the dynamo mechanism operates under a wide variety of circum-
stances. Apparently, rotation plus an internal energy source of some kind is already
enough to set it off. Another possibility, which cannot be excluded at present, is
that we are observing Uranus at a period of magnetic reversal so that the magnetic
axis is somewhere in the middle of its wandering motion. Uranus is also excep-
tional with respect to the deviation from the dipolar form given by Eq. (8.15).

6 Also, too bad for the theoretician who would have been excused for studying the problem of the interaction of
the solar wind with a planetary magnetic field for a two-dimensional system, conserving the axi-symmetry of
the dipole field, rather than facing the real three-dimensional problem.
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Large quadrupole and octupole components have been observed which can be rep-
resented by an effective magnetic dipole displaced off centre by 0.3 × RU . This
could also be considered as evidence for a field reversal period.

In conclusion, the preliminary material collected in Tables B.7 and B.8 gives a
glimpse of the vast territory of magnetic properties of the planets, which is largely
uncharted at present. The results of Voyager 2 have already changed our picture
substantially.7 It is likely that this picture will be substantially modified in the near
future, in particular by further space missions (like Cluster).

8.4 Magnetospheric plasmas

So far we have discussed the planetary magnetic fields outside the planet from the
point of view of a simple dipolar representation, as given in Eq. (8.15). This rep-
resentation is an idealization. It breaks down in the interior of the planet close to
the source of the field, i.e. in the neighbourhood of the distributed dynamo cur-
rents in the outer core of the planet. More important, and much better accessible to
observation, is the huge deviation from a dipole field outside the planet. This de-
viation is due to the interaction with the solar wind. This is a plasma consisting of
protons and electrons, of different temperatures, emitted by the corona of the Sun.
We will first discuss the mechanism of the solar wind generation (and continue
the discussion of Section 8.2.2 on the large scale structure of the heliosphere) in
Section 8.4.1, and then turn to the interaction of the solar wind with the planetary
magnetospheres in Section 8.4.2.

8.4.1 The solar wind and the heliosphere

We have seen that the density of the corona is many orders of magnitude smaller
than that of the photosphere and that the temperature increases by a factor of 100
to 1000. Typical numbers are:

nphotosphere ∼ 1023 m−3 , ncorona ∼ 1014 m−3 (at 3000 km) ,

Tphotosphere ∼ 6000 K , Tcorona ∼ 106 K .

Whatever the mechanism behind this remarkable phenomenon, these numbers im-
ply that the solar corona cannot be in static equilibrium but suffers a continuous
outflow of mass, the solar wind. It was predicted by E. N. Parker in 1958 [174]
and observed by satellites in 1959. This plasma escapes along the open magnetic
field lines, mainly originating in the coronal holes (the dark regions of reduced
X-ray emission). The question then arises as to what kind of stationary equilibria

7 See E. D. Miner, Physics Today (July 1990) ‘Voyager 2’s encounter with the gas giants’.
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(i.e. equilibria with a time-independent outflow velocity) such a corona permits.
To sketch the answer to that question, we will consider the simplest possible gas
dynamic model of the corona.

The principal arguments (A. J. Hundhausen [113]) can be obtained from a model
in which the energy equation is ignored, i.e. an isothermal (T ≈ Te ≈ Ti ) model
of the corona with a hydrogen plasma (n ≡ ne ≈ ni ):

∂ρ

∂t
+ ∇ · (ρv) = 0 (mass conservation), (8.17)

ρ
∂v
∂t

+ ρv · ∇v + ∇ p − ρg = 0 (momentum conservation), (8.18)

p ≡ nekTe + ni kTi ≈ 2nkT (equation of state with given T), (8.19)

ρ ≡ neme + ni mi ≈ nm (definition of the density), (8.20)

where m is the sum of the proton and electron mass. Hence, p and ρ are related
through the isothermal sound speed,

p/ρ ≈ 2kT/m ≡ v2
th , (8.21)

which is assumed to be constant in this model.
Spherically symmetric static (v = 0) equilibrium would imply

∇ p = ρg ⇒ dp

dr
= −ρ

G M�
r2

= −αR�
p

r2
, α ≡ G M�

R�v2
th

, (8.22)

so that

p = p0e−α(1−R�/r) . (8.23)

With typical parameters for the base of the corona, T = 106 K and n = 1.5 ×
1015 m−3 , we have p0 = 4 × 10−3 N m−2 and α = 11.53 . Hence, far away
from the Sun, in interstellar space, we would have p∞ = e−α p0 = e−11.53 × 4 ×
10−3 = 4 × 10−8 N m−2 , i.e. many orders of magnitude too big as compared to
the actual values there, viz. p ≈ 3 × 10−14 N m−2 . Consequently, a hot corona
(106 K) cannot be in static equilibrium with the interstellar pressure. (For a cold
atmosphere at photospheric temperature, T = 6000 K, such a problem does not
arise: α = 1920, and p∞ is completely negligible.) This is the reason for the solar
wind solutions, i.e. stationary equilibria with v �= 0.

Hence, consider a spherically symmetric stationary state with v ≡ vr . The mass
conservation equation (8.17) then gives

d

dr
(r2ρv) = 0 ⇒ r2ρv = const , (8.24)
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where the constant is related to the total mass loss of the Sun:

Ṁ� ≡ d

dt

∫
ρ dV = −

∮
ρv · n d S = −4πr2ρv . (8.25)

Note that, in contrast to Eq. (4.84) of Section 4.3.2, we now have an open system
where mass is lost. Obviously, the representation by a stationary state is restricted
to time scales τ � M� / Ṁ� . The momentum equation (8.18) with the relation
(8.21) then yields

ρv
dv

dr
+ v2

th
dρ

dr
+ G M�

ρ

r2
= 0 . (8.26)

Introducing dimensionless variables v̄ ≡ v/vth (which is actually the Mach num-
ber of the flow) and r̄ ≡ r/R� , the latter equation becomes

v̄
d v̄

dr̄
+ 1

ρ

dρ

dr̄
+ α

r̄2
= 0 , (8.27)

which gives a one-parameter ordinary differential equation after elimination of ρ

by means of Eq. (8.24): (
v̄ − 1

v̄

) d v̄

dr̄
− 2

r̄
+ α

r̄2
= 0 . (8.28)

The solutions are implicitly obtained from the first integral:

F(v̄, r̄) ≡ 1
2 v̄2 − ln v̄ − 2 ln

( r̄

r̄c

)
− 2

r̄c

r̄
+ 3

2
= C , r̄c ≡ 1

2α , (8.29)

where the constant C labels the solutions corresponding to the different boundary
data at r̄ = 1 (the solar surface or, rather, the base of the corona). The normaliza-
tion has been chosen such that solutions going through the critical point, where
∂ F/∂v̄ = 0 , ∂ F/∂ r̄ = 0 , and located at v̄ = v̄c = 1 , r̄ = r̄c = 1

2α , are labelled
by C = 0 . At this point the flow speed crosses the sound speed (hence, it is also
called the sonic point) and the position is determined by the parameter α , i.e. by
the temperature of the corona (assumed to be constant for the present purpose).
The solutions are schematically represented in Fig. 8.21.

Solutions of interest are those which connect the solar surface with interplan-
etary space. They are of two types, viz.

(a) Solar breeze, i.e. subsonic solutions which decelerate for r̄ → ∞ :

− ln v̄ ≈ 2 ln r̄ + const ⇒ v̄ ∼ r̄−2 .

For these solutions, ρ ∼ const , p ∼ const as r̄ → ∞ . Obviously, the static so-
lution (8.23) is one of them so that the pressure is again too high to be balanced
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Fig. 8.21. Continuous solar wind solutions (thick lines). The lines with arrows
show a modification to indicate the possibility of shocked wind outflow and ac-
cretion flow. (Adapted from Holzer and Leer [112].)

by the interstellar pressure. However, this behaviour at ∞ could be cured by the
consideration of a decreasing temperature profile v2

th(r).

(b) Solar wind, i.e. transonic solutions going through the critical point and accel-
erating for r̄ → ∞ :

v̄2 ∼ 4 ln r̄ ⇒ v̄ ∼ (ln r̄)1/2 .

For these solutions, p ∼ r̄−2(ln r̄)−1/2 as r̄ → ∞ , which is the acceptable be-
haviour at ∞. The flow is subsonic at the Sun, and supersonic at 1 AU.

As an aside, the two critical solutions shown in Fig. 8.21 may be modified to
illustrate an important aspect of transonic flow, viz. the possibility of the forma-
tion of shocks (lines with arrows). Since the direction of the flow may be reversed
in Fig. 8.21, the accelerating solar wind solution represents a typical example of
stellar outflow, whereas the reversed solar breeze critical solution could represent a
transonic accretion flow. In the first case, the supersonic flow with ever decreasing
pressure eventually meets the small but finite pressure of the interstellar medium
and ends there with a shock (the termination shock). Similarly, supersonic accre-
tion (e.g. onto a compact object) is stopped by a shock situated at some location
inside the sonic point.

The solutions shown are just the simplest examples of transonic flows, con-
sidered from a gas dynamic point of view. However, the solar wind is a tenuous
plasma, that will convect the interplanetary magnetic field. Hence, a highly com-
plex magnetic structure arises which engulfs all of the planets: the heliosphere
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Fig. 8.22. Model of the heliosphere with spacecraft. (From www.science-at-
home.de.).

(Fig. 8.22). Obviously, for the description of the heliosphere and the interaction of
the solar wind with the magnetospheres of the planets, the magnetic field cannot be
neglected and the much richer arsenal of MHD shocks is needed. This will be the
subject of one of the later chapters. Here, we just present some order of magnitude
estimates of the shape of the magnetospheric structures.

8.4.2 Solar wind and planetary magnetospheres

In a sense, the solar wind and the heliosphere are just extensions of the corona over
the whole solar system. Of course, the density of this plasma rapidly decreases
from the value quoted above. Nevertheless, the influence of this plasma on the
global structure of the magnetospheres of the planets is considerable. To study this
effect, in particular on the magnetosphere of the Earth, consider the numbers of
Table 8.1.

It is to be noted that large variations of these values occur since the solar wind is
a highly non-stationary phenomenon. For example, after solar flares the intensity
of the solar wind may increase by an order of magnitude giving rise to geomagnetic
storms since the magnetic field intensity suddenly increases.

To understand why the solar wind could influence the value of the geomagnetic
field let us make a small excursion to a standard problem of plasma confinement
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Table 8.1.

[ adapted from E.R. Priest, Solar Magnetohydrodynamics (1984).]

in the laboratory. In Section 2.4.3 we considered one of the oldest ideas of plasma
confinement for the purpose of producing thermonuclear energy, viz. the z-pinch.
An alternative, also old, idea is the θ -pinch, where plasma currents are induced
in the θ -direction. The static equilibrium equations (2.152)–(2.154) for that case
yield the following relations:

dp

dr
= jθ Bz , jθ = − 1

µ0

d Bz

dr
. (8.30)

Hence,

dp

dr
= − d

dr

(
B2

z

2µ0

)
, so that p + B2

z

2µ0
= const . (8.31)

In other words: a θ -pinch is characterized by radial profiles of the kinetic pres-
sure p(r) and of the magnetic pressure B2

z /2µ0 which are each other’s opposites
(Fig. 8.23). An extreme case, which can be rather closely approached in the lab-
oratory, is the skin-current θ -pinch where the current is induced so fast that there
is no time for it to diffuse into the plasma. Then, a ‘magnetic piston’ drives the
plasma inward, and a final equilibrium state is obtained which satisfies the relation

p1 +
(

B2
z

2µ0

)
1

=
(

B2
z

2µ0

)
2
. (8.32)
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Fig. 8.23. Magnetic pressure in a θ -pinch.

Since p = nkT , it is just a matter of inducing a large enough current to obtain
thermonuclear values of nT . This has been well within reach since the 1950s.
Unfortunately, the third parameter needed for fusion, viz. the plasma confinement
time τ , falls short of many orders of magnitude for this particular configuration
(the plasma is squeezed out of the ends like toothpaste). This is the reason that this
line of research has been abandoned in thermonuclear research.

Returning to the problem of the interaction of the solar wind with the geomag-
netic field, we now appreciate that a magnetic field exerts a pressure on a plasma
(as already discussed in Section 4.3.2). Vice versa, a plasma which is propelled by
some mechanism will squeeze a magnetic field that is anchored in a fixed body.
In the case of the solar wind, several other ingredients contribute to the effective
pressure that is exerted on the day-side of the planetary magnetic field, viz., except
for the magnetic pressure B2/(2µ0) perpendicular to the magnetic field that is car-
ried with the flow, a pressure 1

2ρv2 due to the flow and exerted in the direction of
the flow, and an isotropic kinetic pressure nkT associated with the hottest particle
population (the electrons in this case). From the numbers given in Table 8.1 we
obtain the following estimates for these pressures:

(B2/(2µ0))sw = 1.4 × 10−11 N m−2 ,(1
2ρv2)

sw ≈ 1
2nm pv

2 = 3.8 × 10−10 N m−2 , (8.33)

nk(Ti + Te)sw ≈ nkTe = 1.4 × 10−11 N m−2 .

Hence, 1
2ρv2 � B2/(2µ0) ∼ nkTe so that the dominant effect is the pressure

1
2ρv2

sw directed away from the Sun.
At this point, we would need to interrupt our presentation based on magnetic

pressures alone by the consideration of shocks associated with a sudden change of
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Fig. 8.24. Schematics of the interaction of the solar wind with the magneto-
sphere. (From science.nasa.gov.)

the velocity and the magnetic field at the magnetospheric bow shock. We would
need to continue the analysis of Section 4.5.1 on MHD discontinuities but this will
only be done in conjunction with the intricate problem of transonic MHD flows,
to be analysed in the companion Volume 2. For the moment we will have to be
content with a cartoon argument, viz. Fig. 8.24, which schematically shows the
complete magnetospheric system with the solar wind impinging on the planetary
magnetic field, compressing it on the day-side and stretching it out on the night-
side. (We remind the reader that all talk of magnetic field being compressed or
stretched out really refers to the composite system of magnetic field plus plasma.)
Fig. 8.24 shows the bow shock where the solar wind is blocked and a tangential
discontinuity, closer to the planet.

In general terms, the solar wind pressure is balanced at some distance from
the planet by the magnetic pressure B2/(2µ0) exerted by the geomagnetic field.
This balance is a delicate process which gives rise to the magnetopause, which
constitutes the boundary between the region dominated by the solar wind flow and
the geomagnetic field region (the magnetosphere). Here, we can only give an order
of magnitude estimate for the position of the magnetopause on the day-side of the
planet which, roughly speaking, is the position where the solar wind develops a
stagnation point due to the obstacle of the planetary magnetic field which is fixed
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in the outer core of the planet. This mechanism is the same for all the planets, but
we will derive the numbers for the Earth.

We express the components of the dipole field, given in Eq. (8.15), in terms of
the spherical coordinates r , θ , φ (see Eq. (A.51) of Appendix A.2), related to the
Cartesian coordinates by

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ . (8.34)

Exploiting the definition for the dipole moment M given in the footnote on
Eq. (8.15) and the numbers of Table B.8, in particular for the geomagnetic field,
i.e.

ME = −ME ez , ME ≡ (µ0/4π) m E = 8.1 × 1015 T m3 , (8.35)

we obtain:

Br = −2ME cos θ/r3 , Bθ = −ME sin θ/r3 , Bφ = 0 . (8.36)

The pertinent numerical value of the geomagnetic field on the day-side of the mag-
netosphere is given by

Bθ (r, θ =π/2) = −ME/r3 = −(ME/R3) (R/r)3 = −3.1 × 10−5 (R/r)3 T ,

(8.37)
corresponding to a magnetic pressure of(

B2

2µ0

)
geo

= 1

2µ0

(
ME

R3

)2( R

r

)6

= 3.8 × 10−4
(

R

r

)6

N m−2 . (8.38)

Clearly, this exceeds the pressure (1
2ρv2)sw = 3.8 × 10−10 N m−2 given in

Eq. (8.20) by many orders of magnitude at the surface of the Earth. However, since
the magnetic pressure rapidly decays, with a power of 6 according to Eq. (8.38),
balance is already reached at a distance of some planetary radii, so that

rmagnetopause ≈ 10R . (8.39)

This agrees well with the number given in the last column of Table B.8.
The positions of the day-side magnetopause for the other planets, given in B.8,

can be estimated in the same way, provided one takes the appropriate values of the
density and the velocity of the solar wind into account. Note that the magnitude of
the planetary magnetic field is reflected in the size of the magnetospheres on the
day-side. For Mercury and Venus the day-side magnetopause is situated very close
to the planet, whereas for the giant planets the distance is some tens of planetary
radii.

It should be stressed once more that we have sketched here a very crude model
of the structure of the magnetosphere, neglecting all the details of the shocks which
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develop in front of the magnetopause. The picture is even less complete with re-
spect to the night-side of the magnetosphere. Here, the deviation from a dipole
field is much more pronounced, with field lines stretching out over hundreds of
planetary radii to form what is called the magnetotail. We have seen that the dis-
continuity of the magnetic field at the magnetopause is due to surface currents
flowing there. The magnetotail exhibits a similar discontinuity at the equatorial
plane, viz. a discontinuity of the direction of the field (see Fig. 8.24). Such a dis-
continuity requires surface currents (see Section 4.5) flowing perpendicular to the
field:

j�x ≡ lim δ→0 , jx→∞ (δ · jx) = By

∣∣∣
z<0

− By

∣∣∣
z>0

. (8.40)

Because of the associated null in the magnetic field at the equatorial plane, these
currents are called neutral sheet currents. It is beyond the scope of the present
section to discuss the origin of these currents, but their existence is a simple re-
quirement for the extended structure of the magnetotail. In conclusion: the global
structure of the magnetosphere is mainly due to the surface currents flowing on the
magnetopause and on the neutral sheet. These currents constitute the response to
the huge MHD generator driven by the solar wind and the geomagnetic obstacle.

The magnetospheric structure may be disturbed by sudden changes of the solar
wind variables (e.g. by CMEs, see below), giving rise to MHD waves like ultra
low frequency (< 10 Hz) waves, or higher frequency plasma waves, or may be
disrupted by reconnection of field lines causing so-called flux transfer events on
the day-side as well as on the night-side of the magnetosphere, Kelvin–Helmholtz
instabilities driven by shear flow at the magnetopause, etc. All of these topics will
return as genuine plasma dynamics in later chapters.

Coronal mass ejections (CMEs) are huge plasma bubbles threaded with mag-
netic field lines that are ejected from the Sun over the course of several hours.
CMEs are spectacular manifestations of solar activity and the most energetic phe-
nomena observed in the solar system. In large CMEs, such as the one depicted in
Fig. 8.25, up to 1013 kg of coronal material is ejected, although the average value
is closer to 1012 kg. The average speed of a CME is about 300–400 km s−1, but
it can be as low as 50 km s−1, while fast CMEs have speeds up to 2000 km s−1.
The energy associated with CMEs amounts to 1024–1025 Joule. In spite of this,
the existence of CMEs was not realized until the space age and the earliest evi-
dence for these dynamical events came from coronagraph observations made by
the 7th Orbiting Solar Observatory (OSO 7) from 1971 to 1973, see Brueckne [45].
(Ground based coronagraphs only make the innermost corona visible.) The term
CME comes from Burlaga et al. [47].
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Fig. 8.25. Six snapshots showing the evolution of a coronal mass ejection. The
dark disc in the upper right corner is the occulting disc (radius 60% larger than
the solar disc) of the Solar Maximum Mission (SMM) coronagraph, used to take
these images. (From www.hao.ucar.edu.)

Close to the Sun, many CMEs have a three-part structure consisting of a bright
core (the eruptive prominence), a dark cavity, and a bright loop. However, this
structure is lost in interplanetary space. CMEs are often associated with solar flares
or prominence eruptions but they can also occur independently. The frequency of
CMEs varies with the sunspot cycle from about one CME a week at solar minimum
to an average of 2 to 3 CMEs per day near solar maximum.

CMEs play an important role in space weather, which is defined as follows:
‘Space weather refers to conditions on the Sun and in the solar wind, magneto-
sphere, ionosphere and thermosphere that can influence the performance and reli-
ability of space-borne and ground-based technological systems and can endanger
human life or health’ (US NSWP Strategic Plan). Coronal mass ejections disrupt
the flow of the solar wind and produce disturbances and MHD shocks. About 10%
of these shocks strike the Earth with sometimes catastrophic results for navigation
systems, power lines, radio traffic, functioning of oil pipelines, technology aboard
space vehicles, etc.
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8.5 Perspective

At present, quite a number of important space missions of the Solar Terrestrial
Physics Program of NASA (USA), ESA (Europe) and ISAS (Japan) are being
carried out and planned. The satellite SOHO, launched in December 1995 to study
solar phenomena from the core to beyond the Earth’s orbit, turned out to be a
great success. The original launch of the Cluster satellites in 1996 failed, but was
successfully repeated in 2000. Its purpose is to study the 3D spatial structure of
the magnetosphere of the Earth (Fig. 8.26). Ulysses (already launched in 1990)
provided in situ investigations of the inner heliosphere from the solar equator to
the poles. The Solar Orbiter (planned for 2012–2017), will provide the highest
resolution solar observations and first images of the Sun’s polar regions.

From a theoretical point of view, it is quite satisfactory that an important part
of the observed dynamics clearly demonstrates the validity of magnetic flux con-
servation and of dynamics controlled by the motion of magnetic flux tubes. In
essence, the magnetic structures observed are magnetic flux tubes, but they usu-
ally do not appear singly (as the theoreticians prefer) but in large numbers. Hence,
many problems remain unresolved: a quantitative solar dynamo theory, a basic the-
ory of coronal heating, prediction of solar flares, a detailed theory of solar wind
generation and heating, the dynamics of the interaction of the solar wind with the

Fig. 8.26. Schematic showing ESA’s planetary and solar missions.
(From ESA Photo Archive.)
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planetary magnetospheres, and, ultimately, the prediction of space weather. All
of these problems can be translated to other stars and to magnetic phenomena of
distant objects in the Universe. The solar system is just special in that it provides
the necessary spatial resolution to investigate plasma dynamics. (So much is clear
from laboratory plasma research: all dynamics is determined by fine details of the
distribution of the magnetic field. Without knowledge of that, theory just amounts
to fantasy.) MHD does apply as a leading order description, some extensions are
needed to account for small scales with different electron and ion dynamics, other
extensions concern particle acceleration. However, the bottom line is: with present
high-resolution observations there is no excuse any more for cartoon theories. A
lot remains to be done and one can be sure that a very different view will emerge
from the present one.

8.6 Literature and exercises

Notes on literature

Solar MHD:

– Priest [190], Solar Magnetohydrodynamics, is still the basic text on this subject.

Solar physics:

– Stix [217], The Sun (second edition), Chapter 8 on solar magnetism treats the sub-
jects of flux tubes, sunspots, and the solar cycle, and has a discussion of mean field
electrodynamics and the solar dynamo.

– Foukal [69], Solar Astrophysics, Chapter 11 on dynamics of the solar magnetic field
reviews the concepts of solar flux tubes, sunspots, butterfly diagram, and the Babcock
model for the solar dynamo.

– Schrijver & Zwaan [204], Solar and Stellar Magnetic Activity, is a comprehensive
review putting solar magnetism in the wider context of magnetic fields in stars that
have a convective envelope immediately below their photosphere.

Magnetospheric physics:

– Busse [48], on ‘Problems of planetary dynamo theory’, is a theoretical review of
magnetic field generation by buoyancy-driven convection flows in rotating spherical
shells subject to a spherically symmetric gravity force, with discussion of the problem
of core–mantle coupling.

– Saunders [201], in ‘The earth’s magnetosphere’, contains an MHD description of the
magnetosphere, with the magnetic field and electric current structures coupled to the
solar wind, and the dynamics of MHD waves and shocks, reconnection, FTEs, and
substorms.

Solar and stellar winds:

– Hundhausen [113], in ‘The solar wind’, reviews the properties of the solar wind,
fluid theories on formation in the corona, the large-scale magnetic structure of the
heliosphere, and the termination shock.



428 Magnetic structures and dynamics

– Lamers & Cassinelli [134], Introduction to Stellar Winds, review the different mech-
anisms proposed to explain the stellar winds of different types of stars, starting with
the Sun in Chapter 5 on coronal winds.

Exercises

[ 8.1 ] The solar cycle

The solar cycle is a periodic phenomenon which can be related to the number of sunspots
on the surface of the Sun. They are present in a narrow strip around the equator only. The
mechanism of the solar cycle is probably an oscillation of the vector of the solar magnetic
dipole moment.

– Sketch the so-called ‘butterfly diagram’ and explain what it shows.
– Discuss the cartoons illustrating the Babcock model of the solar cycle. Does it explain

the narrow strip around the equator?
– Write down the evolution equation for the magnetic field, including resistivity, but

assuming a static configuration. Express the typical time scale for the decay of the
magnetic field inhomogeneity using the Spitzer resistivity η ≈ 64Z lnTe

−3/2, where
ln  ≈ 15. Find the required quantities at the bottom of the convection zone, where
the source of the solar dynamo is believed to be, and estimate the time scale. Does it
approach the required time scale of the solar cycle? Comment on the implications.

[ 8.2 ] Turbulent magnetic diffusivity

Next, consider the evolution of the solar magnetic field including turbulent flow. Split the
magnetic field and the velocity field into an average part, indicated by 〈. . .〉, and a pertur-
bation, indicated by a prime. Assume 〈v′ × B′〉 ≈ α〈B〉 − β∇ × 〈B〉, where β functions as
the turbulent magnetic diffusivity.

– Comment on the interpretation of the coefficients α and β, and give estimates of their
order of magnitude from the solar parameters you can find. How did the situation
improve with respect to the previous exercise? What would be your next step validat-
ing this approach?

[ 8.3 ] Alfvén waves in flux tubes in the solar corona and in the magnetosphere (analytical)

Consider an MHD wave propagating in a thin flux tube in the dipolar magnetic field of the
Sun or the magnetosphere of the Earth. The magnitude of the magnetic field varies both
along and across the flux tube. However, in this problem, we ignore the latter dependence.
(The intricacies of wave dynamics connected with inhomogeneity in the perpendicular
direction are treated in Chapter 11.) Effectively, the problem is then one-dimensional, with
variations of the background quantities in the z-direction only. We assume that the flux
tube is pressureless and carries no current.

– Starting from the general equation ρ∂2ξ/∂t2 = F(ξ), derive the wave equation for the
MHD waves with magnetic field B = B(z)ez and density ρ = ρ(z). Show that only
two of the three MHD waves survive, viz. the Alfvén wave and one of the magneto-
sonic waves: which one? Choose the perpendicular coordinates x and y such that the
Alfvén wave is represented by ξx and the other one by ξy . What happened to ξz?

– Give reasons to ignore the magneto-sonic wave in favour of the Alfvén wave. Show
that the latter obeys the wave equation

∂2ξx

∂t2
= v2

A
∂2ξx

∂z2
.
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Discuss the qualitative properties of this equation. For short wavelength variations of
ξx , you may exploit a WKB solution to find out about the eigenfrequency (not very
exciting). Try to improve on this by means of a perturbation analysis for the changes
of the frequencies and eigenfunctions for long wavelengths with small variations of
B(z) and ρ(z).

[ 8.4 ] Alfvén waves in flux tubes in the solar corona and in the magnetosphere (numerical)

We continue with the previous exercise (possibly skipping the last part since the numerical
solution will be more satisfactory) and now insert the actual dependence of the magnitude
of B of the dipolar field given by Eq. (8.15).

– Find an expression for the effective coordinate z in terms of the spherical coordinates
r(θ), θ along a field line, where θ runs from θ = θ0 to π − θ0. This will give you an
expression for B(z), or B(θ).

– Numerically solve the wave equation for the Alfvén waves with the magnetic field
you just found. Assume constant density and periodic boundary conditions on ξx .
This may represent standing Alfvén waves in a solar or magnetospheric loop. What
is the influence of the variation of B(z)?

– Now specify to a solar coronal loop, where the photospheric boundary conditions are
simulated by a large density increase at the ends of the loop. Use, for example, the
density profile exploited by Beliën et al. [21]:

ρ(z) = 1 + (ρ p − 1) exp

[
− sin2(π z/L)

2σ 2

]
,

where ρ p is the density at the photospheric boundaries z = 0 and z = L and σ is the
density scale length. For large σ , how are the waves modified compared to the case
of periodic boundary conditions?

[ 8.5 ] � Solar wind interaction with the magnetosphere

The interaction of the solar wind with the magnetosphere of the Earth is a complicated
three-dimensional MHD problem giving rise to many kinds of time-dependent disturbances
that may influence the magnetic structure of the magnetosphere as a whole. For example,
when the solar wind carries a magnetic field pointing in the same direction as the dipole
field of the Earth, the magnetosphere is compressed and the structure remains closed. How-
ever, when the solar wind magnetic field has opposite direction, a flux transfer event may
occur where the day-side magnetosphere is suddenly opened up and an entirely different
magnetic configuration is formed. In this problem, we will model the two types of magneto-
spheric structures (closed and open) by means of a very crude (static and two-dimensional)
model where the one-sided solar wind with embedded magnetic field is replaced by a ro-
tationally symmetric vertical magnetic field that exerts pressure on the dipole field of the
Earth from all sides. We will exploit spherical coordinates (see Appendix A.2), where φ is
the ignorable coordinate.

– Show that ∇ · B = 0 is solved in these coordinates by

Br = − 1

Rr

∂ψ

∂θ
, Bθ = 1

R

∂ψ

∂r
, i.e. B = − 1

R
eφ × ∇ψ ,

where ψ is the poloidal flux (evaluated through a circle R in the ecliptic plane).
– Show that (∇ × B)φ = 0 yields a second order partial differential equation for ψ ,

∂2ψ

∂r2
+ sin θ

r2

∂

∂θ

1

sin θ

∂ψ

∂θ
= 0 ,
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which is the Grad–Shafranov equation for this problem. (In plasmas with pressure
and current, like in tokamaks, this equation has a non-vanishing RHS.)

– Show that the dipole field Bd = r−3(3M · er er − M) is obtained from the particular
solution

ψd = C + M
sin2 θ

r
,

where we exploit the value M = −8.1 × 1015 T m3 for the dipole moment of the
Earth.

– Now add a vertical field Bv = B0ez = B0(cos θ er − sin θ eθ ), derivable from the flux
function

ψv = 1
2 B0 R2 ,

representing the magnetic pressure of the solar wind.
– Find out what the relevant dimensionless parameters are for this problem. Make con-

tour plots of ψ ≡ ψd + ψv and study the magnetic structures you obtain for B0 > 0
and B0 < 0.

– Having obtained these qualitatively different solutions, determine the special points
(x-points and stagnation points) analytically. Insert numbers and make estimates for
solar wind parameters. Comment on the results obtained.
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Cylindrical plasmas

9.1 Equilibrium of cylindrical plasmas

We have considered the effects of plasma inhomogeneity on MHD waves and in-
stabilities in Chapter 7 for the model of a plane gravitating plasma slab where
inhomogeneity is restricted to the vertical direction. For the description of labora-
tory and astrophysical plasma dynamics, the concept of magnetic flux tubes is quite
central, as we have seen in Chapter 8. This automatically leads to the consideration
of cylindrical plasmas where the inhomogeneities are operating in the radial direc-
tion. Whereas the model remains one-dimensional, so that most of the analytical
techniques developed in Chapter 7 remain valid, the introduction of curvature of
the magnetic field brings in qualitatively different physical effects that significantly
influence the dynamics of flux tubes. We will now neglect gravity since it plays no
role in laboratory plasmas and, for astrophysical plasmas, it is more adequately in-
corporated in an axi-symmetric model with a central gravitating object. The latter
requires a two-dimensional model, which has to be relegated to the more advanced
chapters. We will see that curvature of the magnetic field enters the equations in a
very similar way to gravity in the plasma slab of Chapter 7.

9.1.1 Diffuse plasmas

For the study of confined plasmas, the diffuse cylindrical plasma column (called
‘diffuse linear pinch’ in the older plasma literature) is one of the most useful
models. It is probably the most widely studied model in plasma stability theory.
Since we have obtained a basic understanding of the spectrum of inhomogeneous
one-dimensional systems, the analysis of the diffuse linear pinch can now be un-
dertaken with more fruit than was possible in the early days of fusion research
when this configuration was first investigated. Also, we will consider this configu-
ration as a first approximation to toroidal systems, where the addition of a second

431
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Fig. 9.1. Diffuse cylindrical plasma column with a helical magnetic field B with
inverse pitch µ = µ(r), drawn here at the wall radius r = a.

direction of inhomogeneity leads to partial differential equations and, therefore, to
substantial complications of the analysis. For those systems, the construction of
a coherent picture of the spectrum of waves and instabilities is a very demanding
task, which is still far from completion.

Except for historical reasons in laboratory fusion research, where diffuse lin-
ear pinches were originally considered to be quite promising because of their high
temperatures and high β-values (we have already indicated in Chapters 1 and 2
that the crucial issue of long duration stable confinement was somewhat underes-
timated in those days), these configurations are of intrinsic interest for the study of
solar and astrophysical flux tubes and, recently, in the use of capillary discharges
for laser wake-field acceleration. For those applications, toroidicity is not a prime
factor, but end effects may not be negligible. Again, those effects make the model
two-dimensional so that they have to await the advanced theory of Volume 2. How-
ever, it makes no sense to dwell on that before we have a firm grasp on the one-
dimensional theory.

Consider a diffuse plasma in an infinite cylinder of radius a (Fig. 9.1). In cylin-
drical r, θ, z-coordinates, with rotational symmetry in θ and translational symme-
try in z, the equilibrium equations,

j × B = ∇ p , j = ∇ × B , ∇ · B = 0 , (9.1)

reduce to

p′ = jθ Bz − jz Bθ , jθ = −B ′
z , jz = 1

r
(r Bθ )

′ , (9.2)

where the prime denotes derivatives with respect to r . Eliminating jθ and jz , the
equilibrium turns out to be characterized by the pressure profile p(r) and the
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magnetic field profiles Bθ (r) and Bz(r) , subject to just one differential equation:

[
p(r) + 1

2 B2(r)
]′ + B2

θ (r)

r
= 0 . (9.3)

Hence, we may choose two of these three profiles arbitrarily, whereas the den-
sity profile ρ(r) may be chosen arbitrarily as well since it does not appear in
the equilibrium equations when gravity is neglected. Special cases of such dif-
fuse cylindrical equilibria are the z-pinch and θ -pinch configurations introduced
in Section 1.2.3 (Fig. 1.4) and Sections 2.4.3 (Fig. 2.8) and 8.4.2 (Fig. 8.23).

We here assume a model I plasma (Section 4.6.1), where the magnetic field
is not considered beyond the radius r = a. For the equilibrium, this implies the
presence of a rigid wall absorbing the mechanical forces (laboratory plasmas) or
anything else that justifies the assumption of a radially confined plasma. For the
perturbations, this implies that the flows have to be tangential at that radius.

Instead of the magnetic field profiles Bθ (r) and Bz(r), it is expedient to intro-
duce a function that describes the radial variation of the helicity of the magnetic
field. For an infinite cylinder, the most appropriate choice is the inverse pitch of
the magnetic field lines:

µ(r) ≡ Bθ (r)

r Bz(r)
. (9.4)

Another useful variable is the kinetic pressure contained versus the magnetic pres-
sure on axis:

β(r) ≡ 2p(r)

B2
0

. (9.5)

The diffuse cylindrical equilibrium is now completely determined by, for exam-
ple, prescribing the functions p(r) (or β(r)) and Bθ (r) (or µ(r)), whereas Bz(r)

follows from the solution of the equilibrium equation (9.3) and ρ(r) is arbitrary.

� Dimensionless scaling of the equilibrium. It is important (e.g. for numerical applica-
tions) to construct the smallest set of parameters that characterize these equilibria. To that
end, as before, we exploit scale independence (Section 4.1.2) to eliminate the three trivial
parameters

a , B0 (≡ Bz0) , ρ0 (9.6)

by normalizing everything with respect to those scales of lengths, field strengths and den-
sities (i.e. Alfvén speeds). Here, we exploit the subscript 0 to indicate function values on
axis (r = 0). On the other hand, the two essential parameters

β0 ≡ β(r =0) = 2p0

B2
0

, µ̄0 ≡ aµ(r =0) = ajz0

2B0
, (9.7)

fix the magnitude of the plasma pressure contained and the inverse pitch of the magnetic
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field lines (∼ the current density) on axis. Having thus fixed the amplitudes, all physical
functions are distributed on the unit plasma interval 0 ≤ r̄ ≡ r/a ≤ 1 according to shape
functions:

p̄(r̄) ≡ 1

p0
p(r) , µ̄(r̄) ≡ a µ(r) , ρ̄(r̄) ≡ 1

ρ0
ρ(r) ,

(9.8)
(9.3)�⇒ B̄z(r̄) ≡ 1

B0
Bz(r) ,

(9.4)�⇒ B̄θ (r̄) ≡ µ̄(r̄) r̄ B̄z(r̄) .

In conclusion: the equilibrium is determined by choosing the two parameter values β0
and µ̄0, and the (infinitely many parameters of the) shape functions p̄(r̄) and µ̄(r̄). In the
dynamics of the perturbations, the additional shape function ρ̄(r̄) enters. 	

(a) Force-free magnetic fields An interesting class of cylindrical equilibria is ob-
tained for very low β when pressure gradients can be completely neglected so that
the magnetic field becomes ‘force-free’ (i.e. in the interior; there will be significant
forces exerted on the wall). The condition for force-free magnetic fields is

j = α B , (9.9)

where the function α(r) is completely free. From this expression and the compo-
nents of j = ∇ × B, the relationship between α and µ is obtained:

jθ = −B ′
z = αBθ

jz = 1
r (r Bθ )

′ = αBz

}
⇒ α = 2µ + µ′r

1 + µ2r2
. (9.10)

For the choice of constant pitch, µ′ = 0, one obtains from these first order differ-
ential equations the following explicit solutions:

Bz(r) = B0

1 + µ2r2
, Bθ (r) = B0µr

1 + µ2r2
. (9.11)

For the special choice of constant α, another one-parameter family of equilibrium
solutions is obtained:

Bz(r) = B0 J0(αr) , Bθ (r) = B0 J1(αr) , (9.12)

where J0 and J1 are the zeroth and first order Bessel functions. These force-free
magnetic field solutions were already discussed in Section 4.3.4, in the context of
magnetic helicity (Fig. 4.9). Because of their apparent simplicity, they have been
the subject of numerous investigations with respect to stability and slow dissipative
dynamics. On axis, the inverse pitch µ is simply related to α through µ0 = 1

2α, but
away from the axis, µ varies from +∞ to −∞ when αr progresses through the
various zeros of the Bessel function J0: an entirely non-trivial class of current-
carrying equilibria.
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Fig. 9.2. Slender torus with inverse aspect ratio ε ≡ a/R0 � 1 represented as a
periodic cylinder with length 2π R0.

(b) ‘Straight tokamak’ limit A slender torus, with small inverse aspect ratio
ε ≡ a/R0 � 1 (Fig. 9.2, left frame), may be approximated by a straight cylinder
of finite length L = 2π R0 (Fig. 9.2, right frame). This becomes a mathematical
torus when the ends are identified. Thus, a first approximation of toroidal equilib-
rium is obtained. Some of the toroidal dynamical effects are well represented in
this manner (e.g. the fact that the wave number has to be quantized in the toroidal
direction). By consistently developing all physical quantities to the relevant order
in ε, the dynamics of these equilibria may be computed to leading order. A mean-
ingful choice of the order of magnitude of the two essential parameters β0 and µ0

then becomes crucial.
In the periodic cylinder representation of tokamaks, called the ‘straight toka-

mak’ limit, the variable µ is replaced by a variable that measures the pitch of the
field lines relative to the circumference of the torus (Fig. 9.3), i.e. the ‘safety factor’

0

B

2 π r

2 π R0

2 π
µ

q  2 π R0
.=

Fig. 9.3. Inverse pitch µ and safety factor q of the magnetic field lines in a
‘straight tokamak’ periodic cylinder model of a toroidal plasma.
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(already introduced in Section 2.4.3, Fig. 2.12),

q(r) ≡ r Bz(r)

R0 Bθ (r)
≡ 1

µ(r)R0

[
≡ ε

µ(r)a

]
. (9.13)

In the so-called low-beta tokamak regime, the order of magnitude of the two es-
sential parameters is chosen as

β0 ∼ ε2 � 1 , q0 ∼ 1 . (9.14)

In the cylindrical ‘straight tokamak’ approximation, the normalized q-profile,

q̄(r̄) ≡ q(r)/q0 , (9.15)

then becomes the only shape function entering the leading order expressions of the
equilibrium and the perturbations. The reason is that, because β is small, pressure
effects, leading to an outward shift of the magnetic axis in a torus (the Shafranov
shift), only enter in a higher order where poloidal θ -variations of the equilibrium
through toroidal curvature are permitted. The proper treatment of the latter toroidal
effects requires the two-dimensional theory developed in Volume 2.

9.1.2 Interface plasmas

In laboratory fusion research, the plasma is usually isolated from the wall by means
of a region of rather cold plasma with low pressure and small current density. Such
a plasma configuration can be idealized by means of either one of the two inter-
face models II or II* introduced in Section 4.6.1. Here, we will assume that the
outer plasma is pressureless and carries no current, so that there is no difference
with respect to the equilibrium between model II and model II*: the outer region
is characterized by a vacuum magnetic field configuration. With respect to the per-
turbations, model II and model II* interface plasmas may behave very differently,
though, even with identical equilibrium fields, since a plasma (model II*) allows
for induction of perturbed currents whereas a vacuum (model II) does not. We will
see in Section 9.2.2 that this leads to major differences in the stability properties.

We consider cylindrical model II and model II* configurations as sketched in
Fig. 9.4: a diffuse plasma in an infinite cylinder of radius a is surrounded by a
vacuum magnetic field B̂, enclosed by a perfectly conducting wall at r = b . In
the plasma region 0 ≤ r ≤ a the equilibrium is described by the functions p(r),
Bθ (r), Bz(r) (and ρ(r)), that satisfy the equilibrium equation (9.3). At the plasma
surface r = a, surface currents produce jumps in the variables p, Bθ , and Bz which
are restricted to satisfy pressure balance:

p1 + 1
2 (B2

θ1 + B2
z1) = 1

2 (B̂2
θ1 + B̂2

z1) , (9.16)
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Fig. 9.4. Cylindrical interface model with diffuse inner plasma with a helical
magnetic field B, surface currents at r = a, and surrounded by a vacuum magnetic
field B̂.

where the subscript 1 indicates equilibrium values at the plasma surface. The sur-
face currents are given by

j�
θ = −[[Bz]] ≡ −B̂z1 + Bz1 , j�z = [[Bθ ]] ≡ B̂θ1 − Bθ1 . (9.17)

The outer vacuum magnetic field in the region a < r ≤ b is given by

B̂z(r) = B̂z1 , B̂θ (r) = µ̂1a2

r
B̂z1 . (9.18)

Assuming the interior plasma to be prescribed as in the previous section, the pres-
sure jump condition (9.16) fixes the magnitude of the vacuum magnetic field B̂ but
leaves its direction free. Hence, the interface model with an outer vacuum mag-
netic field adds two parameters to the problem: the pitch of the outer magnetic
field, µ̂1 �= µ1, and the relative wall position b/a.

A special case is the early sharp-boundary model of pinch discharges,
investigated by Kruskal and Schwarzschild [130], Kruskal and Tuck [131],
Rosenbluth [197] and Tayler [226]. The inner plasma was taken to be homoge-
neous, with Bθ = 0, Bz = B0, p = p0 = p1, so that the only relevant parameter
for the inner plasma is β ≡ 2p/B2

0 , which was taken to be high since dreams of
confining plasma by separating it completely from the magnetic field were still
alive. The current is then exclusively confined to the surface r = a, and the vac-
uum magnetic field there is determined from Eq. (9.16) by the two parameters β
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and µ̂1:

B̂θ1 = µ̂1a · B̂z1 , 1 + β = (1 + µ̂2
1a2)

B̂2
z1

B2
0

. (9.19)

This model successfully described the threat posed by external kink modes to high-
β confinement (see Section 9.3.2).

9.2 MHD wave equation for cylindrical plasmas

9.2.1 Derivation of the MHD wave equation for a cylinder

We derive the equation of motion for cylindrical equilibria along the same lines as
for the gravitating slab, given in Section 7.3.2. Our starting point is the equation of
motion

F(ξ) ≡ −∇π − B × (∇ × Q) + (∇ × B) × Q = ρ
∂2ξ

∂t2
, (9.20)

with the usual abbreviations

π ≡ −γ p∇ · ξ − ξ · ∇ p , Q ≡ ∇ × (ξ × B) . (9.21)

Because of the symmetry, we may study normal mode solutions of the form

ξ(r, θ, z, t) =
(
ξr,mk(r), ξθ,mk(r), ξz,mk(r)

)
ei(mθ+kz−ωt) , (9.22)

where the subscripts m and k will again be dropped in the following. For these
separate modes the equation of motion may be reduced to an ordinary second
order differential equation in terms of the component ξr (r) .

As in the analysis of the plasma slab, we exploit a projection based on the mag-
netic field lines with unit vectors

er , e⊥ ≡ (0, Bz, −Bθ )/B , e‖ ≡ (0, Bθ , Bz)/B . (9.23)

In this projection, the result of the gradient operator applied to a perturbed quantity
as given in Eq. (9.22) may be written as

∇ = er ∂r + ie⊥ g + ie‖ f , (9.24)

where the perpendicular and parallel gradient operators become algebraic multi-
pliers:

g ≡ 1

B
(m Bz/r − k Bθ ) = G

B
, f ≡ 1

B
(m Bθ/r + k Bz) = F

B
. (9.25)
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Fig. 9.5. Different vectors: (a) ξmk(r) and (b) ξmk(r, θ).

The use of the symbols G and F instead of g and f will prove more convenient
later on in the analysis (starting with Eq. (9.29)).

� Pitfalls. (1) One should not denote the vector in large brackets on the RHS of Eq. (9.22)
as ξmk(r). On a circle r = const, this would indicate a vector of constant amplitude
and direction (as, e.g., shown in Fig. 9.5(a)), which is not meant here. The correct no-
tation is ξmk(r, θ) (Fig. 9.5(b)). This incorporates the θ -dependence of the unit vectors:
∂ξmk(r, θ)/∂θ �= 0.
(2) The representation (9.24) for the gradient operator should not be considered as a recipe
to be applied blindly (if at all), but just as a kind of short-hand notation for the expressions
obtained after the conversion to cylindrical coordinates has been carried out by means of
Appendix A.2.2. Recall that in the analogous projection (7.80) for the plane slab with shear,
this representation of the gradient operator could be used also for computing divergences
and curls if one properly accounted for the dependence of the unit vectors e⊥ and e‖ on the
normal coordinate x . Here, the situation is basically different since the cylindrical coordi-
nate system has a scale factor h2 (= r ), and the unit vectors er and eθ depend also on the
ignorable coordinate θ : ∂er/∂θ = eθ , ∂eθ /∂θ = −er . 	

The projection of the displacement vector on the field line triad is denoted by

ξ ≡ er · ξ = ξr ,

η ≡ ie⊥ · ξ = i(Bzξθ − Bθ ξz)/B , (9.26)

ζ ≡ ie‖ · ξ = i(Bθ ξθ + Bzξz)/B .

In terms of these variables we obtain

Q = i f Bξ er − [ (Bθ ξ)′ − k Bη ] eθ − 1

r
[ (r Bzξ)′ + m Bη ] ez ,

(9.27)

π = −p′ξ − γ p∇ · ξ , ∇ · ξ = 1

r
(rξ)′ + gη + f ζ ,

where the factor exp[i(mθ + kz − ωt)] is dropped for notational simplicity. By
means of these expressions, and the equilibrium relation (9.3), the equation of
motion (9.20) can be evaluated in the same manner as for the plane gravitating
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slab in Section 7.3.2. This yields the following matrix formulation of the spectral
problem:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d

dr

γ p + B2

r

d

dr
r − f 2 B2 − r

(
B2

θ

r2

)′ d

dr
g(γ p + B2) − 2k Bθ B

r

d

dr
f γ p

− g(γ p + B2)

r

d

dr
r − 2k Bθ B

r
−g2(γ p + B2) − f 2 B2 − f gγ p

− f γ p

r

d

dr
r − f gγ p − f 2γ p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

η

ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −ρω2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

η

ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.28)

This formulation is symmetric, apart from the occurrence of some factors r . These
could be absorbed by exploiting the normal variable rξ instead of ξ , which would
make the dimensions of the different matrix elements unequal.

Note the similarity of the matrices (9.28), for the cylindrical plasma, and (7.89),
for the gravitating slab, where now off-diagonal curvature terms (with Bθ ) appear
instead of gravitational ones. Since these terms do not involve derivatives of ξ, they
do not affect the essential spectrum associated with the singularities. Of course,
the discrete spectrum and, hence, stability is quite significantly affected by these
terms.

(a) Generalized Hain–Lüst equation The typical structure of Eq. (9.28), with
lower order differential equations for the tangential components η and ζ , allows
us again to reduce the system to a single second order differential equation by
expressing the tangential components in terms of the radial variable χ ≡ rξ :

η =
G
[
(γ p + B2)ρω2 − γ pF2

]
rχ ′ + 2k Bθ (B2ρω2 − γ pF2) χ

r2 B D
,

(9.29)

ζ =
γ pF

[
(ρω2 − F2) rχ ′ + 2k Bθ G χ

]
r2 B D

,

where

D ≡ ρ2ω4 − (m2/r2 + k2)(γ p + B2)ρω2 + (m2/r2 + k2)γ pF2 . (9.30)
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Substituting these expressions into the first component of Eq. (9.28) yields the
generalized Hain–Lüst equation:1

d

dr

[
N

r D

dχ

dr

]
+
[

1

r
(ρω2 − F2) −

(
B2

θ

r2

)′
− 4k2 B2

θ

r3 D
(B2ρω2 − γ pF2)

+
{

2k Bθ G

r2 D

(
(γ p + B2)ρω2 − γ pF2

)}′ ]
χ = 0 , (9.31)

where

N ≡ (ρω2 − F2)
(
(γ p + B2)ρω2 − γ pF2

)
. (9.32)

Comparing this equation with the corresponding equation (7.91) for the plane slab,
it is clear that the terms caused by the curvature of the poloidal field Bθ play a
similar role as the gravitational terms ρ ĝ (although one cannot simply translate one
formulation into the other). These terms disappear when Bθ = 0 (θ -pinch) and we
obtain a problem of (almost) equal complication to a plane slab in the absence of
gravity. Since the latter is stable, it follows that the linear θ -pinch is also stable.

When the wall is at the plasma (model I), the appropriate boundary conditions
are:

χ(0) = χ(a) = 0 . (9.33)

In the presence of an external vacuum (model II) or pressureless plasma
(model II*), the boundary condition at r = a becomes a rather complicated ex-
pression. It is derived in Section 9.2.2.

The boundary condition at r = 0 deserves extra stress since the wave equation
has a singularity there which is due to the cylindrical geometry. For m �= 0, the
Frobenius expansion (see Section 7.4.1) around the origin yields an indicial equa-
tion ν2 − m2 = 0, so that there is a small solution χ1 ∼ r |m| and a singular solution
with a logarithm that is excluded by the boundary condition (9.33). For m = 0, the
indicial equation is ν(ν − 2) = 0, so that the small solution behaves like χ1 ∼ r2

and the solution with the logarithm is again excluded by the boundary condition.
Although the boundary condition (9.33) on χ conveniently combines the differ-
ent possibilities, it is useful to realize the different meaning of it for the different
modes when expressed in terms of the physical variable ξ . (In the limit r → 0,
Fig. 9.5(a) illustrates the behaviour of ξ for an m = 1 mode, and Fig. 9.5(b) for an
m = 0 mode.) Using ξ , one has to distinguish between the |m| = 1 modes, which
have a finite value of ξ on axis (corresponding to the important feature of a finite
displacement of the plasma column on axis by these modes) and all other modes

1 The derivation by Hain and Lüst [102] was unnecessarily restricted to isothermal plasmas (γ = 1). This re-
striction was lifted in the derivation by Goedbloed [81](II), which is followed here.
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which have ξ(0) = 0. Consequently, when using ξ , the appropriate boundary con-
ditions become:

ξ ′(0) = 0 for |m| = 1 , ξ(0) = 0 for |m| �= 1 . (9.34)

Clearly, the geometrical singularity at r = 0 is of a completely different nature
from the physical singularities associated with the continuous spectra.

(b) Singularities For the purpose of the analysis, we again abbreviate the differen-
tial equation (9.31) as [

P(r; ω2) χ ′
]′ − Q(r; ω2) χ = 0 , (9.35)

where

P ≡ N

r D
, N (r; ω2) ≡ ρ2(γ p + B2) [ω2 − ω2

A(r)] [ω2 − ω2
S(r)] ,

(9.36)
D(r; ω2) ≡ ρ2 [ω2 − ω2

s0(r)] [ω2 − ω2
f 0(r)] ,

and −Q denotes the second term in square brackets of Eq. (9.31). The expressions
for the singular frequencies ω2

A , ω2
S , ω2

s0 and ω2
f 0 are given by

ω2
A(r) ≡ F2/ρ , ω2

S(r) ≡ γ p

γ p + B2
F2/ρ ,

ω2
s0, f 0(r) ≡ 1

2(m2/r2 + k2)
γ p + B2

ρ

[
1 ±

√
1 − 4γ pF2

(m2/r2 + k2)(γ p + B2)2

]
.

(9.37)

They are completely analogous, almost identical, to the expressions Eqs. (7.94)–
(7.96) for the plane gravitating plasma slab (except that the square of the horizon-
tal wave number, k2

0 ≡ k2
y + k2

z , is replaced by the expression m2/r2 + k2, which
is not constant and suffers from the geometrical singularity at r = 0 discussed
above). Consequently, we may refer to the analysis of Section 7.4 and conclude
that the diffuse cylindrical plasma also has two continuous spectra, the Alfvén con-
tinuum {ω2

A(r)} and the slow continuum {ω2
S(r)} . Furthermore, the sets {ω2

s0(r)}
and {ω2

f 0(r)} consist of apparent singularities, which are not continuous spectra
but ranges of turning point frequencies.

For every radius r , these genuinely and apparently singular frequencies are well
ordered according to the scheme

0 ≤ ω2
S ≤ ω2

s0 ≤ ω2
A ≤ ω2

f 0 ≤ ω2
F ≡ ∞ ; (9.38)

see Fig. 9.6. The collections of these frequencies for the whole interval (0, 1) may
be represented by a diagram similar to Fig. 7.14, with one important difference: no
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Fig. 9.6. Ordering of the genuine and apparent frequencies for fixed radius.

matter how small the inhomogeneity, the geometrical singularity at r = 0 causes
overlap between the slow turning point frequencies and the slow continua and
between the fast turning point frequencies and the (formal) fast continuum because
ω2

s0(r →0) → ω2
S(0) and ω2

f 0(r →0) → ω2
F ≡ ∞.

(c) Equivalent system of first order differential equations As in Section 7.3.2(d),
we transform the second order differential equation (9.31) into a system of two first
order equations. This turns out to be quite illuminating. Rather than just rewriting
the equation in terms of the variables χ and χ ′ , we use a variable with physical
significance, viz. the perturbation � of the total pressure p + 1

2 B2 :

� = π + B · Q . (9.39)

(This is the Eulerian pressure perturbation, �E , related to the Lagrangian pressure
perturbation, �L , by �E = �L + B2

θ χ/r2 .) Inserting the expressions (9.27) and
(9.29) for Q and π gives

� = − N

r D
χ ′ +

{
2B2

θ

r2
− 2k Bθ G

r2 D

[
(γ p + B2)ρω2 − γ pF2

]}
χ . (9.40)

Notice that all terms with radial derivatives that occur in the Hain–Lüst equa-
tion (9.31) also appear in the expression for � , apart from the factor 2 in front
of B2

θ /r2 which is due to the fact that we exploit the Eulerian rather than the
Lagrangian pressure.

By straightforward algebra, the Hain–Lüst equation is then transformed into the
following pair of first order differential equations:

N

r

(
χ

�

)′
+
(

C D

E −C

)(
χ

�

)
= 0 , (9.41)

where

C ≡ −2B2
θ

r2
ρ2ω4 + 2m Bθ F

r3

[
(γ p + B2)ρω2 − γ pF2

]
,

E ≡ − N

r

[
ρω2 − F2

r
+
(

B2
θ

r2

)′]
− 4B4

θ

r4
ρ2ω4

+ 4B2
θ F2

r4

[
(γ p + B2)ρω2 − γ pF2

]
, (9.42)
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and N and D were defined in Eqs. (9.32) and (9.30). The determinant of the matrix,

DE + C2 = − N

r

[
D

{
U + 2

(
B2

θ

r2

)′}
+ V

]
→ 0 when N → 0 , (9.43)

exhibits the proportionality with N required to cancel one of the two factors intro-
duced by multiplying both derivatives by N .

This formulation, which is due to Appert, Gruber and Vaclavik [9], again shows
that the slow and Alfvén continua {ω2

S} and {ω2
A} originate from the zeros of the

factor N in front of the derivatives. The real virtue of this formulation, over that
in terms of the second order differential equation, is that the singularities D = 0
are immediately seen to be apparent ones since nothing singular shows up there. In
the numerical problem of solving Eq. (9.41) by means of a shooting method, one
multiplies the equation by r/N and proceeds to calculate the derivatives. Giving
initial data χ0 and �0 at a certain point, one then calculates χ0

′ and �0
′ , from

which one obtains new initial data χ1 and �1 , and so forth. Clearly, the only
difficulty which may arise is the occurrence of N = 0 singularities. For D = 0
no problem turns up. This is much less evident in the Hain–Lüst formulation.

� Apparent singularities. In the formulation in terms of the second order differential
equation, one has to prove that the expansion about the D = 0 locations obeys the special
condition (7.143) of Section 7.4.1. To that end, the function Q(r; ω2) of Eq. (9.35) is again
expressed as

Q(r; ω2) = −U − V

D
−
(

W

D

)′
, (9.44)

where the explicit expressions for U , V and W can be read off from Eq. (9.31). After
straightforward algebra, these coefficients turn out to be related by

W 2 + 1

r
N V = −4k2 B2

θ B2

r4

[
(γ p + B2)ρω2 − γ pF2

]
D → 0 when D → 0 ,

(9.45)
which is the required condition. 	

(d) Limiting forms of the generalized Hain–Lüst equation For reference purposes
we list three significant limits of the Hain–Lüst equation.

(1) Low frequency limit [ |ρω2| � (m2/r2 + k2)(γ p + B2) ]:

d

dr

[
ρω2 − F2

m2 + k2r2
r

dχ

dr

]
− 1

r

[
ρω2 − F2

− 4k2 B2
θ

m2 + k2r2

γ pρω2

(γ p + B2)ρω2 − γ pF2
− 2B2

θ

r B2
p′

+ 4Bθ F

m2 + k2r2

(
k2mr

m2 + k2r2
+ m

B2
p′ + Bθ

B2
F − r BzG

2B2

µ′

µ

)]
χ = 0 . (9.46)
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This equation was obtained by Goedbloed and Hagebeuk [86] by assuming small
frequencies or growth rates, and systematically expressing all derivatives B ′

θ and
B ′

z in terms of p′ and µ′ by means of the equilibrium relation (9.3) and the defini-
tion µ ≡ Bθ /(r Bz). Although the number of terms is increased this way, this form
has the advantage that the important terms involved in instabilities (p′, F and µ′)
are clearly distinguished so that different orderings may be designed to optimize
their effect. This equation still contains the exact limits of the incompressible and
marginal equations (see below).

(2) Incompressible limit (γ → ∞):

d

dr

[
ρω2 − F2

m2 + k2r2
r

dχ

dr

]
−
[

1

r
(ρω2 − F2) −

(
B2

θ

r2

)′

− 4k2 B2
θ F2

r(m2 + k2r2)(ρω2 − F2)
−
(

2k Bθ G

m2 + k2r2

)′ ]
χ = 0 .

(9.47)

This equation was derived by Freidberg [71] (with a minor rearrangement of the
derivative terms). It contains the exact marginal stability equation, listed below,
in the limit ω2 → 0. This shows that stability is not affected by compressibility,
although growth rates are. (Note that the singularity (ρω2 − F2)−1 in the second
term in square brackets is an apparent one since it originates from the factor ω2 −
ω2

s0 of D.)

(3) Marginal equation of motion (ρω2 = 0):

d

dr

[
r F2

m2 + k2r2

dχ

dr

]
−
[

1

r
F2 +

(
B2

θ

r2

)′

− 4k2 B2
θ

r(m2 + k2r2)
+
(

2k Bθ G

m2 + k2r2

)′ ]
χ = 0 .

(9.48)

This is one form of Newcomb’s [164] Euler–Lagrange equation describing the
stability of cylindrical plasmas (see Section 9.4.1). With respect to the singularity
F = 0, the equation is analogous to the marginal equation of motion (7.190) for the
gravitating slab, so that singular behaviour can be discussed in complete analogy
with Section 7.5.

9.2.2 Boundary conditions for cylindrical interfaces

If there is an external vacuum (model II), or pressureless plasma (model II*),
surrounding the central plasma column, the right (model I) boundary condition,
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χ(a) = 0, should be replaced by conditions determining the amplitude and the
normal derivative of χ(a) describing the freely moving plasma surface. This prob-
lem turns up in the investigation of free-boundary modes (e.g. external kinks). For
the cylindrical interface equilibrium of Section 9.1.2 (Fig. 9.4), the calculation of
ξ (or χ ) in the interior region should then be complemented with the appropriate
‘extension’ of the perturbation in the outer region. For model II, this involves the
calculation of the perturbation Q̂ of the vacuum magnetic field plus the boundary
conditions connecting Q̂ to ξ at the plasma–vacuum interface at r = a.

(a) Plasma–vacuum interface (model II) The appropriate boundary conditions
were derived in Section 6.6.1, Eqs. (6.140) and (6.143), which we repeat for con-
venience:

n · ∇ × (ξ × B̂) = n · Q̂ (1st int. cond. ), (9.49)

−γ p∇ · ξ + B · Q + ξ · ∇(1
2 B2) = B̂ · Q̂ + ξ · ∇(1

2 B̂2) (2nd int. cond.). (9.50)

The first boundary condition is easily transformed to

iF̂χ = r Q̂r (at r = a), where F̂ = m B̂θ1/a + k B̂z1 . (9.51)

The LHS of the second boundary condition is the Lagrangian perturbation of the
total pressure, so that this condition may be transformed by means of Eq. (9.39)
to:

� − (B2
θ /r2) χ = B̂θ Q̂θ + B̂z Q̂z − (B̂2

θ /r2) χ (at r = a) , (9.52)

with � given by Eq. (9.40).
The equations (9.51) and (9.52) determine the plasma variables � (or χ ′) and

χ at the plasma surface completely if the vacuum solutions are known. This part
of the problem can be carried out explicitly since the solutions in the vacuum are
Bessel functions, as we will see. From the vacuum equations

∇ × Q̂ = 0 , ∇ · Q̂ = 0 , (9.53)

we obtain the tangential components of Q̂ in terms of the radial component:

Q̂θ = i
m

m2 + k2r2
(r Q̂r )

′ , Q̂z = i
kr

m2 + k2r2
(r Q̂r )

′ , (9.54)

so that

B̂ · Q̂ = i
r F̂

m2 + k2r2
(r Q̂r )

′ . (9.55)
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The radial component satisfies the second order differential equation[ r

m2 + k2r2
(r Q̂r )

′
]′ − Q̂r = 0 , (9.56)

which has derivatives of the modified Bessel functions as solutions:

Q̂r = C1 I ′
m(kr) + C2 K ′

m(kr) . (9.57)

One of the constants is determined by the boundary condition (6.130) at the con-
ducting wall,

Q̂r (b) = 0 , (9.58)

so that the final solution for Q̂r on the interval (a, b) becomes

Q̂r = C[ I ′
m(kb)K ′

m(kr) − K ′
m(kb)I ′

m(kr) ] . (9.59)

The constant C is eliminated by inserting this solution in Eq. (9.52) and dividing
that equation by Eq. (9.51), which leads to a single boundary condition:

(
�

χ

)
r=a

= B2
θ (a) − B̂2

θ (a)

a2
− F̂2(a)

ka

Im(ka)K ′
m(kb) − Km(ka)I ′

m(kb)

I ′
m(ka)K ′

m(kb) − K ′
m(ka)I ′

m(kb)
.

(9.60)

In this boundary condition, � is to be expressed in terms of χ ′ and χ by means
of Eq. (9.40), and χ ′ and χ , in turn, are found by solving the Hain–Lüst equa-
tion (9.31). This determines the free-boundary modes of model II.

The replacement of the two boundary conditions (9.51) and (9.52) by the single
boundary condition (9.60) is possible because, for a homogeneous second order
differential equation, the choice of the amplitude of the eigenfunction does not in-
fluence the eigenvalue. Equation (9.60) corresponds to normalizing the eigenfunc-
tions with χ(a) = 1 . Obviously, if χ(a) happens to vanish one should not divide
by it, but one should exploit a different normalization. This case corresponds to
a situation where there is already an eigensolution in the absence of the vacuum,
with the wall at the plasma (b = a).

For the numerical solution of the Hain–Lüst equation (9.31), or the equiva-
lent system of first order differential equations (9.41), one may exploit a shooting
method, as described in Section 7.5.1(c). One chooses a value of ω2 and integrates
into the outward direction, starting from χ = 0 at r = 0 . One then keeps chang-
ing ω2 until (�/χ)r=a reaches the value prescribed by the RHS of Eq. (9.60).
Then, ω2 has become an eigenvalue. (In the absence of a vacuum (model I), one
iterates until χ(r) goes through zero at r = a .) For this procedure to be useful, a
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guiding principle should exist on how to change the parameter ω2 in such a way
that the solution for the next try is closer to satisfying the boundary condition at
r = a than it was in the previous run. Such a principle is provided by the oscilla-
tion theorem, proved in Section 7.4.3 for the gravitating plasma slab, but equally
valid for the cylindrical plasma (Section 9.3.1).

(b) Plasma–‘ghost plasma’ interface (model II*) We replace the vacuum by a
pressureless plasma (p0 = 0), carrying no current ( ĵ0 = 0), with negligible density
(ρ̂0 = 0), and having the same distribution of the magnetic field B̂0 as the vacuum,
given by Eq. (9.18). Let us call such a plasma a ‘ghost plasma’. With respect to
the equilibrium, there is evidently no difference with a vacuum. With respect to
the perturbations, from Eqs. (6.19) and (6.21), the perturbed pressure and density
also vanish: p̂1 ≡ π̂ = 0 , ρ̂1 = 0 . However, since the medium is assumed to be
perfectly conducting, the magnetic field perturbation will be associated with the
displacement ξ̂ of the ‘ghost plasma’ by Q̂ = ∇ × (ξ̂ × B̂), and there is nothing to
prevent the development of a perturbed current density ĵ1 = ∇ × Q̂. The question
is: do those currents actually develop, and is a ‘ghost plasma’ any different from a
vacuum with respect to stability?

Let us solve the pertinent limiting form of the Hain–Lüst equation for the ‘ghost
plasma’. Since we have assumed ρ̂0 = 0 , that equation turns out to be identical
with Newcomb’s marginal equation of motion (9.48) (of course, with hats on all
the physical variables). To facilitate the solution, we transform this equation to Q̂r .
From Eq. (9.27),

r Q̂r = iF̂(r ξ̂r ) ⇒ χ̂ = −iF̂−1(r Q̂r ) , (9.61)

where F̂ is the parallel gradient operator for a vacuum magnetic field distribution:

F̂ = (k + µ̂m)B̂z1 , µ̂ = µ̂1(a
2/r2) . (9.62)

Now, it is just a matter of diligent algebra to show that the resulting equation for
Q̂r is just Eq. (9.56) and, hence, that the expression (9.55) for B̂ · Q̂ entering the
second interface condition (9.50) is unchanged! Apparently, no current perturba-
tion is induced and the boundary condition (9.60), derived for the vacuum, also
applies for the ‘ghost plasma’. With respect to the perturbations, there appears to
be no difference between a ‘ghost’ plasma and a vacuum.

That answer is WRONG. It is true that the vacuum field equation (9.56) for
Q̂r correctly describes the dynamics of the ‘ghost plasma’, so that no perturbed
currents develop, but only when the inversion (9.61) can be carried out, i.e. for all
points where k + µ̂m �= 0. For mode number k and m such that there is a point
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r = rs in the interval (a, b) where

k + µ̂(rs)m = 0 , (9.63)

the inversion has to be reconsidered. Such points are not ‘seen’ by the magnetic
field equation (9.56), so that Q̂r is finite, in general, which implies that χ̂ blows up.
The Frobenius expansion of the marginal equation of motion (9.48) for χ̂ around
such points is a special case of Newcomb’s expansion around interchange points,
described in Section 7.5.2 for the analogous case of a plane gravitating plasma. For
the cylinder, the parameter q0 of the indicial equation becomes proportional to p′
(see Section 9.4.1) which vanishes for the ‘ghost plasma’ so that the indices, given
by Eq. (7.200), become ν1 = 0, and ν2 = −1. Hence, there is a small solution
with a finite amplitude at the singularity and a large solution with a logarithmic
term. To have physically acceptable solutions, the large solution has to be excluded
because its contribution to the energy W blows up, according to Eq. (7.202) of
Section 7.5.2, so that the physically acceptable small solution (with finite energy)
becomes

χ̂s = c1 + c2(r − rs) + · · · . (9.64)

From Eq. (9.61), this implies that Q̂r vanishes at r = rs . In other words: the dif-
ferential equation (9.56) for the magnetic field perturbation Q̂r can be exploited,
but it should be subjected to the boundary condition

Q̂r (rs) = 0 , when k + µ̂(rs)m = 0 . (9.65)

However, since the solution (9.59) for Q̂r is not oscillatory, this would be in con-
flict with also satisfying the boundary condition (9.58) at the wall. Similarly, when
describing the problem in terms of χ̂ , there would be a conflict with the model II*
boundary condition (6.131), viz. χ̂(b) = 0. How can this be reconciled? Here, the
other property of the singular solutions comes to the rescue. It has been proved
in Section 7.5.2 that the small solution may jump at the singularity. Hence, the
physically acceptable solution looks like that depicted in Fig. 9.7. On (a, rs) the
perturbation is finite, it jumps to zero at the singularity, and on (rs, b) it vanishes
identically. Hence, the boundary condition for a plasma–‘ghost’ plasma interface
is given by the boundary condition (9.60) for a plasma–vacuum interface with the
following modification:

b → b∗, where b∗ ≡
{b if k + µ̂(r)m �= 0 for all r on (a, b) ,

rs = a

√
− µ̂1m

k
if k + µ̂(rs)m = 0 for rs on (a, b) .

(9.66)
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Fig. 9.7. Perturbations at an interchange singularity for a ‘ghost’ plasma.

Clearly, the ‘ghost’ plasma has a huge effect on the stability in that the wall is
effectively placed at the singularity. This effect is due to the perturbed current
density ĵ1 = ∇ × Q̂ , which vanishes nearly everywhere in the exterior region, but
exhibits a surface current concentration (see Section 4.5.2) at r = rs due to the
jump of Q̂:

ĵ�1 = n × [[Q̂]] . (9.67)

This induced surface current has the same effect as a solid wall put at the position
of the singularity.

We now have the complete machinery available to describe the waves and in-
stabilities of cylindrical plasmas, to be applied in the following sections. The
present subsection should have illustrated, once more, that singularities are nearly
always present. They are not a mathematical frivolity, but they determine the dom-
inant dynamics of the plasma. Bender and Orszag’s motto on Section 7.4 stays
with us.

9.3 Spectral structure

9.3.1 One-dimensional inhomogeneity

At this point in the exposition, the reader may well wonder why the algebra of
the spectral analysis is so complicated and how one can be sure of results when so
many factors contribute and subtle cancellations are a rule rather than an exception.
We first point out, under (a), the intrinsic reason for these complications, but also
the challenges this represents. Next, under (b), we point out several alleviating
factors which help to restore confidence in the spectral enterprise. We are then
ready to apply the developed formalism to problems of practical interest.
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(a) Corresponding problems in quantum mechanics In Chapters 6 and 7, we have
frequently stressed the analogy between MHD and quantum mechanical spectral
theory. Since calculations with the Hain–Lüst equation have direct relevance for
plasma confinement in realistic geometries, it is instructive to compare it with a
corresponding concrete problem in quantum mechanics. To that end, we contrast
the normal mode equation F(ξ) = −ρω2ξ with the Schrödinger equation H� =
E� which, for a particle in a potential field V (r), becomes[

− h̄2

2M
� + V (r)

]
�(r) = E�(r) . (9.68)

One-dimensional problems are obtained for a potential that is spherically symmet-
ric, like the H-atom where V = V (r) . In that case, one writes the wave function
as a superposition of spherical harmonics which may be studied separately,

�(r, θ, φ) = R(r) Y m
� (θ, φ) , (9.69)

in much the same way as the separate Fourier components (9.22) for a cylindrical
plasma (or the spherical harmonics (7.55) themselves exploited in helioseismol-
ogy). Inserting the expression (9.69) in Eq. (9.68) leads to a second order differen-
tial equation for the radial wave function:

1

r

d2

dr2
(r R) −

[
�(� + 1)

r2
+ 2M

h̄2

(
V (r) − E

)]
R = 0 . (9.70)

This is the equation that should be compared with the generalized Hain–Lüst
equation.

It is clear that the spectral problem of calculating the waves and instabilities
of a cylindrical plasma is a much more complicated one than the determination
of the energy levels of the hydrogen atom, or even the general quantum mechan-
ical problem of scattering of particles in an arbitrary one-dimensional potential
field. In the latter case, the only controlling function is V (r), whereas four such
functions, ρ(r), p(r) , Bθ (r) and Bz(r), enter the MHD equation. More impor-
tant, the reduction to the generalized Hain–Lüst equation from a vector equation
(with three components ξ , η, ζ ) implies that the eigenvalue ω2 is scattered through
the coefficients P and Q of Eq. (9.35) in a complicated manner. Consequently,
whereas the radial wave equation (9.70) is a classical differential equation of the
Sturm–Liouville type, where the linear occurrence of the eigenvalue E guaran-
tees monotonicity with the number of nodes of the radial eigenfunction R(r) , the
Hain–Lüst equation (9.31) is not of such a classical type, so that the dependence
of ω2 on the number of nodes of χ(r) is more complicated.

The vector character of ideal MHD is reflected in the occurrence of three sub-
spectra. However, the general structure of each of these sub-spectra is very similar
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Fig. 9.8. Schematic spectra in quantum mechanics (fixed m and �) and MHD
(fixed m and k).

to the complete spectrum of quantum mechanical systems (Fig. 9.8). If one fixes
the quantum numbers m and � for the H-atom one finds a discrete spectrum of
bound states for E < 0 clustering at E = 0 , which is the edge of a continuum
of free states for E > 0 . Likewise, for the diffuse cylindrical plasma the Alfvén
and slow sub-spectra consist of discrete modes that may cluster at the edge of the
continua {ω2

A} and {ω2
S} , whereas the fast sub-spectrum accumulates at ω2 = ∞ .

Hence, there is much more in common to the two problems than suggested by
the evident differences:

(1) both concern the determination of the spectrum of a self-adjoint linear operator in
Hilbert space;

(2) the operators have a discrete spectrum as well as a continuous spectrum, with different
but intrinsically physical reasons for the distinction between them;

(3) for one-dimensional inhomogeneity, the discrete spectrum (or sub-spectra for vector
problems) is asymptotically monotonic in the number of nodes of the eigenfunctions.

The latter property connects the discrete spectrum, or sub-spectra, to the essential
spectrum, consisting of the continuous spectrum of free states in quantum mechan-
ics, and of the Alfvén and slow continua and the fast cluster point in the MHD case.

This structural unity of spectral theory is much more important than the al-
gebraic complications due to the vector character of MHD. With the splendid
example of the unravelling of the atomic structure in the twentieth century, there
can be no doubt that nature still has a lot in store for us when MHD spectroscopy
(Section 7.2.4) has outgrown its present state of infancy.
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(b) Common properties of inhomogeneous plasmas With the extensive preparation
of Chapter 7 on the plane gravitating plasma slab, for the analogous problem of
the cylindrical plasma there is no need to repeat:

– the proof of the existence of continuous Alfvén and slow continua (Section 7.4.2);
– the demonstration of apparent singularities (Sections 7.3.2 and 7.4.1);
– the proof of the oscillation theorem (Section 7.4.3);
– the variational procedures for stability (Sections 7.5.1 and 7.5.2).

All this immediately carries over to the cylindrical case so that we can con-
centrate on the surprisingly many different effects of the curvature term asso-
ciated with the transverse magnetic field component Bθ . The fact that all these
features carry over from one inhomogeneous problem to another illustrates that
there is good reason for trust in the final outcome of most spectral problems
in MHD.

One should be aware, though, that these chapters focus on one-dimensional
inhomogeneous plasmas described by ideal MHD. When toroidal curvature is
introduced, separability usually fails and ODEs are replaced by PDEs. Naive ex-
pectations about similar monotonicity properties of the eigenvalues in the toroidal
case, with 2D nodal lines taking the place of 1D nodal points, are quickly shat-
tered when one realizes what could happen (see the example given by Courant
and Hilbert [60], Vol. I, p. 455, on the peculiar behaviour of nodal lines of the
Helmholtz equation on a square). When dissipation is admitted, self-adjointness
is lost and spectral problems become much more complicated. However, this does
not take away from the importance of the ideal, one-dimensional, problem because
it usually returns in the form of a leading order contribution with toroidal or resis-
tive corrections. For example, the large stabilizing effect of the singularity in the
‘ghost’ plasma of the previous section is lost when the resistivity of that plasma is
taken into account. In this respect, it is similar to ordinary wall stabilization when
the resistivity of the wall is taken into account. However, the resistive instabili-
ties that develop in those cases exponentiate on a much slower time scale than the
ideal MHD time scale so that they are much easier to control by means of feed-
back magnetic fields. Toroidal and dissipative spectral problems will be discussed
more extensively in Volume 2.

9.3.2 Cylindrical model problems

In cylindrical geometry, analytically solvable models inevitably involve Bessel
functions. We discuss three examples that are frequently used in cylindrical sta-
bility problems.
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(a) Waves in a homogeneous θ -pinch We start with the simplest model, a linear
θ -pinch with a homogeneous magnetic field, pressure and density,

Bθ = 0 , Bz = B0 , ρ = ρ0 , p = p0 , (9.71)

so that the Alfvén speed and sound speed are constant, related to each other by the
parameter β:

b ≡
√

B2
0/ρ0 , c ≡

√
γ p0/ρ0 , 1

2γβ ≡ c2/b2 . (9.72)

The Hain–Lüst equation (9.31) then simplifies to

(ω2 − k2b2)

[(
r

m2 + k∗2r2 χ ′
)′

− 1

r
χ

]
= 0 , (9.73)

where a kind of modified longitudinal wave number appears:

k∗ ≡
[
(k2 − ω2/b2)(k2 − ω2/c2)

k2 − ω2/b2 − ω2/c2

]1/2

. (9.74)

For internal modes (model I), the differential equation (9.73) is to be solved subject
to the boundary conditions

χ(0) = χ(a) = 0 . (9.75)

Eq. (9.73) yields, first of all, an infinitely degenerate spectrum of Alfvén waves with
frequency ω2 = ω2

A = k2b2 , and with a completely arbitrary radial dependence of
the eigenfunction χ . They propagate along the axis of the cylinder with the Alfvén
speed b.

For ω2 �= ω2
A , the solutions of Eq. (9.73) are Bessel functions, where it depends

on the sign of k∗2 whether they are of the modified, exponential, kind (giving
evanescence) or of the ordinary, oscillatory, kind (giving propagation):

χ = Cr I ′
m(k∗r) if k∗2 > 0 , i.e. for

{
ω2 < ω2

S

k2c2 < ω2 < ω2
A

(evanescent) ,

χ = Cr J ′
m(ik∗r) if k∗2 < 0 , i.e. for

{
ω2

S < ω2 < k2c2 (slow) ,

ω2
A < ω2 (fast) , (9.76)

where c2 < b2 has been assumed in the inequalities. The first expression does not
permit satisfaction of the boundary condition for internal modes. It will be used
below in the expression for the external kink modes. From the second expression,
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Fig. 9.9. Sharp-boundary skin-current model.

the boundary condition χ(a) = 0 implicitly fixes the eigenfrequencies through

ik∗a = j ′
mn , (9.77)

where j ′mn is the nth zero of the Bessel function J ′
m(x) . This yields the dispersion

equation for the slow and fast magneto-acoustic waves in a homogeneous θ -pinch:

ω4 − (k2 + j ′2mn/a2)(b2 + c2) ω2 + k2(k2 + j ′2mn/a2) b2c2 = 0 . (9.78)

This equation is fully analogous to the magneto-sonic factor of the dispersion equa-
tion (5.53) for homogeneous plasmas, where the parallel wave number is now in-
dicated by k and the effective total wavenumber by

√
k2 + j ′2mn/a.

(b) Free-boundary modes of interface plasmas For the modes of a plasma–vacuum
(model II) or plasma–‘ghost’ plasma (model II*) system, we need to solve the
Hain–Lüst equation (9.31) subject to the boundary conditions discussed in Sec-
tion 9.2.2. As in model I, the perturbation on axis is restricted by the regularity
condition χ(0) = 0 , whereas the boundary condition at the interface involves the
perturbation of the total pressure, (�/χ)r=a as given by Eq. (9.60). For a ‘ghost’
plasma, the substitution (9.66) should be made in the latter expression.

We wish to study this problem for a sharp-boundary plasma where the current
is confined to the plasma surface r = a (skin-current model, Fig. 9.9). Then, the
equilibrium quantities for the interior of the plasma column are those of a homo-
geneous θ -pinch given by Eq. (9.71), whereas the external magnetic field is given
by Eqs. (9.18) and (9.19). This model provides a very useful first approximation
to the study of external kink modes, which are the most dangerous instabilities
occurring in a cylindrical plasma column. Here, most dangerous is meant in the
sense of affecting the bulk of the plasma and having large growth rates. For typical
densities of high-β pinches they exponentiate on the µs time scale.

With a free boundary, exploiting the oscillatory Bessel function solutions
(9.76)(b), the frequencies of the modes will be slightly shifted from those discussed
under (a). However, the really interesting new feature of free-boundary plasmas is
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the appearance of a surface mode, like the f -mode in the gravito-acoustic spectrum
(Section 7.2.3). This mode is just the lowest one in the evanescent region, which
may even become unstable (ω2 < 0), so that one should exploit the exponential
Bessel functions (9.76)(a) now.

To obtain the dispersion equation of the modes, we first compute the perturba-
tion � of the total pressure for the first solution (9.76) for χ ,

� = − N

r D
χ ′ = − ω2 − k2b2

m2 + k∗2r2
rχ ′ = −ω2 − k2b2

k∗ · C Im(k∗r) , (9.79)

and then insert this expression and χ in the boundary condition (9.60). This yields
the dispersion equation for free-boundary modes:

ω2 = k2 B2
0

ρ0
− k∗a I ′

m(k∗a)

ρ0 Im(k∗a)

[
B̂2

θ

a2

+ (m B̂θ /a + k B̂z)
2

ka

Im(ka)K ′
m(kb) − Km(ka)I ′

m(kb)

I ′
m(ka)K ′

m(kb) − K ′
m(ka)I ′

m(kb)

]
. (9.80)

At this point, the dispersion equation is still a highly transcendental equation in
the eigenvalue because of the dependence of k∗ on ω2. (Also note that the symbol
b now indicates the wall position.)

Many different limits may be studied for this equation, but the most interesting
one is obtained for the tokamak approximation where we again consider a cylin-
drical plasma of length 2π R0 as a first approximation to a torus of major radius R0

(Fig. 9.2). In that case, the wave number k is quantized with integer toroidal mode
number n (not to be confused with the radial node number of the Bessel functions):

k = n/R0 , so that ka = εn
[

� 1 for n ∼ 1
]
. (9.81)

The approximation in square brackets is the long wavelength approximation for the
longitudinal mode number, which is quite relevant here. Furthermore, the magnetic
field components are ordered as

B̂θ ∼ ε B̂z , so that q̂ = ε B̂z/B̂θ ∼ 1 . (9.82)

We assume (and easily justify this from the result obtained below) that the eigen-
values of the modes (or the growth rates of the modes) are much smaller than the
Alfvén frequency:

|ω2| � ω2
A ≡ k2b2 ⇒ k∗ ≈ k . (9.83)

In view of Eq. (9.81), the arguments of all the occurring Bessel functions are small,
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so that we may use the following approximations for m �= 0 :

k∗a I ′
m(k∗a)/Im(k∗a) ≈ |m| ,

(9.84)
Im(ka)K ′

m(kb) − Km(ka)I ′
m(kb)

I ′
m(ka)K ′

m(kb) − K ′
m(ka)I ′

m(kb)
≈ − εn

|m|
(b/a)|m| + (b/a)−|m|

(b/a)|m| − (b/a)−|m| .

Inserting these approximations in Eq. (9.80) leads to the following approximate
form of the dispersion equation:

ω2 ≈ ε2 B2
0

a2ρ0

{
n2 − B̂2

θ

ε2 B2
0

[
|m| − (m + nq̂)2 (b/a)|m| + (b/a)−|m|

(b/a)|m| − (b/a)−|m|

]}
. (9.85)

From the equilibrium expressions (9.19), and Eq. (9.13) relating µ̂ to q̂, one may
convert the factor involving B̂θ in terms of β and q̂1:

B̂2
θ

ε2 B2
0

= 1 + β

q̂2
1 + ε2

≈ 1

q̂2
1

. (9.86)

In the rightmost approximation, we have neglected small terms β and ε2 in agree-
ment with the low-β tokamak ordering (9.14). The dispersion equation for the
‘straight tokamak’ then becomes:

ω2 ≈ ε2 B2
0

a2ρ0q̂2

[
n2q̂2 − |m| + (m + nq̂)2 (b/a)|m| + (b/a)−|m|

(b/a)|m| − (b/a)−|m|

]
. (9.87)

In view of scale independence (Section 4.1.2), this expression is to be considered
as an end product, since it has the trivial dimensional factors B0, a, ρ0 in the ap-
propriate way to give the dimension of a growth rate squared, whereas the essential
parameters q̂, b/a, and ε, describing the equilibrium features, and the mode num-
ber m and n, describing the perturbations, appear in a physically significant way.
(Note that there is no radial node number, in agreement with our choice for the
evanescent solutions.)

Rearranging terms, Eq. (9.87) may be written as

ω2 ≈ ε2 B2
0

a2ρ0q̂2

[
1
2 |m|(|m| − 2) + 1

2(2nq̂ + m)2 + 2(nq̂ + m)2

(b/a)2|m| − 1

]
. (9.88)

This rearrangement reveals some of the physical mechanisms at work in this
model. First, there is the kink term which is only negative when |m| = 1 . Then,
there is a stabilizing term representing the average field line-bending across the
plasma boundary which disappears for modes that propagate perpendicular to the
average direction of the field across the surface layer at r = a (recall that q = ∞
for r = a− and q = q̂ for r = a+ ). The last term represents the stabilizing
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Fig. 9.10. Growth rate of the external kink mode for a skin-current plasma–
vacuum model. Replacing the vacuum by a ‘ghost plasma’ yields complete stabi-
lization (thick dashed line).

influence of the wall, ranging from infinitely stabilizing when b/a = 1 to no effect
when b/a → ∞ .

Since only |m| = 1 is unstable, we may restrict the analysis to that mode:

ω2(m =−1) = 2ε2 B2
0

a2ρ0q̂2

(nq̂ − 1)(nq̂ − a2/b2)

1 − a2/b2
. (9.89)

This growth rate is plotted in Fig. 9.10. Clearly, the external kink mode is always
unstable for this model in the region

a2/b2 < nq̂ < 1 . (9.90)

This suggests a simple way of eliminating unstable external kink modes by pre-
scribing the geometry of the torus and the total plasma current Iz such that

q̂ = 2πa2 B0/(R0 Iz) > 1 , (9.91)

so that the unstable n = 1 modes (and, hence, all the n > 1 modes as well) simply
do not fit into the torus. This condition is called the Kruskal–Shafranov limit. The
limit imposed on the plasma currents by Eq. (9.91) is a quite important consid-
eration in the operation of tokamaks. It is appropriate to repeat here the remark
made in Section 2.4.3 that the fact that q̂ = 1 corresponds to a topology with
closed magnetic field lines has nothing to do with the stability mechanism of the
external kink mode. This is a purely accidental coincidence which disappears as
soon as one introduces genuine toroidal effects in the theory (see the companion
Volume 2).

Let us now consider the model II* version of the free-boundary external kink
mode. According to Eq. (9.66), one should replace the actual wall position by a
virtual wall position b∗ because of stabilization by induced skin currents at the sin-
gular position given by m + nq̂(rs) = 0 . The unstable region given by Eq. (9.90)
indicates that |m| = 1 instability precisely occurs when there is such a singularity.
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Hence, in that regime, we should exploit the virtual wall position given by

b∗/a =
√

− µ̂1m

k
=
√

− m

nq̂1
. (9.92)

Hence, in the expression (9.89) for the growth rate, the factor

nq̂ − a2/b2 → nq̂ − (a/b∗)2 = 0 for |m| = 1 . (9.93)

The external kink mode is completely stabilized by the singular currents in the
‘ghost plasma’! This agrees with the theory of internal kink modes (Section 9.4.4),
which are stable to leading order in the inverse aspect ratio ε. The external kink
mode of the plasma–vacuum model II actually becomes an internal kink mode in
the plasma–‘ghost plasma’ model II*.

Of course, for the operation of an actual fusion experiment, one would not
rely on stabilization by an external ‘ghost plasma’ to push the current beyond the
Kruskal–Shafranov limit: stabilization depends on perfect conductivity, whereas
the outermost plasma is most likely to be subject to resistive instabilities. More-
over, stability with respect to internal kink modes is lost when the next order of the
toroidal effects is taken into account. Nevertheless, it is true that an external ‘ghost
plasma’ does slow down the growth rate of the kink mode compared to an external
vacuum.

(c) Modes of an incompressible plasma with constant-pitch magnetic field In our
next model, we move a bit closer to physical reality on the longer time scale by
admitting a distributed current in the plasma. To facilitate the analysis, we exploit
Freidberg’s simplified form (9.47) of the Hain–Lüst equation for an incompressible
plasma. Moreover, we assume a constant longitudinal magnetic field component
Bz and a linearly increasing transverse magnetic field component Bθ , so that the
pitch µ of the magnetic field lines is constant and the current is evenly distributed
over the plasma:

Bθ = Ar ⇒ jz = 1

r
(r Bθ )

′ = 2A . (9.94)

According to the equilibrium equation (9.3), the pressure distribution then be-
comes parabolic and may be chosen to vanish at the plasma–vacuum boundary:

p = p0 − A2r2 = a2 A2(1 − r2/a2) . (9.95)

The parallel gradient operator F ≡ m Bθ /r + k Bz = Bz(k + µm) = const, so that
the Alfvén factor ρω2 − F2 also becomes constant if we assume constant density.
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Then, the incompressible equation of motion (9.47) simplifies to

d

dr

[
r

m2 + k2r2

dχ

dr

]
− 1

r

[
1 +

(
2α

m2 + k2r2
− α2

m2

)
k2r2

m2 + k2r2

]
χ = 0 ,

(9.96)
where

α ≡ 2m AF

ρω2 − F2
. (9.97)

The solution of this equation may again be expressed in terms of Bessel functions,
in the following combination:

χ = C
[

k∗r I ′
m(k∗r) − α Im(k∗r)

]
, k∗ ≡ k

√
1 − α2/m2 . (9.98)

(How does one produce such a miraculous answer? By transforming to another
variable! The reader may wish to check that, in this case, one obtains a simpler
ODE (Bessel’s equation itself) for the total pressure perturbation, with the solution
� ∼ Im(k∗r).) Note that, in the absence of a transverse magnetic field, A = 0 and
k∗ = k, so that the solution (9.76) for the θ -pinch in the incompressible limit is
recovered.

This model was probably considered first by Alfvén to study unstable loops as a
mechanism for the generation of cosmic magnetic fields; see the second (1963) edi-
tion of Ref. [6] co-authored with C. Fälthammar. For internal modes, it is clear that
the boundary condition χ(a) = 0 can only be satisfied if the Bessel functions are
oscillatory. This requires α2 > m2 , or 4A2 F2 > (ρω2 − F2)2. For F → 0, this
implies −ρω2 < 2|AF | and it follows that the growth rate tends to zero. On the
other hand, for ω2 = 0, one always finds oscillatory solutions in the limit F → 0,
so that there will be infinitely many unstable branches according to the oscillation
theorem. We have encountered this behaviour before, in Chapter 7 for the gravita-
tional quasi-interchanges (Section 7.3.3).

Alfvén’s model for the incompressible plasma cylinder with a constant pitch
magnetic field is unstable with respect to quasi-interchanges (see Section 9.4.2),
having maximum growth rate for F �= 0. If one relaxes the incompressibility con-
straint, the plasma becomes unstable with respect to pure interchanges, having
maximum growth rate at F = 0. This model has been used for the benchmarking
of large scale eigenvalue solvers exploiting finite elements. One particularly nice
example, due to Chance et al. [50], is reproduced in Fig. 9.11 in the representa-
tion by Kerner [125]. It shows the full structure of the ideal MHD spectrum in
the presence of an instability. The spectrum is resolved in a practical sense (where
continua are represented by as many densely spaced eigenvalues as there are grid
points in the calculation) over the many orders of magnitude from high-frequency
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Fig. 9.11. Complete spectrum of modes for a compressible plasma with a shear-
less magnetic field, in the presence of interchange instabilities; m = −2. (From
Kerner [125].)

fast modes to unstable interchanges. Note that the interchange instabilities occur in
the region where F = 0, so that the Alfvén and slow continua extend to the origin.
In a sense, these instabilities belong to both the Alfvén and the slow sub-spectra.

For external modes, exploiting again the low-β tokamak ordering to simplify the
Bessel function expressions of the incompressible model, we obtain the following
dispersion equation for the distributed current model:

ω2 = 2ε2 B2
0

a2ρ0q2

m + nq

1 − (a/b)2|m|
[
m + nq − sg(m)

(
1 − (a/b)2|m|

)]
. (9.99)

Here, the constant value of q in the interior plasma has been chosen equal to the
value q̂1 of the vacuum magnetic field at r = a. Note that, for m = −1, the expres-
sion reduces to that of Eq. (9.89) so that this mode is not sensitive for the current
distribution. However, we now obtain external instabilities for all values of m, in
regions to the left of the integer values of nq, as for the m = −1 mode of the skin-
current model shown in Fig. 9.10. The constant current distribution is violently
unstable, with no easy stabilization in the manner of the Kruskal–Shafranov limit
for the |m| = 1 external kink modes.
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9.3.3 Cluster spectra�

A cluster point analysis fully analogous to that of Section 7.4.4 for the plane grav-
itating plasma slab may also be carried out for cylindrical plasmas. The result is as
follows, see Goedbloed [84].

In order to have a Sturmian sequence of discrete Alfvén modes clustering at the
lower edge of the Alfvén continuum, i.e. at the minimum of ω2

A (where ω2
A

′′
> 0),

the following condition should be satisfied:

4k2 B2
θ (B2 − γ p)

r2 B2
− rG2

B2

(
B2

θ

r2
+ 2k Bθ B2

r2G

)′
>

1

8
ρ(ω2

A)′′ > 0 ; (9.100)

vice versa, for an anti-Sturmian sequence at the upper edge of the Alfvén contin-
uum, i.e. at the maximum of ω2

A (where ω2
A

′′
< 0), the inequality signs should be

reversed.
In order to have a Sturmian sequence of discrete slow modes clustering at the

lower edge of the slow continuum, the following condition should be satisfied:

−
(

γ p

γ p + B2

)2[ F4

γ p + B2
+ r F2

B2

(
B2

θ

r2

)′
− 4k2 B2

θ (γ p + B2)

r2 B2

]

>
1

8
ρ(ω2

S)′′ > 0 ; (9.101)

vice versa, for an anti-Sturmian sequence at the upper edge of the slow continuum,
the inequality signs should be reversed.

These conditions show that, in principle, all branches of the discrete spectrum
may occur in a cylindrical plasma with Bθ �= 0. The Alfvén cluster spectra are
associated with the occurrence of global Alfvén eigenmodes (GAEs); see Appert
et al. [10].

9.4 Stability of cylindrical plasmas

9.4.1 Oscillation theorems for stability

We have seen in Chapter 7 that most of the classical stability theory for plasmas
with one-dimensional inhomogeneity can be derived from the MHD oscillation
theorem (Section 7.4.3), where the occurrence of the interchange singularities F =
0 is the main complicating factor. We will not repeat the analysis for cylindrical
plasmas, but only present the main steps in the derivations in so far as they lead
to different equations, in particular with respect to magnetic curvature terms (Bθ )
instead of the gravitational terms (ρ′ĝ) of Chapter 7.
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Recall that the eigenfrequencies of discrete modes are monotonic in the number
of nodes of the radial component ξ of the eigenfunction for frequencies outside the
ranges of the continua and the turning point frequencies. Hence, the discrete sub-
spectra are asymptotically either Sturmian or anti-Sturmian. Since the unstable
range is always Sturmian, there is an immediate connection between the MHD
oscillation theorem and Newcomb’s stability theory.

(a) Newcomb’s variational procedure and Suydam’s criterion For the study of sta-
bility, we start from the energy principle (6.96). For the diffuse cylindrical plasma,
the reduction of W proceeds along the same lines as for the plane gravitating slab
(Section 7.5.1). Exploiting the expressions (9.27) for Q and ∇ · ξ, consistently ex-
pressing all variables in ξ , η and ζ , and integrating by parts to get rid of a term
ξ ′ξ , one obtains the following form:

W = π L
∫ a

0

{
P0[(rξ)′]2 + Q0(rξ)2

+ (m2 + k2r2)

[
B

r
η + G(rξ)′ + 2k Bθ ξ

m2 + k2r2

]2

+ γ p

[
1

r
(rξ)′ + Gη + Fζ

B

]2 }
r dr ,

(9.102)

where the length L → ∞ for the full cylinder. Minimization with respect to η and
ζ is again trivial (it leads to the expressions (9.29) in the limit ω2 → 0), so that W
reduces to

W = π L
∫ a

0

{
P0[(rξ)′]2 + Q0(rξ)2

}
r dr . (9.103)

This expression is minimized by solutions to the Euler–Lagrange equation (9.48),
which is the generalized Hain–Lüst equation in the limit ω2 → 0. The explicit
form of P0 and Q0 may be read off from the marginal equation of motion (9.48)
given in Section 9.2.1(d).

For many stability applications it is convenient to transform to the variable ξ

again, where we now exploit the notation f0 and g0 of Newcomb:

W = π L
∫ a

0

(
f0ξ

′2 + g0ξ
2
)

dr , (9.104)

leading to the Euler–Lagrange equation

( f0 ξ ′)′ − g0 ξ = 0 , (9.105)
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where f0 and g0 are obtained from P0 and Q0 of Eq. (9.48) by a straightforward
transformation involving the equilibrium relation (9.3):

f0 ≡ r2 P0 = r3 F2

m2 + k2r2
, (9.106)

g0 ≡ r2 Q0 − r P ′
0

= 2k2r2

m2 + k2r2
p′ + m2 + k2r2 − 1

m2 + k2r2
r F2− 2k2r3(m Bθ/r − k Bz)

(m2 + k2r2)2
F. (9.107)

Since Eq. (9.105) is equivalent to the Hain–Lüst equation for ω2 = 0 , we obtain
Newcomb’s stability theorem [164] directly from the MHD oscillation theorem for
the case that the interval (0, a) contains no singularity F = 0 .

Theorem. For specified values of m and k such that F ≡ m Bθ /r + k Bz �= 0 on
the interval (0, a) , the diffuse cylindrical plasma is stable if, and only if, the non-
trivial solution χ = rξ of the marginal equation of motion (9.48), corresponding
to the Euler–Lagrange equation (9.105) that vanishes at r = 0 does not have a
zero in the open interval (0, a).

Not all values of m need to be investigated since W has two convenient mono-
tonicity properties.

(1) For m = 0, the energy integral becomes

Wm=0 = W0 + π Lk2
∫

r B2
z dr , W0 ≡ π L

∫ [
r B2

z ξ ′2 +
(

2p′ + B2
z

r

)
ξ 2
]
dr .

(9.108)

Hence, if W is positive for m = 0, k → 0, it is positive for m = 0, all k �= 0. The
case m = 0, k = 0 is not contained since the derivation of Eq. (9.102) is invalid
then (there is a division by 0). Starting anew from the original expression for W ,
one finds:

Wm=0,k=0 = W0 + π L
∫ {

B2
θ

[
r
(ξ

r

)′]2

+ γ p

[
1

r
(rξ)′

]2}
rdr . (9.109)

This shows that, if W is positive for m = 0, k → 0, it is also positive for m = 0,
k = 0.

(2) For m �= 0, a different trick is performed. Keeping the mode number m, but
replacing k by the parameter λ ≡ k/m, one finds:

f0 = f0(r; λ) , g0 = h0(r; λ) + rm2(Bθ + λBz)
2 . (9.110)
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Since the only term in m is positive definite, the worst case is m = 1, so that one
may restrict the analysis to that mode.

In conclusion, the cylindrical plasma is stable for all m and k, if it is stable for the
cases m = 0, k → 0 and m = 1, all k.

As in Section 7.5, the main complication is the proper analysis of the singular-
ities F = 0 . These singularities are just the lower edges of the Alfvén and slow
continua {ω2

A} and {ω2
S} , which extend to ω2 = 0 if the interval (0, a) contains

a point where F = 0 , i.e.

k + µm = 0 . (9.111)

For these values of the wave numbers m and k, the tangential wave vector is per-
pendicular to B . In that case the phase of the perturbation is constant along the
field lines at the position r = rs of the singularity. Expanding all quantities in
terms of the variable

s ≡ r − rs , (9.112)

so that

F ≈ m Bzµ
′s , m2 + k2r2 ≈ m2(1 + µ2r2) , (9.113)

we obtain

f0 ≈ r3 B2
z µ′2

1 + µ2r2
s2 , g0 ≈ 2µ2r2

1 + µ2r2
p′ . (9.114)

Consequently, close to the singularity, the Euler–Lagrange equation (9.105) re-
duces to

(s2ξ ′)′ − α ξ = 0 , (9.115)

where

α ≡ 2µ2 p′/
(
r B2

z µ′2) . (9.116)

The solutions of the equation (9.115) are sν1 and sν2 , where ν1 and ν2 are the roots
of the indicial equation ν(ν + 1) − α = 0 :

ν1,2 = −1
2 ± 1

2

√
1 + 4α . (9.117)

The discussion of the implications of real or complex indices is again identical to
that given in Section 7.5.2.

The condition 1 + 4α > 0 , which is necessary for the absence of the oscillatory
solutions, was derived first by Suydam [222] and is, therefore, known as Suydam’s
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Fig. 9.12. Suydam unstable m = 1 modes with an increasing number of radial
nodes of the eigenfunctions. (From Goedbloed and Sakanaka [89].)

criterion:

p′ + 1
8r B2

z

(
µ′

µ

)2

> 0 . (9.118)

Its violation implies the existence of highly localized instabilities close to a singu-
lar surface where k + µm = 0 . These instabilities are so-called flute modes which
interchange the magnetic field lines without appreciable bending. They are driven
by the pressure gradient p′ and stabilized by the magnetic shear, if the second term
is large enough. One of the merits of Suydam’s criterion is that it provides a simple
explicit condition that may be tested easily and that, at least for laboratory fusion
research, suggests measures (like increasing the shear or lowering the value of
the pressure gradient) to be taken to ensure its satisfaction. A considerably more
complicated toroidal version of this condition is known as the Mercier criterion
(1960) [153].

The real importance of the localized Suydam solutions, however, resides in the
implications obtained from the MHD oscillation theorem. If Suydam’s criterion
is violated, so that the marginal equation of motion has solutions that oscillate
infinitely rapidly, the oscillation theorem asserts that a global n = 0 solution to
the full equation of motion exists for which the growth rate −ω2 is larger than
that of all the higher node solutions. In other words: violation of Suydam’s cri-
terion implies the existence of a global n = 0 instability (Fig. 9.12). This in-
stability may also be global in the azimuthal direction (e.g. m = 1) if the mode
number k may be chosen such that k + µm = 0 somewhere on the interval (0, a) .
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Hence, Suydam’s criterion provides a first test of stability which is quite signif-
icant. Clearly, violation of Suydam’s criterion (9.102) is the condition that the
marginal point ω2 = 0 is an accumulation (or cluster) point of the unstable side
of the discrete spectrum.

Finally, Newcomb’s stability test in the presence of a singular point F = 0
involves the consideration of both complex and real indices. This leads to the gen-
eral stability theorem stated at the end of Section 7.5.2(b) for the analogous case
of a gravitating slab. We will not repeat that theorem here but just note that, for the
cylindrical case, the interchange criterion (7.199) is to be replaced by Suydam’s
criterion (9.118).

(b) σ -stability In Section 7.4.3 we have proved the oscillation theorem for
the plane inhomogeneous plasma slab. This proof carries over to inhomoge-
neous cylindrical plasmas with appropriate modifications, exploiting the expres-
sions (9.39) and (9.40) for the perturbation � of the total pressure. Sturmian
branches of the slow and Alfvén sub-spectra were foreseen in the proof of Chap-
ter 7, when it still had to be shown that such branches actually exist. In the mean-
time, we have encountered plenty of examples demonstrating this. The most im-
portant one has just been discussed, viz. instabilities for values of m and k such that
F = 0 at some point in the interval (0, a). Since the continua {ω2

S} and {ω2
A} then

stretch out to ω2 = 0 , the mere existence of instabilities indicates that at least one
of the Alfvén or slow branches of the discrete spectrum has become Sturmian. It
is convenient that the function N/D never changes sign on the unstable side of the
spectrum, so that unstable modes are always Sturmian. This is also in agreement
with our intuition that moving the wall inward does not increase the growth rate
of an unstable mode, which would be the case if the unstable side of the spectrum
were anti-Sturmian.

Since the unstable side of the spectrum is non-singular, we immediately ob-
tain a theorem for σ -stability of the diffuse cylindrical plasma. To that end, we
notice that the σ -marginal equation of motion (6.116) for the diffuse cylindri-
cal plasma is obtained from the Hain–Lüst equation (9.31) by just replacing ω2

by −σ 2 :

[
P(r; −σ 2) χ ′

]′ − Q(r; −σ 2) χ = 0 , (9.119)

where

χ(0) = χ(a) = 0 . (9.120)
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Fig. 9.13. Relationship between σ -marginal solutions and eigenfunctions.

The one-dimensional modified energy principle corresponding to this equation
reads:

W σ [χ ] = π L
∫ a

0

[
P(r; −σ 2) χ ′2 + Q(r; −σ 2) χ2

]
r dr . (9.121)

It could have been derived from Eq. (6.117) by a similar analysis to the one leading
to the generalized Hain–Lüst equation. Here, we have simply posed it directly as
that functional which produces Eq. (9.119) as the σ -Euler equation.

In general, analogous to the Euler–Lagrange equation (9.105), Eq. (9.119) does
not have solutions satisfying both boundary conditions (9.120). This problem is
solved in the same way as in the ordinary stability theory (see Section 7.5.1).
Suppose that we integrate Eq. (9.119) starting from the left endpoint r = 0 where
we satisfy the boundary condition χ = 0 . If the solution χ(r) thus obtained does
not develop a zero in the open interval 0 < r < a , our oscillation theorem as-
serts that a discrete eigenvalue ω2 < −σ 2 does not exist, so that the system is
σ -stable. On the other hand, if the solution χ(r) vanishes somewhere on the open
interval 0 < r < a , a discrete eigenvalue ω2 < −σ 2 does exist for which both
boundary conditions (9.120) are satisfied (Fig. 9.13). This result could also have
been obtained from Eq. (9.121) where it just coincides with Jacobi’s minimization
condition from the calculus of variations (see, e.g., Smirnov [208]). We then have
the following theorem for σ -stability of the diffuse cylindrical plasma.

Theorem. For specified values of m and k , the diffuse cylindrical plasma is σ -
stable if, and only if, the non-trivial solution χ of the σ -marginal equation of mo-
tion (9.119) that vanishes at r = 0 does not have a zero in the open interval (0, a).

The wording of this theorem is the same as that of the parallel theorem of New-
comb, discussed above, for the theory of marginal stability in the usual sense.



9.4 Stability of cylindrical plasmas 469

0 a
r

q

0 a
r

q

0
r

q

r r r r

j z

1 1

0
r

q

1 1

ba dc

j z j z j z

a a

Fig. 9.14. Schematic overview of the different σ -stable cylindrical configura-
tions: (a) tokamak; (b) flux-conserving tokamak; (c) screw pinch; (d) reversed
field pinch. (After Sakanaka and Goedbloed [199].)

However, since in the latter theory the singularities associated with the continua at
ω2 = 0 have to be accounted for, the marginal theory in the usual sense is much
more complicated than the corresponding theory for σ -stability.

On the basis of the σ -stability theorem it is possible to systematically search
for σ -stable configurations while taking a reasonable choice for σ , e.g. one which
corresponds to the msec time scale. From a large number of numerical runs the fol-
lowing qualitative picture emerged. There are, broadly speaking, four categories of
diffuse cylindrical configurations that are σ -stable with respect to internal modes.
All four of them are characterized by a monotonically increasing or decreasing
q-profile, representing shear of the field lines, which turns out to facilitate sta-
bility. (Conforming to present conventions, the parameter q is used instead of µ,
although the results presented here strictly refer to infinite cylinder theory.) The q
and jz profiles for these configurations are the most characteristic ones to distin-
guish the different configurations, as illustrated in Fig. 9.14. As the current profile
is broadened the maximum allowable β for stability in general increases from a
few per cent for tokamaks to some 40% for the reversed field pinch. Except for
the latter configuration all other configurations require q > 1 , either on axis when
the q-profile is increasing as in a tokamak, or at the wall when the q-profile is
decreasing as in a screw pinch.

9.4.2 Stability of plasmas with shearless magnetic fields

(a) Instabilities of a z-pinch The most well-known MHD instabilities are the
sausage (m = 0) and kink (m = 1) instabilities of a z-pinch (Bz = 0, B = Bθ ).
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Since the magnetic field is exclusively azimuthal, it has no shear so that New-
comb’s theory does not apply to the m = 0 modes, which are pure interchanges
(similar to the gravitational interchanges in the absence of shear in Section 7.5.3).
For those modes, F = 0, so that the variable ζ disappears from the expression
(9.102) for the energy and the last two terms have to be combined:

W = π L
∫ a

0

{
2p′

r
ξ2 + k2 B2

[
η− 1

kr

(
(rξ)′ − 2ξ

)]2

+ γ p

[
1

r
(rξ)′ − kη

]2}
r dr

= π L
∫ a

0

{[
2p′

r
+ 4γ pB2

r2(γ p + B2)

]
ξ2

+ k2(γ p + B2)

[
η − 1

kr

(
(rξ)′ − 2B2

γ p + B2
ξ
)]2}

r dr . (9.122)

Upon minimization, the last term disappears and we obtain the following stability
criterion for the m = 0 sausage modes:

−r p′ <
2γ pB2

γ p + B2
(everywhere) . (9.123)

This implies that there is a limit on each point of the radial pressure profile of a
confined plasma (which requires a negative pressure gradient) in a z-pinch. Again,
as in Section 7.5.3, the stability criterion for pure interchanges is less severe than
the local interchange condition (Suydam’s criterion in this case) in the limit of no
shear.

For the m �= 0 modes, Newcomb’s analysis applies. Here, it is interesting to
consider the limit k → ∞ since that approaches the interchange condition most
closely. In that case,

f0 → 0 , g0 ≈ 2p′ + m2 B2

r
, (9.124)

so that the stability criterion for m �= 0 modes becomes:

−r p′ < 1
2 m2 B2 (everywhere) . (9.125)

Notice that the limit of Suydam’s criterion, p′ > 0, would be obtained for m →
0, just like the quasi-interchange stability criterion of Section 7.5.3. However, in
a cylinder, the smooth approach of this limit is excluded because of azimuthal
periodicity, and the limit m = 0 itself is governed by the stability criterion (9.123).
Hence, m = 1 becomes the worst case.

Comparing the two stability criteria: for local values of γβ ≡ c2/b2 < 1/3 ,
the m = 0 criterion (9.123) is the more restrictive condition. For γβ > 1/3 , the
criterion (9.125) with m = 1 is the more restrictive one; see Kadomtsev [119].
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Hence, it is possible to construct stable pressure profiles for a z-pinch, but they
‘live’ in a sea of violently unstable profiles, so that experimental control would be
extremely complicated and risky.

It is instructive to consider the special case of an incompressible z-pinch with
the current and pressure distributions (9.94) and (9.95) of Section 9.3.2(c), but
taking Bz = 0. For that equilibrium, −r p′ = 2A2r2 = 2B2, so that the m = 0 cri-
terion is marginally satisfied, but the m = 1 criterion is violated. To compute the
instability threshold k = k0 for the m = 1 modes, we exploit the eigenfunction
(9.98) with

Bz = 0 ⇒ α = 2A2

ρω2 − A2
, k∗2 = k2(1 − α2) . (9.126)

For marginal stability, α = −2 so that k∗ = ik
√

3 and the solution becomes:

χ0 = Cx−1[x2 J1(x)]′ , where x ≡ kr
√

3 . (9.127)

Increasing the value of |k|, instability sets in when χ0(a) = 0 for the first time,
i.e. for |k0|a = 1.58. Hence, this particular z-pinch is m = 1 unstable for |k|a >

1.58.
An estimate of the growth rate of the m = 1 modes may be obtained as well

from the eigenfunction (9.98). Since 1 − α2 < 0 for −A2 < ρω2 < 0 , the Bessel
function oscillates infinitely rapidly in that range when k → ∞, unless α2 ≈ 1.
Therefore, the growth rate of the m = 1 kink mode in the limit k → ∞ is given
by:

ρω2 ≈ −A2 = − B2
θ

µ0r2
⇒ ω ≈ i

Bθ

r
√

µ0ρ
= 1

2 i
√

µ0

ρ
jz . (9.128)

This expression shows that the internal kink modes of a z-pinch exponentiate on
the same time scale as the external kink modes, for which the growth rate was
given by Eq. (2.159). Since growth rates of this order of magnitude cannot be
tolerated in magnetic fusion devices, the z-pinch has been abandoned there long
ago. However, in inertial confinement fusion and in discharges for laser wake-field
acceleration, where time scales are very much shorter, the z-pinch is a valuable
plasma confinement scheme.

(b) Interchanges and quasi-interchanges in a constant-pitch magnetic field The
peculiar crossing of the stability criteria for the z-pinch, at the interchange point
F = 0, is a general property of shearless magnetic fields. As we have seen, for
sheared magnetic fields, the singular points F = 0 significantly influence the stabi-
lity properties of the plasma. In shearless magnetic fields, either such singular-
ities are absent or the whole interval is singular. This causes the discontinuous
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behaviour of the stability criteria. These discontinuities disappear in the ex-
pressions for the growth rates of the instabilities. We have already encoun-
tered this effect in Section 7.5.3 for the gravitational interchanges. Here, we
present the cylindrical counterpart, developed in the papers by Ware [242], Goed-
bloed [81](III), and Goedbloed and Hagebeuk [86].

For analytical calculations, it is expedient to exploit the simplified form (9.46)
of the generalized Hain–Lüst for low-frequency waves or instabilities. We here
exploit the special case of a shearless magnetic field µ′ = 0 :

d

dr

[
ρω2 − F2

m2 + k2r2
r

dχ

dr

]

− 1

r

[
ρω2 − F2 − 4k2 B2

θ

m2 + k2r2

γ pρω2

(γ p + B2)ρω2 − γ pF2
− 2B2

θ

r B2
p′

+ 4Bθ F

m2 + k2r2

(
k2mr

m2 + k2r2 + m

B2 p′ + Bθ

B2 F

)]
χ = 0 . (9.129)

This form of the equation of motion clearly exhibits the terms driving the in-
terchange instabilities (∼ p′) and the terms stabilizing them (∼ F). To further
simplify the equation, we exploit the low-β tokamak ordering (introduced in
Section 9.1.1) for the equilibrium quantities, and an ordering of the wave num-
bers of the perturbations to focus on the range of the interchanges (F = 0) and
quasi-interchanges (F �= 0).

We demonstrate these orderings with a particular equilibrium obtained by gen-
eralizing the constant-pitch force-free field of Eq. (9.11):

Bz = B0

1 + δ2r2
≈ B0(1 − δ2r2) , Bθ = B0µr

1 + δ2r2
≈ B0µr ,

p = const + B2
0 (µ2 − δ2)

2δ2(1 + δ2r2)2
≈ B2

0 [ 1
2β − (µ2 − δ2)r2] , (9.130)

p′ = −2B2
0(µ2 − δ2)r

(1 + δ2r2)3
≈ −2B2

0 (µ2 − δ2)r .

For δ2 = µ2, the pressure gradient vanishes and the force-free field (9.11) is re-
covered. The low-β tokamak ordering implies

β ∼ µ2a2 ∼ δ2a2 ∼ ε2 , (9.131)

giving the approximations indicated in Eqs. (9.130). Since the pitch of the field
lines is constant, we may introduce a parallel wave number that is approximately
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constant:

F ≡ k‖B , k‖ = k + µm√
1 + µ2r2

≈ k + µm . (9.132)

Next, we order the wave numbers as follows:

k‖a � ka � m2 ∼ 1 ⇒ m2 + k2r2 ≈ m2 , k2/m2 ≈ µ2 . (9.133)

With the orderings (9.131) and (9.133), the last three terms of Eq. (9.129) are
negligible. Further, with ρ = const and F = const, the Alfvén factor ρω2 − F2

may be extracted and we obtain the following form of the eigenvalue problem:

d

dr

(
r

dχ

dr

)
− 1

r
(m2 − λ2r2) χ = 0 , χ(0) = χ(a) = 0 , (9.134)

where

λ ≡ m2 B2
θ

r2(ρω2 − F2)

[
4µ2 γ p ρω2

(γ p + B2)ρω2 − γ pF2
+ 2p′

r B2

]
≈ const . (9.135)

The assumption λ ≈ const is justified for the particular equilibrium chosen, but it
may also be assumed for radially localized modes in more general equilibria.

The solutions of Eq. (9.134) are Bessel functions:

χ = Jm(
√

λ r) , λ = j2
mn/a2 , (9.136)

where jmn are the consecutive zeros of Jm . This yields the following dispersion
equation:

ρ2ω4 −
[

2γ p + B2

γ p + B2
F2 + m2

j2
mn

2B2
θ

r2

(
2µ2a2γ p

γ p + B2
+ a2 p′

r B2

)]
ρω2

+ γ p

γ p + B2
F2

(
F2 + m2

j2
mn

2B2
θ

r2

a2 p′

r B2

)
= 0 .

(9.137)

Comparing this dispersion equation with the analogous dispersion equa-
tion (7.211) for the gravitational interchanges (Section 7.5.3) shows that the first
term with p′ plays the role of the magnetically modified Brunt–Väisäläa frequency
N2

m , whereas the second term with p′ plays the role of the Brunt–Väisäläa fre-
quency N 2

B itself. Here, we may exploit a similar ordering, F2 � a2 B2
θ p′/(r3 B2) ,

to obtain the growth rates of the pure interchanges (F = 0) and quasi-interchanges



474 Cylindrical plasmas

(F �= 0):

F = 0 : ρω2
1 ≈ m2

j2
mn

4B2
θ

r2
(� − �1), where � ≡ a2 p′

2r B2
, �1 ≡ − µ2a2γ p

γ p + B2
,

F �= 0 : ρω2
2 ≈ γ p

γ p + B2

�

� − �1
F2 . (9.138)

The pure interchanges are stable when � − �1 > 0, which is the generalization
of Kadomtsev’s criterion (9.123) for the z-pinch. The quasi-interchanges are stable
when � > 0, which is the constant-pitch limit of Suydam’s criterion. In contrast
to the z-pinch, taking the latter limit makes sense now.

One can also compute the maximum growth rate for arbitrary values of k‖, like
the expressions (7.214) and (7.215) of Section 7.5.3. This yields the following
results:

(1) for � ≥ 0 , the plasma is stable;
(2) for �2 ≡ −µ2a2γ p (2γ p + B2)/(γ p + B2)2 ≤ � < 0 , the most unstable mode is a

quasi-interchange (k‖ �= 0) with growth rate

ρω2
1,max = − m2

j2
m1

B2

a2

[
2γ pµ2a2

B2

(
1 −

√
1 + B2

γ pµ2a2
�

)]2

; (9.139)

(3) for � ≤ �2 , the most unstable mode is a pure interchange (k‖ = 0) with a growth rate
given by Eq. (9.138)(a), substituting jm1.

The degenerate example of an equilibrium with constant-pitch magnetic field
demonstrates that stability conditions, considered for fixed wave number, may ex-
hibit discontinuities that disappear when the growth rates are considered. Fig. 9.15
clearly shows the gradual change of the growth rate −ω2(k‖) when the negative
pressure gradient is increased. The maxima of these growth rates are plotted in
Fig. 9.16. This picture highlights another feature: if one wishes to establish overall
stability of a particular magnetic configuration, the value chosen for the threshold
σ 2 ≡ −ω2, of growth rates considered to be intolerable, decides the outcome. For
a constant-pitch magnetic field, Suydam’s stability criterion (9.118) degenerates
into the quasi-interchange stability condition � > 0 (i.e. p′ > 0) and not into the
pure interchange condition � > �1, as one might have expected. However, the
growth rates of the quasi-interchanges are rather small, as is clear from Fig. 9.16,
so that one could imagine that the instabilities of the range �1 < � < 0 would
be acceptable for certain experimental purposes. On the other hand, if one insisted
on absolute stability, the quasi-interchange condition � > 0 would not be enough
either, because other instabilities (the quasi-kinks depicted in the inset of Fig. 9.16)
are still unstable in the absence of pressure gradients [86].
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Fig. 9.15. Normalized growth rate, −�2 ≡ −(ρa2/B2) ω2, of the interchange
and quasi-interchange instabilities in a constant-pitch magnetic field as a func-
tion of K‖ ≡ k‖a for different values of the normalized pressure gradient
� ≡ a2 p′/(2r B2); M ≡ µa is the normalized pitch of the field lines. (From
Goedbloed and Hagebeuk [86].)

9.4.3 Stability of force-free magnetic fields

Stability analysis becomes more complicated when the restriction of a constant-
pitch magnetic field is dropped, which usually means that solutions can only be
obtained numerically (as in the final analysis of Section 9.4.1). In this section and
the next, we discuss two important configurations, one relevant for astrophysical
plasmas and one for laboratory fusion plasmas, where semi-analytical solutions
can be constructed which, again, centre about the F = 0 singularities.

For many astrophysical plasmas, like magnetic flux loops in the solar corona,
gravity and the kinetic pressure of the plasma are negligible compared to the mag-
netic pressure, so that ∇ p ≈ 0 and the magnetic field is force-free:

j × B = 0 ⇒ j = α(r)B . (9.140)

One of the simplest, non-trivial, examples is the Lundquist field, a cylindrical
force-free magnetic field with a constant value of α. This field has been dis-
cussed extensively in Section 4.3.1, in the context of magnetic helicity, and in
Section 9.1.1(a). The explicit Bessel function expressions for Bθ and Bz are given
in Eq. (4.115), or Eq. (9.12), and illustrated in Fig. 4.9. Since the instabilities of
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Fig. 9.16. Maximum growth rate as a function of the pressure gradient for in-
terchanges and quasi-interchanges in a constant-pitch magnetic field. The inset
shows the region of quasi-kinks. (From Goedbloed and Hagebeuk [86].)

the Lundquist field essentially occur for Bθ ∼ Bz , we cannot exploit the low-β
tokamak approximation to simplify the Bessel function expressions.

(a) Solution of the marginal equation of motion Rather than exploiting New-
comb’s equations, it is expedient to derive the marginal stability equations from
the original expressions (6.29) and (6.30) for the force operator. The pressure terms
disappear, since ∇ p = 0 and ∇ · ξ = 0 at marginal stability, so that the marginal
equation of motion becomes

F(ξ) = −B × (∇ × Q) + j × Q = −B × (∇ × Q − αQ) = 0 . (9.141)

Hence, the magnetic field perturbation Q = ∇ × (ξ × B) satisfies the differential
equation

∇ × Q − αQ = λB , (9.142)

where λ(r) is a first order quantity (with suppressed phase factor exp i(mθ + kz)).
To determine λ, we take the divergence of Eq. (9.142), which only gives a
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contribution from the RHS,

B · ∇λ = iFλ = 0 ⇒ λ = u(r)δ(r − rs) , (9.143)

when there is a singularity F = 0 at r = rs . Clearly, the quantity λ represents a
skin current induced by the perturbation at the singularity, where the strength u(r)

is to be determined yet.
We solve Eq. (9.142) by eliminating Qr and Qθ from the first two components,

Qr = i

(α2 − k2)r

[
kr(Q′

z + Bθλ) + mαQz

]
,

(9.144)

Qθ = −1

(α2 − k2)r

[
αr(Q′

z + Bθλ) + km Qz

]
,

and substituting them in the third component:

1

r

d

dr

(
r

d Qz

dr

)
+
(

α2 − k2 − m2

r2

)
Qz = −Bθλ

′ − 2αBzλ . (9.145)

(Here, we have used the force-free field condition jz = (1/r)(r Bθ )
′ = αBz and

cancelled a term Fλ = 0.) The solution of the homogeneous equation that is regu-
lar at r = 0 is a Bessel function of the first kind:

1

r

d

dr

(
r

dφ

dr

)
+
(

α2 − k2 − m2

r2

)
φ = 0 ⇒ φ = C Jm(

√
α2 − k2 r) ,

(9.146)

where we may restrict the analysis to α2 > k2 since the boundary condition at
r = a (to be discussed below) requires oscillatory solutions. A solution of the in-
homogeneous equation (9.145) can then be constructed that is only different from
zero on the interval between the axis (r = 0) and the first singularity (r = rs):

Qz = φ(r)H(rs − r) = C Jm(
√

α2 − k2 r)H(rs − r) . (9.147)

Substituting this expression back into Eq. (9.145), and eliminating the homoge-
neous contributions, yields two conditions from the factors multiplying δ′ and δ:

φδ′ +
(

2φ′ + φ

r

)
δ = Bθuδ′ + (Bθu′ + 2αBzu)δ ⇒

{u = φ

Bθ

Bθφ
′ − αBzφ = 0.

(9.148)

The first one is the relation between u and φ we were looking for. However, we
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obtain an additional condition, a kind of internal boundary condition, to be satisfied
by φ in order for the discontinuous solution (9.147) to be acceptable.

Since these conditions fix everything in the problem, let us consider them in
detail. From j1 = ∇ × Q = αQ + λB, the skin current at the singularity is now
determined:

j�1 =
∫ r+

s

r−
s

j1 dr =
∫ r+

s

r−
s

uδ(r − rs)B dr =
[
(B/Bθ )φ

]
rs

. (9.149)

According to Eq. (4.167) of Section 4.5.2, this skin current also fixes the two tan-
gential components of Q:

j�1 = n × [[Q]] ⇒
{ j�1θ = −[[Qz]] = Qz(r−

s ) = φ

∣∣∣
rs

j�1z = [[Qθ ]] = −Qθ (r−
s ) =

[
(Bz/Bθ )φ

]
rs

. (9.150)

Evaluating everything at r−
s , where F ≡ m Bθ /r + k Bz = 0, this yields:

Bz j�1θ − Bθ j�1z = Bz Qz + Bθ Qθ = r Bz

m

(m

r
Qz − k Qθ

)
(9.142)= −i

αr Bz

m
Qr

(9.144)= αBz

m(α2 − k2)
(krφ′ + mαφ) = − α

α2 − k2
(Bθφ

′ − αBzφ) = 0.

(9.151)

Hence, the internal boundary condition (9.148)(b) turns out to be equivalent to the
requirement that the perturbed radial magnetic field Qr has to vanish at the sin-
gularity, i.e. we have recovered the condition that the displacement ξr = −iQr/F
has to be ‘small’ there: the circle is closed.

Inserting the expression (9.144)(a) for Qr , with the solution (9.147) for Qz ,
in the expression for ξr , and transforming the Bessel function derivatives, finally
yields the explicit solution of the marginal equation of motion:

ξr = Cα

B0(α2 − k2)

m(1 − k/α)Jm(βr) + (k/α)βr Jm−1(β r)

m J1(αr) + kr J0(αr)
H(rs − r)

≡ Cα

B0(α2 − k2)

Q̃(m, k/α, αr)

F̃(m, k/α, αr)
H(rs − r) , where β ≡

√
α2 − k2 .

(9.152)

Clearly, it would have been extremely difficult to produce this solution directly
from Newcomb’s equations (9.105)–(9.107). More importantly, we now have the
physical reason of how ‘small’ solutions come about: the skin currents effectively
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produce a wall at the singularity, as illustrated in Fig. 9.7 for the case of a current-
free ‘ghost’ plasma.

(b) Stability analysis and calculation of the growth rates According to Newcomb’s
stability theorem, or the MHD oscillation theorem, the expression (9.152) is to be
studied with respect to the zeros of both ξr (i.e. Qr ) and F . Since both functions are
oscillatory in the relevant parameter domain, this involves a rather subtle analysis,
that was carried out first by Voslamber and Callebaut [241]. Roughly speaking, for
instability, the function Q̃ in the numerator should oscillate faster than the function
F̃ in the denominator, since the zeros of the latter function (in addition to the origin
r = 0 and the wall position r = a) delimit the independent sub-intervals. The first
transition to instability is found when F ∼ k + µm = 0 somewhere (e.g. at the
position indicated by the first dotted line in the top panel of Fig. 9.18) and Qr

also vanishes there, so that it may be chosen to vanish identically to the right
of that point. Hence, at that transition (where ω2 = 0), a kind of block-function
displacement is obtained for ξr .

For most choices of the parameters m, k/α and αr , the expression (9.152) is
not a marginal solution at all. Whereas it satisfies the boundary condition at the
origin, (rξr )|r=0 = 0, only for very specific parameters, the outer boundary con-
dition is satisfied as well, i.e. ξ(a) = 0 when there is no singularity, or ξ(rs) is
‘small’ (i.e. Qr (rs) = 0) when there is a singularity rs < a. (Vice versa, if the ex-
pression in the numerator �= 0 at the wall or at the singularity and one insists on
satisfying the outer boundary condition, one needs to replace that expression by a
linear combination of the Jms and Nms (Bessel functions of the second order, also
called Neumann functions) that has the required property. Of course, the resulting
function ξr will not be a marginal solution either (it will be irregular at r = 0), but
we know how to draw conclusions from its oscillatory behaviour: if it has no other
zero on (0, rs) the sub-interval is stable, if there are zeros it is unstable. Clearly,
there is no advantage to this approach, so that we will stick to the simpler expres-
sion (9.152).) Hence, for an arbitrary choice of parameters, satisfaction of both
the inner and the outer boundary condition will not be obtained and Eq. (9.152) is
just an auxiliary expression from which we may draw the proper conclusions with
respect to stability.

Recall from Section 9.4.1 that only the m = 0 , k → 0 and |m| = 1 modes have
to be investigated to determine stability of a particular configuration. The m =
0 , k → 0 modes are stable since ξr ∼ J1(αr)/J0(αr) in that case, and the first
zero of J0 is smaller than the first zero of J1. Hence, only the |m| = 1 modes need
to be investigated. These are the only unstable modes since their instability is due
to ‘fine-tuning’ of the oscillations of Q̃ and F̃ , which is lost for higher values of
|m|, so that the |m| ≥ 2 modes are stable, even if the |m| = 1 modes are unstable.
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To compute the stability of the m = 1 modes, we define the parameters κ ≡ k/α

and x ≡ αr , and construct the following curves in the x–κ parameter plane:

Q̃(m = 1, κ, x) = 0 ⇒ x = x0(κ) (zeros) ,
(9.153)

F̃(m = 1, κ, x) = 0 ⇒ x = xs(κ) (singularities) .

These curves are very close, they only intersect or touch at three marginally stable
points x (i), κ(i) (i = 1, 2, 3), defined below, and they just leave two tiny patches
of the x–κ plane where x0 < xs . For values of κ in those patches, the critical
wall parameter for marginal stability is xa ≡ αa = x0, and the plasma is unstable
for all xa > x0 (including xa > xs since skin-current stabilization does not work
when x0 < xs). Consequently, the m = 1 modes are unstable in two strips of the
xa–κ plane:

0.272 > κ > 0 , xa > x+(κ)
[

with x (1) < x+(κ) < x(2)
]
,

(9.154)
0 > κ > −0.237 , xa > x−(κ)

[
with x(2) < x−(κ) < x (3)

]
,

where the three limiting values are given by

x(1) ≈ 3.176 , x(2) ≈ 3.832 , x (3) ≈ 4.744 ,
(9.155)

κ(1) ≈ 0.272 , κ(2) = 0 , κ(3) = −0.237 .

At the central point, x (2) = j11 ≈ 3.832 (the first zero of J1), κ(2) = 0 , the func-
tions Q̃ and F̃ coincide (so that ξr becomes a step function) indicating marginal
stability for αa ≥ 3.832 and k = 0 .

Thus, stability of the Lundquist field depends on the two parameters αa and
k/α, and the unstable region with respect to the m = 1 modes falls within the
strip αa > 3.176 , 0.271 > k/α > 0.271 − 0.237. Instability with respect to the
m = −1 modes is governed by similar conditions with the sign of k reversed.
The result is quite reasonable: m = ±1 kink modes are long-wavelength, current
driven, instabilities which occur when the total current (∼ αa) is large enough and
when the longitudinal wavelength (∼ k−1) is large compared to a typical length
scale of the radial inhomogeneity (∼ α−1).

To compute the growth rates of the instabilities of the Lundquist field by means
of the generalized Hain–Lüst equation is significantly simpler than the stability
analysis (granted that a computer program for the solution of this equation has
been written), since the equation is non-singular for ω2 < 0 so that the shooting
method (Section 7.5.1) can be applied. The results of such computations are shown
in Figs. 9.17 and 9.18. In the first figure, the growth rate of the m = 1 kink mode
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Fig. 9.17. Normalized growth rate, −�2 ≡ −(ρ0 R2/B2
0 ) ω2, of the m = 1 kink

mode in a Lundquist field as a function of k/α for several values of αR. (In this
figure, the wall position is indicated by R instead of a.) (From Goedbloed and
Hagebeuk [86].)

is shown for the unstable range of the parameters αa and k/α, found by Voslamber
and Callebaut. Note the typical asymmetry of the growth rate with respect to the
wave number k. The top panel of Fig. 9.18 shows the radial dependence of the
inverse pitch µ of the magnetic field lines for a highly unstable Lundquist field
(when the direction of the field has turned around several times), and two singular
positions k + µm = 0 for a particular choice of the wave numbers. The bottom
panel of this figure shows the eigenfunction of the unstable kink mode for that
case, consisting of two approximately rigid displacements of different amplitude
in the two independent sub-intervals of the marginal stability analysis. Note that
the jumps of the marginal solution (the trial function of the energy principle) have
disappeared for the finite value of −ω2 so that the actual eigenfunction is much
smoother and, hence, more realistic than the trial function. With respect to the nu-
merics, this implies that the computation of the growth rates requires significantly
fewer grid points for the same accuracy of the result.

In conclusion, the stability of the force-free magnetic field configuration with
respect to kink modes is determined by the competition between the destabilizing
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Fig. 9.18. Eigenfunction of the kink mode in a Lundquist field, αR = 8, k/α =
0.2. (In this figure, the wall position is indicated by R instead of a.) Top: inverse
pitch of the field lines, indicating the radial positions of the singularity k + µm =
0 (dotted lines). Bottom: the m = 1 eigenfunction has smoothed out the jumps of
the marginal mode at the singularities. (From Goedbloed and Hagebeuk [86].)

factor of the force-free equilibrium currents and the stabilizing factor of the skin-
current perturbations at the singularities. This turned out to produce a very delicate
balance in the stability analysis, where the force-free current destabilization just
dominates, but only in a very tiny part of parameter space. Of course, this does
not imply that the instabilities are hard to realize (nature immediately finds the
route to the lowest energy state), but it does imply that the growth rates of the
instabilities are significantly lower than they would be in the absence of skin-
current stabilization.

9.4.4 Stability of the ‘straight tokamak’

In this section, we present the energy principle counterpart of the normal-mode
analysis of Section 9.2 for a cylindrical plasma surrounded by vacuum. We depart
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from the extended energy principle of Section 6.6.3 with W = W p + W s + W v ,
where the expressions for the plasma energy W p , the surface energy W s , and the
vacuum energy W v are given by Eqs. (6.157)–(6.159), respectively. The variables
ξ and Q̂ are subject to the boundary conditions (6.161)–(6.163). This general
formalism is applied to the straight tokamak, where a toroidal configuration is
represented by a periodic cylinder of finite length L = 2π R0, so that the volume
element becomes dV = 4π2 R0dr .

Whereas some concepts of the preceding section on force-free fields will return
(like singular trial functions and skin-current stabilization), the tokamak config-
uration is essentially different in two ways: (1) the cylinder has a finite length,
so that only integer values of the longitudinal wave number n = k/R0 need to be
considered; (2) the q-profile is mainly increasing with radius and has a magnitude
of order unity, in contrast to the Lundquist field, where q ≡ (µR0)

−1 is radially
decreasing (even going through zero) and q0 = 2ε(αa)−1 � 1. These two factors
make the stability properties completely different.

(a) Energy expression for a general cylindrical plasma–vacuum configuration
In the expressions of Newcomb’s minimized form (9.104) of the plasma en-
ergy, a boundary term has been dropped (since only internal modes were con-
sidered in Section 9.4.1) that needs to be restored when we also permit external
modes:

W p = 2π2 R0

∫ a

0

(
f0ξ

′2 + g0ξ
2
)

dr − 2π2 R0

[
m2 B2

θ − k2r2 B2
z

m2 + k2r2
ξ2
]

r=a
.

(9.156)

As in Section 6.6.4, Eq. (6.201), inserting back the minimizing solution of the
Euler–Lagrange equation (9.105) into W p yields:

W p = 2π2 R0

[
r3 F2

m2 + k2r2

ξ ′

ξ
− m2 B2

θ − k2r2 B2
z

m2 + k2r2

]
r=a

ξ2(a) , (9.157)

where the logarithmic derivative (ξ ′/ξ)|r=a contains now all the necessary infor-
mation of the plasma interval. The expression for the surface energy becomes

W s = −2π2 R0

[
B̂2

θ − B2
θ

]
r=a

ξ2(a) . (9.158)

As in Section 6.6.4(b), the vacuum energy is obtained by eliminating the vari-
able Q̂z and rearranging the resulting expression to get one positive definite term
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involving Q̂θ :

W v = 2π2 R0

∫ b

a

[
|Q̂r |2 + |Q̂θ |2 + 1

k2r2

∣∣∣(r Q̂r )
′ + im Q̂θ

∣∣∣2 ]r dr

= 2π2 R0

∫ b

a

[ 1

m2 + k2r2

∣∣∣(r Q̂r )
′
∣∣∣2 + |Q̂r |2

+ m2 + k2r2

k2r2

∣∣∣iQ̂θ + m

m2 + k2r2
(r Q̂r )

′
∣∣∣2 ]r dr . (9.159)

Upon minimization, the last term vanishes and the first terms yield the Euler–
Lagrange equation (9.56) with the Bessel function derivative solution (9.59), de-
rived in Section 9.2.2. Inserting this solution again back into W v , and expressing
Q̂r in ξr through the boundary condition (9.51), gives

W v = −2π2 R0

[
r

m2 + k2r2
(r Q̂r )(r Q̂r )

′
]

r=a

= −2π2 R0

[
r3 F̂2

m2 + k2r2

(r Q̂r )
′

r Q̂r

]
r=a

ξ2(a) . (9.160)

Collecting terms provides the general expression for the energy of a cylindrical
plasma–vacuum configuration:

W = 2π2 R0

[
r3 F2

m2 + k2r2

ξ ′

ξ
− m2 B2

θ − k2r2 B2
z

m2 + k2r2
+ B2

θ − B̂2
θ

− r3 F̂2

m2 + k2r2

(r Q̂r )
′

r Q̂r

]
r=a

ξ2(a) , (9.161)

where the logarithmic derivative for ξ is determined by solving the Euler–Lagrange
equation (9.105), and the logarithmic derivative for r Q̂r follows from Eq. (9.59):[

(r Q̂r )
′

Q̂r

]
r=a

= m2 + k2a2

ka

Im(ka)K ′
m(kb) − Km(ka)I ′

m(kb)

I ′
m(ka)K ′

m(kb) − K ′
m(ka)I ′

m(kb)(
≈ −|m|1 + (a/b)2|m|

1 − (a/b)2|m|

)
. (9.162)

The approximation in brackets on the RHS holds for long-wavelength perturba-
tions (k2a2 ∼ k2b2 � m2 ∼ 1), appropriate for the tokamak problem considered
below.

(b) Energy expression for the ‘straight tokamak’ We now construct the leading
order expression for the energy in the low-β tokamak ordering. This ordering
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continues with genuine toroidal contributions in the next orders, see Volume 2. In
the leading order (straight cylindrical) contribution, only the safety factor q enters:

q ≈ 1

µR0
= r Bz

R0 Bθ

≈ B0

R0

r

Bθ

∼ 1 , (9.163)

the longitudinal field Bz ≈ B0, and pressure effects are negligible:

β ≡ 2p0/B2
0 ∼ ε2 � 1 . (9.164)

Hence, to leading order in the low-β tokamak ordering, we may forget about the
cylindrical equilibrium equation (9.3), and just arbitrarily specify either one of the
profiles for q(r), Bθ (r), or the current density

jz(r) = 1

r
(r Bθ )

′ = B0

R0

1

r

(
r2

q

)′
. (9.165)

Next, as in Eq. (9.81), we replace the longitudinal wave number k by the toroidal
mode number n, k ≡ n/R0, and assume both, toroidal and poloidal, mode numbers
to be of order unity:

m ∼ n ∼ 1 ⇒ m2 + k2r2 ≈ m2 , F ≈ B0

R0

(
n + m

q

)
. (9.166)

The expression (9.161) for W then simplifies to:

W = 2π2a2 B2
0

R0

[(
n

m
+ 1

q

)2 rξ ′

ξ
+ n2

m2
− 1

q̂2
−
(

n

m
+ 1

q̂

)2
(r Q̂r )

′

Q̂r

]
r=a

ξ2(a) .

(9.167)

To complete this expression, we need to solve the Euler–Lagrange equation (9.105)
for ξ with the approximations (9.163)–(9.166):

d

dr

[
r3
(

n

m
+ 1

q

)2 dξ

dr

]
− (m2 − 1)r

(
n

m
+ 1

q

)2

ξ = 0 , (9.168)

where q(r) needs to be specified. The equation for r Q̂r simplifies from the Bessel
equation (9.56) to an elementary differential equation that can be solved directly:

d

dr

[
r

d

dr
(r Q̂r )

]
− m2 Q̂r = 0 ⇒ r Q̂r = C

[
(r/b)|m| − (r/b)−|m|

]
,

(9.169)

giving the approximate form of Eq. (9.162) for the logarithmic derivative. Restrict-
ing the analysis to configurations without surface currents now, so that qa = q̂a ,
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the expression for W becomes:

W = 2π2a2 B2
0

R0

[(
n

m
+ 1

q

)2 rξ ′

ξ
+ n2

m2
− 1

q2

+
(

n

m
+ 1

q

)2

|m|1 + (a/b)2|m|

1 − (a/b)2|m|

]
r=a

ξ2(a). (9.170)

Clearly, stability only depends on the profile q(r), the relative wall position b/a
and the mode numbers n and m.

For a flat current profile, jz = const, also q = const so that Eq. (9.168) reduces
to an elementary equation that is easily solved:

(r3ξ ′)′ − (m2 − 1)rξ = 0 ⇒ ξ = r |m|−1 ⇒
(

rξ ′

ξ

)
r=a

= |m| − 1 .

(9.171)
Then,

W = 4π2a2 B2
0

R0

(nq + m) [ nq + m − sg(m)(1 − (a/b)2|m|) ]

|m|q2 (1 − (a/b)2|m|)
, (9.172)

in agreement with the earlier derived expression (9.99) for the growth rates of ex-
ternal kink modes in a constant-pitch magnetic field. Considering negative values
of m only (for n > 0, instability only occurs when m < 0, and vice versa for n < 0
and m > 0), the plasma becomes unstable in the ranges

|m| − 1 + (a/b)2|m|

n
< q <

|m|
n

, (9.173)

that is everywhere when the wall is at infinity. With the wall at a finite distance,
stable windows for q are found, but only for single values of m and n. When all
values of m and n are considered, no stable window of finite size remains: a flat
current profile is unacceptable in a tokamak.

(c) Internal and external kink modes of the ‘straight tokamak’ It remains to solve
Eq. (9.168) for realistic choices of q(r) and to show that stable operating windows
in parameter space can be found. This problem has been solved by Shafranov [207]
in a very satisfactory manner, as we will see. The current profile is now assumed
to be peaked in the centre (r = 0) and to fall off to zero at the plasma boundary
(r = a), so that the q-profile is monotonically increasing:

q0 ≤ q(r) ≤ qa (0 ≤ r ≤ a) . (9.174)

We already know from Section 9.3.2(b), Eq. (9.91), that there is a simple (geomet-
rical) cure for the external |m| = 1 kink instability (which is independent of the
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shape of the current profile), viz. the Kruskal–Shafranov limit:

qa ≡ 2πa2 B0

R0 Iz
> 1 . (9.175)

With this limitation of the total plasma current Iz , we have to determine whether
a reasonable current density profile jz(r) can be found for which the other modes
are stable as well. ‘Reasonable’ here means: a current profile that can be experi-
mentally realized and maintained on the time scale needed for fusion (i.e. many
orders of magnitude longer than the characteristic time scale of these ideal MHD
instabilities!). This leads to further restrictions on the value of q in the centre, q0,
and on the shape of the q-profile.

First, consider the n = 1, |m| = 1 internal kink mode. If q0 < 1 and qa > 1,
there is a singular point in the plasma at r = rs , where q(rs) = 1. According to
Newcomb’s theorem, at such a point, the ‘small’ solution may jump so that we get
the following solution of the Euler–Lagrange equation (9.168):

ξ = C H(rs − r) . (9.176)

Inside the cylinder of radius r = rs the plasma is displaced rigidly with ampli-
tude C , at r = rs the displacement jumps to zero (with a concomitant skin cur-
rent), outside r = rs the displacement vanishes identically. Consequently, the full
expression (9.170) for W vanishes: the internal kink mode is marginally stable
in the ‘straight tokamak’ limit. At this point, one should realize that the ex-
pression (9.170) for W is actually only the leading order expression of the low-
β-tokamak ordering, giving a growth rate −ω2 ∼ ε2 when it is negative; see,
e.g., Eq. (9.99). Exploiting the subscript 2 for this order, the result is a typical one
for singular expansions, viz. that the leading order expression vanishes, W2 = 0, so
that the question immediately becomes: what is the sign of the next order, W4? To
answer that question, genuine toroidal contributions need to be calculated, which
is beyond the present cylindrical analysis. However, the result of the toroidal calcu-
lation can be expressed simply as a condition on the q-profile: W4 > 0 if q0 > 1 .
Accidentally, the same condition is also obtained from a toroidal expansion of the
Mercier criterion [153] for interchange modes in a low-β tokamak with confined
pressure profile (p′ < 0), typically involving mode numbers |m|, |n| � 1. Hence,

q0 > 1 (9.177)

is a condition for stability of the internal kink mode as well as the interchange
modes in a low-β tokamak.

Large-amplitude sawtooth oscillations (oscillations of the central electron tem-
perature with a period of 10–100 msec and leading to periodic loss of plasma con-
finement in the central region) occur in a tokamak when q0 < 1. Hence, it was
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generally believed that the value of q0 can never be smaller than 1 in a tokamak,
until it was finally measured with the necessary precision by Soltwisch [209, 210]
and found to be in the range of 0.73–0.78 in a particular tokamak (TEXTOR)
and since then in many other tokamaks as well! (Precision measurement of the
current profile is still very much needed for laboratory plasmas, and even more
so for astrophysical plasmas, in order for MHD spectroscopy (Section 7.2.4) to
become a mature method to determine the internal characteristics of plasmas.)
Clearly, internal |m| = 1 kink modes (strictly limiting the central value of q to
q0 = 1) should not be considered as a similar threat to tokamak confinement as
the external |m| = 1 kink modes (limiting the boundary value of q to the Kruskal-
Shafranov limit qa = 1). However, since the present section is concerned with the
leading order ideal MHD stability of the ‘straight tokamak’, we will maintain the
condition (9.177) for consistency of the analysis. Satisfying it, for an increasing
q-profile, the Kruskal–Shafranov limit (9.175) is automatically satisfied as well.

Next, consider the external |m| ≥ 2 kink modes. To determine the marginal sta-
bility boundaries, one needs to solve the differential equation (9.168) for ξ and
subject it to the boundary condition(

rξ ′

ξ

)
r=a

= S0 ≡ m − nq

m + nq
− |m|1 + (a/b)2|m|

1 − (a/b)2|m| , (9.178)

obtained from Eq. (9.170) by putting W = 0. This boundary condition brings in
the destabilizing free-boundary motion of the plasma–vacuum interface, as well
as the stabilizing reaction of image currents induced in the conducting wall by the
perturbations. For a flat current distribution, this boundary value problem yields
the unstable windows (9.173): a kind of worst case scenario. To avoid these insta-
bilities, one needs to shape the q-profile, i.e. the current density profile.

For definiteness, we now assume current profile distributions and associated q-
profiles, as investigated by Wesson [243]:

jz = j0(1 − r2/a2)ν ⇒ q = q0
(ν + 1) r2/a2

1 − (1 − r2/a2)ν+1
, q0 = 2B0

R0 j0
.

(9.179)

This provides the necessary minimum number of parameters to fix q0 and the over-
all shape of the q-profile (shear of the magnetic field), qa/q0, expressed by the
parameter ν:

qa/q0 = ν + 1 . (9.180)

As illustrated in the rightmost part of Fig. 9.19, the parameter ν conveniently
ranges from ν = 0 (flat current), through ν = 1 (parabolic current), to ν > 1, cor-
responding to current distributions with an ever smaller gradient at the plasma
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Fig. 9.19. Stability diagram for kink modes for the current distribution j =
j0[1 − (r/a)2]ν , without a conducting wall. The vertical axis measures the peak-
ing of the current as given by qa/q0 (= ν + 1), and the horizontal coordinate is
proportional to 1/qa and therefore the total current. (In this figure, the definition
of q is chosen such that the instabilities have positive m and n.) The n = m = 1
internal kink modes are unstable in the hatched area below the diagonal q0 = 1.
The m = 1 external kink modes are unstable for qa < 1, and the m ≥ 2 external
kink modes are unstable in the upper hatched area. (From Wesson [243].)

boundary. The latter property guarantees stability with respect to the higher-|m|
kink modes. These current profiles also produce a smooth transition from the q-
profile in the plasma to the q̂-profile in the vacuum,

q̂(r) = qa(r/a)2 (a ≤ r ≤ b) , (9.181)

following from Eq. (9.165) with jz = 0.
The expressions (9.179) and (9.181) for the q-profiles permit one to precisely

locate the position of the rational magnetic surfaces for each pair of mode numbers
(m, n),

in the plasma: m + nq(rs) = 0 (0 ≤ rs ≤ a) , (9.182)

in the vacuum: m + nq̂(r̂s) = 0 (a < r̂s ≤ b) . (9.183)

Pairs (m, n) satisfying the condition (9.182), corresponding to a rational surface in
the plasma, give rise to the interchange singularity that has been central to most of
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the stability analysis of the previous sections. In fact, the internal kink mode sta-
bility criterion (9.177) is just the condition for the absence of such a singularity for
the n = 1, m = −1 internal kink mode in a plasma with an increasing q-profile.
Because of the enormous simplification due to the low-β tokamak approximation,
this was the only internal kink mode singularity we had to worry about. On the
other hand, pairs (m, n) satisfying the condition (9.183), corresponding to a ratio-
nal surface in the vacuum, do not give rise to a singularity at all: nothing prevents
vacuum magnetic field lines from breaking and rejoining. (One would have to
bring in the ‘ghost plasma’ of Section 9.2.2(b) to permit the induction of skin cur-
rents on the rational magnetic surfaces of the outer region (which would stabilize
the external kink modes, as illustrated in Fig. 9.10).) It is a direct consequence of
the stability criterion (9.173) (assuming that it is, in fact, the worst case scenario,
which is confirmed by the numerical results) that potentially unstable pairs (m, n)
with respect to external kink modes necessarily correspond to a rational surface in
the vacuum:

qa < |m|/n ≡ q̂(r̂s) . (9.184)

Hence, external kink modes are due to the absence of electrical conductivity of the
outer region, called ‘vacuum’. In a tokamak, such a region is produced by a limiter
scraping off the outer plasma layers.

For the analytically minded, a trace of the influence of the interchange singu-
larity m + nq = 0 is still to be found in the differential equation (9.168) and the
first term of the expression (9.178) for S0. The latter term is positive (destabiliz-
ing) and can be made large (not infinite) by choosing m + nq small (but always
�= 0) so that there is a ‘virtual singularity’ located in the vacuum, but close to the
plasma boundary. By means of analytic continuation of the plasma equations, one
can make a Frobenius expansion around that point, compute the indices, and con-
struct a solution where the large part, involving terms ln(rs − r) and (rs − r)−1,
still dominates at the plasma boundary when rs − a can be made small enough.
Consequently, the logarithmic derivative (rξ ′/ξ)r=a is obtained as a local quan-
tity, depending on derivatives of the current density or the q-profile at the plasma
boundary only. For the equilibrium (9.179), the results of this analysis are as
follows:

(1) if jz(a) �= 0 the plasma is kink unstable for all |m| (this involves extension of the
current density profile with a pedestal, showing that current peaking is not enough);

(2) if ν ≤ 1 the plasma is unstable for any wall position (since the local analysis indicates
instability);

(3) if ν > 1 the plasma is only stable for b < bcrit, where bcrit is to be determined by the
global boundary value problem (in other words: the local analysis fails).
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This analysis is tedious and requires severe testing of the limits of validity. It is
clear that the borders of the kingdom where singularity reigns have been reached
here: analysis is superior to numerics in the presence of singularities, in the absence
of singularities the opposite holds.

In contrast, the numerical solution of the boundary value problem (9.168),
(9.178) for external |m| ≥ 2 kink modes is nearly trivial:

(1) specify a monotonically increasing profile q(r), a relative wall position b/a, and a
mode pair (m, n) satisfying the condition (9.184);

(2) integrate the differential equation (9.168) for ξ from the magnetic axis, where ξ(0) =
0, to the plasma boundary, determine the logarithmic derivative L ≡ (rξ ′/ξ)r=a , and
compare it with the quantity S0 defined in Eq. (9.178):

if L < S0 ⇒ unstable , if L = S0 ⇒ marginal , if L > S0 ⇒ stable ; (9.185)

(3) repeat this process for all pertinent mode pairs (m, n), iterating on the values of the
parameters q0 and qa until L = S0.

The differential equation for ξ is not only non-singular, but also admits no
oscillatory solutions (the coefficients are positive definite). Hence, numerical in-
tegration is extremely fast and accurate. The only issue is the proper bookkeep-
ing of the mode number pairs. Also, once the numerical scheme is established,
extension with the computation of the growth rate of the instabilities is com-
pletely straightforward. This we leave as an exercise for the reader (Exercises [9.5]
and [9.6]).

The stability diagram of Fig. 9.19 is obtained by such a numerical procedure
applied to an equilibrium with the q(r)-profile (9.179). Without the internal kink
mode condition q0 > 1, there is a fairly wide region of parameters where the
|m| ≥ 2 external kink modes are stable, roughly corresponding to a current pro-
file with qa/q0 ∼ 3 (ν ∼ 2) and qa > 2. This confirms the earlier conclusion of
Shafranov [207] that complete stability of the ‘straight tokamak’ may be obtained
if the radial current density profile is sufficiently peaked on axis. Imposing the con-
dition q0 > 1 as well, the stable region becomes significantly smaller, although an
operating region remains (the white, roughly triangular, region), which is, however,
rather hard to control experimentally. It has already been indicated that relaxation
of the internal kink mode condition may not be disastrous, whereas relaxation of
the condition for the higher |m| external kink modes (excluding |m| = 2 and 3)
may just give rise to what is called ‘enhanced MHD activity’. Also, stabilization
by the external wall has not been taken into account in Fig. 9.19. This will slow
down the ideal MHD modes to the resistive skin time of the wall, where feedback
stabilization techniques may be applied.
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To assess the implications of these results for tokamak operation, one should
realize that a number of important effects have not been taken into account here:
(1) the presence of plasma flow in the edge region, (2) the finite conductivity of that
plasma, (3) the influence of β, i.e. of the toroidicity. These are topics, necessarily
involving advanced numerical solution techniques, to be addressed in Volume 2 on
Advanced Magnetohydrodynamics.

9.5 Literature and exercises

Notes on literature

MHD spectral theory of cylindrical plasmas:

– Hain & Lüst [102], in ‘Zur Stabilität zylinder-symmetrischer Plasmakonfiguratio-
nen mit Volumenströmen’, derive an ordinary differential equation to determine the
growth rates of MHD instabilities in diffuse linear pinch configurations.

– Goedbloed [81](II), in ‘Stabilization of magnetohydrodynamic instabilities by force-
free magnetic fields – linear pinch’, rederives the (apparently forgotten) Hain–Lüst
equation, generalizes it to γ �= 1, and applies it to stabilization of external kink modes
by a force-free magnetic field in the outer region.

– Grad [99], in ‘Magnetofluid-dynamic spectrum and low shear stability’, puts the sub-
ject in the context of spectral theory, points out the presence of four types of sin-
gularities (unfortunately associating a continuous spectrum with each of them), and
applies the theory to demonstrate stability of a large class of low-shear systems.

– Appert, Gruber, & Vaclavik [9], in ‘Continuous spectra of a cylindrical magneto-
hydrodynamic equilibrium’, derive the equivalent system of first order differential
equations and demonstrate that the D = 0 singularities are apparent.

MHD stability of cylindrical plasmas:

– Newcomb [164], in ‘Hydromagnetic stability of a diffuse linear pinch’, presents the
classical treatise of the stability of cylindrical plasmas, with a careful exposition of
the techniques needed from variational analysis.

– Voslamber & Callebaut [241], in ‘Stability of force-free magnetic fields’, present a
beautiful example of the subtleties of MHD stability theory applied to the Lundquist
field.

– Shafranov [207], in ‘Hydrodynamic stability of a current-carrying pinch in a strong
longitudinal field’, demonstrates stability of low-β tokamaks with respect to all kink
modes for realistic current distributions.

– Robinson [195], in ‘High-β diffuse pinch configurations’, analyses the different dif-
fuse pinch configurations from the point of view of maximizing β, demonstrating
the favourable properties of the shear profile (opposite to that of the tokamak) of the
reversed field pinch.

– Goedbloed & Hagebeuk [86] numerically solve the generalized Hain–Lüst equation
to obtain the growth rates of instabilities of the Lundquist and constant-pitch mag-
netic fields; Goedbloed & Sakanaka [89] and Sakanaka & Goedbloed [199] continue
to construct the different classes of σ -stable diffuse linear pinch configurations this
way.
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– Freidberg, Ideal Magnetohydrodynamics [72], Chapter 9 on stability of one-
dimensional configurations, presents the MHD stability theory of cylindrical plasmas,
with applications to a variety of experimental fusion devices.

– Wesson, Tokamaks [244], Chapter 6 on MHD stability, contains the essential ele-
ments (with the simple diagrams that are his hallmark) of the review paper [243] on
‘Magnetohydrodynamic stability of tokamaks’.

Exercises

[ 9.1 ] Cylindrical force-free magnetic fields

Force-free magnetic fields, j = αB, with cylindrical symmetry can be fixed in several dif-
ferent ways, viz. by prescribing the function α(r), or µ(r), or B2(r). Each of these quan-
tities has a physical meaning: α is the ratio of the current and the magnetic field, µ is the
inverse pitch of the field lines, and B2 is the magnetic energy density (all disregarding
constant factors). Derive the differential equations for Bz and Bθ for the three cases where
either α(r), or µ(r), or B2(r) is prescribed. Comment on the conditions that have to be
imposed for physical reality and on the advantages and disadvantages of the three pre-
scriptions. Construct as many explicit solutions as you can for either of those cases. (They
are useful as explicit equilibria when you want to check stability calculations.) Also, using
the equilibrium relations, find relations between the three quantities.

[ 9.2 ] Newcomb’s stability equations

Derive Newcomb’s Euler–Lagrange equation, ( f0ξ
′)′ − g0ξ = 0, from the generalized

Hain–Lüst equation, (Pχ ′)′ − Qχ = 0, by inserting the value ω2 = 0 in the latter and
transforming from the variable ξ to χ ≡ rξ . Pay attention to how the derivative term is
transformed (recall that it is associated with the perturbed total pressure).

– Is marginal stability analysis equivalent to the variational analysis associated with the
energy principle? Comment on the role of singularities.

– Derive the one-dimensional form of the energy principle for a cylindrical plasma with
length L and radius a from the Euler–Lagrange equation (i.e. the other way around
with respect to the usual order) and get rid of the boundary terms.

– Expand about a point where F = m Bθ /r + k Bz = 0 and derive Suydam’s local sta-
bility criterion from the indicial equation.

– What type of solution is associated with the violation of Suydam’s criterion? How is
it related to a genuine eigenfunction?

[ 9.3 ] WKB solution of the generalized Hain–Lüst equation

Consider a cylindrical plasma with weak inhomogeneity so that the generalized
Hain–Lüst equation, (Pξ ′)′ − Qχ = 0, can be solved by means of the WKB method.
Writing

χ(r) = p(r) exp
[
i
∫

q(r) dr
]
,

the expressions p(r) and q(r) are determined by requiring that the solution be correct to
leading order in the inhomogeneity. This yields

p ≈ (−P Q)−1/4 , q ≈ (−Q/P)1/2 ,
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where we have to demand that |q L| � 1 in order for the WKB approximation to be valid.
Here, L is the scale length for the inhomogeneities. This yields a local dispersion equation
relating ω2 and the local radial wave number q,

q2 = −Q/P ,

which is a quintic in ω2. (No, this has nothing to do with the fact that the discrete spectrum
consists of five sub-spectra.) This equation may be solved in the neighbourhood of the
Alfvén and slow continua, when these are sufficiently far apart. Show that this gives cluster
spectra of the form

ρω2 ≈ F2 − A

q2 , ρω2 ≈
(

γ p

γ p + B2

)2

F2 − S

q2 .

Determine the expressions A and S. Compare them with the exact expressions for the
cluster conditions of Section 9.3.3 and comment. Discuss the validity of the WKB approx-
imation.

[ 9.4 ] Instabilities of shearless magnetic fields

In Section 9.4.2(b) the pressure-driven instabilities of plasmas with shearless magnetic
fields were analysed. Using the same techniques, investigate the residual instabilities that
occur when the pressure gradient is much smaller, � ≡ a2 p′/(2r2 B2) ∼ ε4. The stability
threshold for these modes can be found from the condition that there should be no real val-
ues of k‖ where marginal stability occurs. Show that this gives the following local criterion
for high-m modes:

p′ >
2B4

θ

rm2 B2
.

For m → ∞, this criterion transforms into Suydam’s criterion for shearless magnetic
fields. For low-m modes, the criterion is much more stringent, in particular when Bθ is
large. Derive the dispersion equation for these modes, called quasi-kink modes. Show that
they are unstable for values of k‖ on only one side of k‖ = 0. Derive the expression for the
maximum growth rate and estimate the time scale.

[ 9.5 ] � Marginal stability of external kink modes in a tokamak

Write a computer program constructing the Wesson diagram of Fig. 9.19 from the bound-
ary value problem (9.168), (9.178) outlined in Section 9.4.4. Use the criterion L = S0 of
Eq. (9.185) to determine the stable regions. Figure out how to iterate on the parameters
such that rapid convergence to marginal stability is obtained.

– When you have obtained agreement with the figure, extend the program with finite
wall positions, b/a = 1.1, 1.2, 1.5, 2.0 . Comment on the results.

– Run the program for ν = 0.5 and try to stabilize by moving the wall in. What
happens? Plot the solution ξ .
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[ 9.6 ] � Growth rates of external kink modes in a tokamak

Assuming ρ = ρ0 = const, and normalizing the eigenvalue ω̄2 ≡ (ρ0 R2
0/B2

0 )ω2, derive
the equation of motion for a ‘straight tokamak’ from the low frequency limit (9.46) of the
generalized Hain–Lüst equation:

d

dr

[
r3
{
(n + m/q)2 − ω̄2

}dξ

dr

]
− (m2 − 1)r

{
(n + m/q)2 − ω̄2

}
ξ = 0 .

Derive the associated plasma–vacuum boundary condition from Eq. (9.60):(
rξ ′

ξ

)
r=a

= S ≡ 1

(n + m/q)2 − ω̄2

[
ω̄2− n2+ m2/q2− (n + m/q)2|m|1 + (a/b)2|m|

1 − (a/b)2|m|

]
.

– Noting that this boundary value problem only requires some additional terms ω̄2 < 0 ,
modify the marginal stability program of the previous exercise to calculate the growth
rates of the external kink modes.

– Pick a reasonable cutoff value for σ 2 ≡ −ω̄2 and construct the σ -stability contour
diagram for that value. What do you conclude from the result?
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Initial value problem and wave damping∗

10.1 Implications of the continuous spectrum�

We now embark on the solution of the initial value problem (IVP) as outlined in
Section 6.3.2. In general, the IVP in ideal MHD arises when one wishes to solve
the equation of motion (6.23), which we now write as

ρ−1F(ξ) − ∂2ξ

∂t2
= 0 , (10.1)

for arbitrary initial values ξi ,

ξ(r; t =0) = ξi (r) . (10.2)

Obviously, the spatial boundary value problem (BVP) must be solved simultane-
ously, but we have sufficiently studied that part of the problem for inhomogeneous
plane slab and cylindrical plasmas in Chapters 7 and 9. In the present chapter, we
wish to investigate how such plasmas evolve in time. What is the role of the in-
tricate MHD spectra derived in the previous chapters? How do the discrete and
continuous parts of those spectra enter the temporal description of an arbitrarily
excited plasma?

The IVP for macroscopic plasmas is a natural analogue of the IVP for micro-
scopic plasmas first (correctly) analysed in 1946 by Landau [136], who derived
the surprising result that electrostatic waves (‘plasma oscillations’), in the ab-
sence of any dissipation mechanism, are damped (Section 2.3.3). The mechanism
is called Landau damping and, since it is associated with a microscopic descrip-
tion in terms of the velocity space distribution function, it was (and still frequently
is) thought that such dissipationless damping processes are restricted to the mi-
croscopic picture. However, in 1971 Sedláček [206] showed that a macroscopic
description of plasma oscillations of a cold plasma also leads to dissipationless
damping, due to inhomogeneity in ordinary space. (Note that Landau damping is

496
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due to the variation of the distribution function, i.e. to inhomogeneity in veloc-
ity space). Next, in 1973 Tataronis and Grossmann [225] showed that ideal MHD
waves actually also exhibit damping, due to spatial inhomogeneities of the plasma.

The bottom line appears to be that, in conservative systems with a continuous
spectrum (whether it concerns a quantum mechanical system of scattering parti-
cles, microscopic plasma oscillations of a collection of charged particles, or macro-
scopic Alfvén waves of a confined plasma), damping of the initial perturbations
occurs through redistribution over the different improper continuum modes. In
plasmas described by MHD, the dissipationless development, on an ideal MHD
time scale, of very localized structures builds up large spatial gradients of the
macroscopic variables that will enormously enhance the genuine dissipation rate
associated with, for example, the resistivity (Section 4.3.1). We will call the ideal
MHD part of this evolution ‘quasi-dissipation’. Its practical consequences for res-
onant wave absorption and heating, in particular for astrophysical plasmas, will
be discussed in Chapter 11. The latter chapter deals with the implications of the
continuous spectrum for systems that are actively excited (i.e. model III of Sec-
tion 4.6.1). In the present chapter, we will deal with the implications of the contin-
uous spectrum for IVP and wave damping for passive systems, left to themselves.

10.2 Initial value problem�

To solve the equation of motion (10.1) with the initial data (10.2), one may exploit
the techniques of forward and inverse Laplace transformation that were already
introduced in Section 6.3, of which we will repeat the necessary equations for con-
venience of reading. The forward Laplace transformation to the complex ω-plane
introduces the initial data in the equations, whereas the inverse Laplace transfor-
mation back to the time domain then has to deal with the special values of ω that
belong to the spectrum. In this manner, the contributions of the different parts of
the spectrum become manifest. The forward Laplace transformation

ξ̂(r; ω) ≡
∫ ∞

0
ξ(r; t) eiωt dt (10.3)

transforms the homogeneous equation (10.1) into the inhomogeneous equation

(ρ−1F + ω2I) · ξ̂(r; ω) = iωξi (r) − ξ̇i (r) ≡ iωX , (10.4)

where the initial displacement ξi and the initial velocity ξ̇i are absorbed in the
definition of the vector X. As compared with Eq. (6.72) of Section 6.3.2, we have
now introduced the more appropriate notation of matrix operators F for the force
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and I for the identity:

F · ξ̂ ≡ F(ξ̂) , I · ξ̂ ≡ I(ξ̂) = ξ̂ . (10.5)

The formal solution of the inhomogeneous equation (10.4) involves the inversion
of the differential operator on the left hand side:

ξ̂(r; ω) = (ρ−1F + ω2I)−1 · iωX(r; ω) . (10.6)

Clearly, the construction of the inverse operator (ρ−1F + ω2I)−1 will be one of the
major tasks of this section. This operator is the resolvent operator for this prob-
lem, which is the most compact expression of the different spectral alternatives,
as we saw in Section 6.3.1. Not surprisingly, since the resolvent operator is the
inverse of a differential operator, it will turn out to be an integral operator involv-
ing Green’s functions. To obtain the actual solution of the IVP, the inverse Laplace
transformation is applied to Eq. (10.6):

ξ(r; t) = 1

2π

∫ iν0+∞

iν0−∞
ξ̂(r; ω) e−iωt dω

= 1

2π

∫
C

(ρ−1F + ω2)−1 · iωX(r; ω)e−iωt dω , (10.7)

as we already saw in Section 6.3.2. Here, judicious deformation of the contour C in
the complex ω-plane (Fig. 6.11) will reveal the characteristic temporal behaviour
of the different contributions of the spectrum.

10.2.1 Reduction to a one-dimensional representation�

Let us now specify the plasma to be a plane gravitating slab, as considered in
Chapter 7. (We follow the highly delayed publication of Goedbloed [85], based
on an unpublished memorandum of 1973, which contained the construction of
the resolvent operator in the apparently singular ranges D = 0 for the analogous
case of cylindrical geometry.) The direction of inhomogeneity is represented by
the x-coordinate and the dependence on the symmetry coordinates y and z may be
eliminated by considering Fourier modes f̂kykz (x; ω) exp i(ky y + kzz), where we
omit the subscripts ky and kz and suppress the exponential factor from now on.
Since the dynamics is strongly guided by the magnetic surfaces (x = const) and
the magnetic field lines in those surfaces, it is again expedient to exploit the field
line projection:

ξ̂ = ξ̂ex − iη̂e⊥ − iζ̂e‖ , X ≡ Xex − iY e⊥ − iZe‖ , (10.8)
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where

ξ̂ ≡ ξ̂x , X ≡ ξi + (i/ω)ξ̇i ,

η̂ ≡ i(Bz ξ̂y − By ξ̂z)/B , Y ≡ ηi + (i/ω)η̇i , (10.9)

ζ̂ ≡ i(By ξ̂y + Bz ξ̂z)/B , Z ≡ ζi + (i/ω)ζ̇i .

Exploiting the same reductions as used in Section 7.3.2 for the derivation of the
wave equation (7.89), this leads to the following representation of the inhomoge-
neous problem (10.4):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d

dx
(γ p + B2)

d

dx
− f 2 B2 + ρω2 d

dx
g(γ p + B2) + gρ ĝ

d

dx
f γ p + fρ ĝ

− g(γ p + B2)
d

dx
+ gρ ĝ − g2(γ p + B2) − f 2 B2 + ρω2 − g f γ p

− f γ p
d

dx
+ f ρ ĝ − f g γ p − f 2γ p + ρω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ̂

η̂

ζ̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= iρω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.10)

Our next task is the inversion of Eq. (10.10), producing the explicit solution of ξ̂

as a function of X as formally expressed by Eq. (10.6).
The elimination of the tangential components η̂ and ζ̂ in terms of ξ̂ and the

initial data takes the following form:

η̂ = Sξ̂ ′ + K ξ̂ + iρω(HY + I Z) ,

ζ̂ = Aξ̂ ′ + L ξ̂ + iρω(I Y + J Z) , (10.11)

where the expressions S, A, K , L correspond to Eqs. (7.90) for the homogeneous
problem:

S ≡ g(b2 + c2)

D
(ω2 − ω2

S) , K ≡ −gĝω2

D
,

A ≡ f c2

D
(ω2 − ω2

A) , L ≡ − f ĝ(ω2 − k2
0b2)

D
, (10.12)
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and new expressions H , I , J enter with the initial data:

H ≡ ω2 − f 2c2

ρD
, I ≡ f gc2

ρD
,

J ≡ ω2 − f 2b2 − g2(b2 + c2)

ρD
. (10.13)

Here, S and A introduce the slow and Alfvén continuum frequencies in the formu-
lation:

ω2
S(x) ≡ f 2 b2c2

b2 + c2
, ω2

A(x) ≡ f 2b2 . (10.14)

The elimination of the tangential components involves the determinant D of the
four lower right corner elements of the matrix of Eq. (10.10):

D(x) ≡ ω4 − k2
0(b

2 + c2) ω2 + k2
0 f 2b2c2 = (ω2 − ω2

s0)(ω
2 − ω2

f 0) , (10.15)

where the notation of the local frequencies,

ω2
s0, f 0 ≡ 1

2k2
0(b2 + c2)

[
1 ±

√
1 − 4 f 2b2c2

k2
0(b2 + c2)2

]
, (10.16)

indicates a relationship to the slow and fast wave motion. This brings the issue
of the nature of the apparent D = 0 singularities into focus. By now, we know
that those frequency ranges do not constitute continuous spectra, in contrast to
the genuine slow and Alfvén continua, {ω2

S(x)} and {ω2
A(x)}. The latter continua

manifest themselves in the numerators of the expressions (10.12) for S and A,
multiplying the derivative ξ̂ ′ in the expressions (10.11) for η̂ and ζ̂ . This is more
decisive for the local dynamics than the apparent D = 0 singularities, which all
turn out to cancel in the final analysis.

Substitution of η̂ and ζ̂ into the normal component of the equation of mo-
tion (10.10) leads to an inhomogeneous differential equation for ξ̂ :

(
P ξ̂ ′)′ − Qξ̂ = R ≡ iω

{
ρX − [ρ(SY + AZ)

]′ + ρ(K Y + L Z)
}

, (10.17)

where

P ≡ N

D
, N (x) ≡ ρ(b2 + c2)(ω2 − ω2

A)(ω2 − ω2
S) ,

Q ≡ −
[

ρ(ω2 − f 2b2) + ρ′ĝ − k2
0ρ ĝ2 ω2 − f 2b2

D
−
{
ρ ĝ

ω2(ω2 − f 2b2)

D

}′ ]
.

(10.18)
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Eq. (10.17) is solved by the integral

ξ̂ (x) =
∫ x2

x1

G(x, x ′)R(x ′) dx ′ , (10.19)

where G(x, x ′) is the Green’s function satisfying the equation

d

dx

[
P(x)

dG(x, x ′)
dx

]
− Q(x) G(x, x ′) = δ(x − x ′) , (10.20)

subject to the boundary conditions

G(x = x1, x ′) = G(x = x2, x ′) = 0 ,
(10.21)

[[G]]x=x ′ = 0 ,

[[
P

∂G

∂x

]]
x=x ′

= 1 .

The double brackets indicate possible jumps: [[ f ]] ≡ limε→0[ f (x = x ′ + ε) −
f (x = x ′ − ε)]. (See Fig. 10.2(a) for an illustration of what the Green’s function
might look like.)

For simplicity, we here consider a slab [x1, x2], assuming that either the inho-
mogeneity of the equilibrium is not too strong or that the slab is thin enough that
the continua {ω2

S} and {ω2
A}, where N = 0, and the ranges {ω2

s0} and {ω2
f 0}, where

D = 0, do not overlap. This is possible since the frequencies are well ordered when
considered for fixed position x :

0 ≤ ω2
S ≤ ω2

s0 ≤ ω2
A ≤ ω2

f 0 ≤ ω2
F = ∞ . (10.22)

Overlapping could hardly be avoided in a cylinder when the origin is included
since ω2

s0 → ω2
S and ω2

f 0 → ∞ there. This does not happen in a plane slab. Hence,

{ω2
f 0} is extremely dependent on the choice of coordinates, which is another clear

indication that the D = 0 singularities cannot represent continuous spectra. How-
ever, this is a detail that is not important for our present purpose.

The Green’s function is built from solutions of the homogeneous equations

(PU ′
i )

′ − QUi = 0 (i = 1, 2) , (10.23)

producing a left component U1(x) satisfying the left boundary condition U1(x1) =
0 and a right component U2(x) satisfying the right boundary condition U2(x2) = 0.
The formal solution of Eq. (10.20) then reads:

G(x, x ′; ω2) = (x, x ′; ω2)

�(ω2)
, (10.24)

where

(x, x ′; ω2)≡U1(x; ω2)U2(x ′; ω2)H(x ′ − x) + U1(x ′; ω2)U2(x; ω2)H(x − x ′) ,

�(ω2)≡ P(x; ω2)
[
U1(x; ω2)U ′

2(x; ω2) − U ′
1(x; ω2)U2(x; ω2)

]
. (10.25)
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For the study of the initial value problem with respect to the response of the Alfvén
and slow continua N (ω2) = 0, the consideration of the logarithmic singularities of
the components U1,2(x) is imperative. They lead to corresponding branch cuts
of  and � when considered as a function of complex ω, due to contributions
like ln(ω2 − ω2

A(x)). The analysis of these singularities is fully analogous to that
of cold plasma oscillations of an inhomogeneous plasma which has been given
in great detail by Sedláček [206]. His analysis explicitly shows that the zeros of
the conjunct �(ω2) constitute the discrete spectrum whereas the branch cuts of 

and � constitute the continuous spectrum. The corresponding analysis for Alfvén
waves has been given by Tataronis [224].

In Sections 10.3 and 10.4, we will consider explicit solutions of the Green’s
function, and their implications for the spectrum, for a highly simplified model.
In the present section, we keep the analysis as general as possible in order to stay
close to the original goal of the paper [85] on which this section is based. This is
to construct the full three-dimensional response for MHD waves in the frequency
range D(ω2) = 0 and to show that no singularities of G occur there other than
possible poles �(ω2) = 0 corresponding to discrete modes. Expansion of the co-
efficients P and Q of Eq. (10.20) in terms of the distance s ≡ x − x0 from an
apparent singularity D(x0) = 0 satisfies the special property (J. M. Greene, un-
published, 1974)

P = P0

s
+ · · · , Q = Q0

s2
+ Q1

s
+ · · · ⇒ Q2

0 − P0 Q1 = 0 , (10.26)

already encountered in Eq. (7.143). This guarantees absence of logarithmic singu-
larities so that the two independent solutions close to the apparent singularity are
both regular:

Us = s2 + · · · , U� = 1 + αs + · · · ,

α ≡ −Q0/P0 =
(

ĝω2

(b2 + c2)(ω2 − ω2
S)

)
0
. (10.27)

Hence, in the mentioned frequency range, there are no logarithmic singularities,
no branch cuts, but an almost forbidding number of occurrences of a vanishing
denominator D in all of the coefficients (10.12)–(10.13). Next, we will show that
this is not only just an apparent obstacle, but even a necessary element in the
response to the genuine continua.

10.2.2 Restoring the three-dimensional picture�

Having solved for the normal response ξ̂ (x), expressed by Eq. (10.19) with the
Green’s function G(x, x ′) given by Eqs. (10.24)–(10.25), it remains to construct
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the tangential response η̂(x), ζ̂ (x) according to Eqs. (10.11). This part of the ana-
lysis is usually underexposed since it does not require the solution of additional
differential equations but just involves the substitution of the normal solutions ob-
tained. However, this part is really the most significant in this case. We first com-
plete the response (10.19) for ξ̂ (x) by partially integrating the derivative term on
the RHS of Eq. (10.17):

ξ̂ = iω
∫ {

G X +
[(

S
∂

∂x ′ + K
)

G

]
Y +

[(
A

∂

∂x ′ + L
)

G

]
Z

}
ρ(x ′) dx ′ .

(10.28)

Here, the functions in the integrand are considered as functions of x ′ and the square
brackets indicate that the derivative ∂/∂x ′ is to be taken on G(x, x ′) only. This ex-
pression reveals two special normal operators, already encountered in Eq. (10.11)
for the tangential components, but now they act on the Green’s function itself:

S̃(x) ≡ S(x)
∂

∂x
+ K (x) ,

Ã(x) ≡ A(x)
∂

∂x
+ L(x) . (10.29)

Eq. (10.28) provides the complete normal response ξ̂ in terms of the initial data X ,
Y , Z . In turn, substitution of this expression in Eqs. (10.11) provides the response
of the tangential components η̂ and ζ̂ in terms of the initial data. The latter involves
the operation of S̃ and Ã on the Green’s function twice in succession.

We now compose the full three-dimensional response:

ξ̂(r; ω2) = iω
∫

dx ′ρ(x ′)G(r, r′; ω2) · X(r′; ω) , (10.30)

where we recall that we have suppressed the Fourier factors providing the depen-
dence on the coordinates y and z and, consequently, also the corresponding factors
in G ∼ δ(y − y′)δ(z − z′) since integration over those coordinates is trivial. In
terms of the field line projection, this response may be written as

(ξ̂ (x), η̂(x), ζ̂ (x))T = iω
∫

dx ′ρ(x ′)G(r, r′; ω2) · (X (x ′), Y (x ′), Z(x ′))T ,

(10.31)
where the Green’s dyadic G is given by

G=

⎛
⎜⎝

1 S̃(x ′) Ã(x ′)

S̃(x) S̃(x)S̃(x ′) S̃(x) Ã(x ′)

Ã(x) Ã(x)S̃(x ′) Ã(x) Ã(x ′)

⎞
⎟⎠G(x, x ′) +

⎛
⎜⎝

0 0 0

0 H(x) I (x)

0 I (x) J (x)

⎞
⎟⎠δ(x − x ′),

(10.32)
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with the one-dimensional Green’s function G(x, x ′) given by Eqs. (10.24)–
(10.25). This provides the three-dimensional response we are looking for but, since
all constituent functions S, A, K , L , H, I, J ∼ 1/D, the representation is full of
apparent singularities. However, we should not lose sight of the essential feature
here, viz. that the operators S̃ and Ã separately ‘kill’ the localized response associ-
ated with large normal derivatives (∂/∂x → ∞), for either one of the two tangen-
tial components, leaving the perpendicular component η̂ as the dominant response
for the Alfvén frequencies ωA and the parallel component ζ̂ as the dominant re-
sponse for the slow frequencies ωS .

With the representation (10.32), we have the key to open up the structure of the
Green’s dyadic G to finally produce the complete three-dimensional response in a
form that is free of apparent singularities and also exhibits the genuine ones. To
that end, we study G in the neighbourhood of the point x = x0 (and x ′ = x ′

0) where
D(x) = 0, of course, exploiting the fact that the constituent functions U1,2(x)

of the one-dimensional Green’s function G(x, x ′) are regular there, according to
Eqs. (10.27). We now transform to a three-dimensional picture exploiting solution
vectors U1,2(x) with components

(
U1,2, V1,2, W1,2

)
, where the tangential compo-

nents satisfy the homogeneous counterparts of Eqs. (10.11):

V1,2(x) ≡ S̃(x)U1,2 ,

W1,2(x) ≡ Ã(x)U1,2 . (10.33)

In the neighbourhood of x = x0 we then have

U = CsUs + C�U� = Cs(s
2 + · · ·) + C�(1 + αs + · · ·) ,

V ≡ S̃U = Cs(2Ss + K s2 + · · ·) + C�(Sα + K + · · ·) ,

W ≡ ÃU = Cs(2As + Ls2 + · · ·) + C�(Aα + L + · · ·) , (10.34)

where the leading order terms are all finite due to the equalities(
K/S

)
0 = (L/A

)
0 = −α . (10.35)

Hence, the operators S̃ and Ã produce the finite expressions (10.34) for V1,2 and
W1,2, which may then be used to define the three-dimensional generalization of
the function (x, x ′; ω2) defined in Eq. (10.25):

U V (x, x ′; ω2) ≡ U1(x; ω2)V2(x ′; ω2)H(x ′ − x)

+ V1(x ′; ω2)U2(x; ω2)H(x − x ′) , (10.36)

and analogous definitions for U W , V U , etc. Note that UU ≡  as defined by
Eq. (10.25).
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With the definitions (10.36) of the s, the different linear contributions to the
Green’s dyadic G given in Eq. (10.32) may be decomposed as follows:

S̃(x)(x, x ′) =
[

S̃U1(x)
]
U2(x ′)H(x ′ − x) + U1(x ′)

[
S̃U2(x)

]
H(x − x ′)

≡ V1(x)U2(x ′)H(x ′ − x) + U1(x ′)V2(x)H(x − x ′) ≡ V U (x, x ′) ,

S̃(x ′)(x, x ′) ≡ U V (x, x ′) , etc. (10.37)

Here, the square brackets are put around the first factor only because operation
of the normal derivatives on the Heaviside functions does not produce additional
terms since G is continuous according to the boundary conditions (10.21)(a).
However, the boundary conditions (10.21)(b) show that the derivative of G is not
continuous, so that the quadratic contributions to the Green’s dyadic produce de-
compositions with additional δ-functions:

S̃(x)S̃(x ′)(x, x ′) =
[

S̃U1(x)
][

S̃U2(x ′)
]

H(x ′ − x) +
[

S̃U1(x ′)
]

×
[

S̃U2(x)
]

H(x − x ′) − S2
(

U ′
1U2 − U1U ′

2

)
δ(x − x ′)

≡ V V (x, x ′) − (S2/P)� δ(x − x ′) ,

S̃(x) Ã(x ′)(x, x ′) = V W (x, x ′) − (S A/P)� δ(x − x ′) ,

Ã(x)S̃(x ′)(x, x ′) = W V (x, x ′) − (S A/P)� δ(x − x ′) ,

Ã(x) Ã(x ′)(x, x ′) = W W (x, x ′) − (A2/P)� δ(x − x ′) . (10.38)

The δ-function contributions combine with those already present in the second
matrix of Eq. (10.32) according to the equalities

− S2

P
+ H = 1

ρ(ω2 − ω2
A)

, − S A

P
+ I = 0 , − A2

P
+ J = 1

ρ(ω2 − ω2
S)

.

(10.39)

Now, insert the expressions (10.37)–(10.39) into Eq. (10.32) for G and watch the
miracle happen:

G(x, x ′; ω2) = 1

�(ω2)

⎛
⎜⎝

UU U V U W

V U V V V W

WU W V W W

⎞
⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0
δ(x − x ′)

ρ(ω2 − ω2
A)

0

0 0
δ(x − x ′)

ρ(ω2 − ω2
S)

⎞
⎟⎟⎟⎟⎟⎠ . (10.40)
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Since the s defined in Eq. (10.36) are all finite for D = 0, this representation
is manifestly free of apparent singularities. More importantly, in addition to the
implicit presence in the branch cuts of the s and �, the genuine Alfvén and slow
singularities N = 0 are now distinctly present on the diagonal. Starting from this
dyadic form of G, the resolution of the identity, the expansion in eigenfunctions,
and the question of completeness of the MHD spectrum can be established, in
analogy with the analysis of Sedláček [206].

We have now completed the construction of the resolvent operator (F +
ρω2I)−1 connecting the Laplace transformed variable ξ̂ with the initial data X,

ξ̂ = (F + ρω2I)−1 · iρωX , (10.41)

explicitly given by Eq. (10.30) involving the Green’s dyadic G as given by
Eq. (10.40). The solution of the initial value problem involves the inverse Laplace
transform:

ξ(r; t) = 1

2π

∫ iν0+∞

iν0−∞
ξ̂(r; ω) e−iωt dω

= 1

2π

∫
C

dω e−iωt
∫ x2

x1

dx ′ρ(x ′)G(r, r′; ω2) · [iωξi (x ′) − ξ̇i (x ′)
]
.

(10.42)

The integration contour of Figs. 6.10 and 6.11 is to be placed above the largest
point eigenvalue iνmax (i.e. ν0 > νmax) of F. Upon deformation of this contour
branch cuts of the s and �, corresponding to the Alfvén and slow continua
{±ωA} and {±ωS} and zeros of �, corresponding to the different discrete modes,
are encountered.

The explicit evaluation of the integrals in Eq. (10.42) requires the specification
of an equilibrium and initial data. For example, equilibria with a steep gradient
in the Alfvén frequency exhibit damping of Alfvén waves [225] which may be
described by deforming the integration contour off the principal Riemann sheet
across the branch cuts to another Riemann sheet where poles corresponding to
quasi-modes may be encountered (see Section 10.3). Thus the great example of
Landau’s prescription of handling the poles in plasma kinetic theory [136] can
be applied to ideal MHD theory as well. Preparation of special initial data, sin-
gling out the δ-functions of Eq. (10.40), leads to improper Alfvén and slow modes
where a single magnetic surface oscillates with the frequency ωA or ωS . This is
the analogue of the Van Kampen modes [237] for ideal MHD. Consequently, the
phenomena of damping and singular oscillation are exclusively associated with
the genuine N = 0 singularities, corresponding to local perturbations (large ‘wave
numbers’) which rapidly vary in the direction of inhomogeneity.
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Once more: the D = 0 singularities are apparent, not genuine, and correspond
in an average sense to the global slow and fast discrete modes in the turning point
frequency ranges {ωs0} and {ω f 0}. They just complicate the analysis of the discrete
modes with respect to their monotonicity properties (as described by the oscilla-
tion theorem of Section 7.4.4) since they usually overlap with the genuine N = 0
continua. However, there is no place for additional continua besides the slow and
Alfvén continua, except for the cluster point ω2

F = ∞ which provides the asymp-
totic behaviour of the localized fast modes for large ‘wave numbers’. In that sense,
there are three continua [82] in ideal MHD. They correspond to the slow, Alfvén
and fast degrees of freedom. This structure is already present in homogeneous plas-
mas. Inhomogeneity, in e.g. cylindrical and toroidal geometry, extends this struc-
ture by quite a number of additional important features, but it does not change the
fundamental number of degrees of freedom: the threefold ideal MHD spectrum is
complete!

10.3 Damping of Alfvén waves�

In principle, the initial value problem has now been solved. However, this solution
consists of the simultaneous evolution of all the MHD modes. In order not to get
lost by all formal generalities, let us now concentrate on the important features.
To that end, we make some simplifying assumptions to the effect that the three
sub-spectra become widely separated. We may then study the separate influence
of one sub-spectrum, in this case the Alfvén continuum.

For the study of the Alfvén continuum by itself, we may ignore the gravitational
acceleration terms. We also assume the density to be constant and the magnetic
field B to be uni-directional, so that the functions f and g become constant wave
numbers:

f = k‖ , g = k⊥ . (10.43)

Next, we consider a low-β plasma ( β ≡ 2p/B2 ) , so that

c2 � b2 . (10.44)

This assumption separates the slow from the Alfvén modes:

ω2
S ≈ k2

‖c2 ≈ ω2
s0 � ω2

A = k2
‖b2 . (10.45)

In order to separate off the influence of the fast modes as well (Fig. 10.1) we
concentrate our study on nearly perpendicular propagation:

k‖ � k⊥ ≈ k0 , (10.46)
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Fig. 10.1. Separation of the three frequency ranges.

so that

ω2
A = k2

‖b2 � ω2
f 0 ≈ k2

0b2 . (10.47)

Under these conditions, there is no parallel motion to leading order, ζ̂ = Z =
0 , so that Eq. (10.10) simplifies to⎛
⎜⎝

d

dx
b2 d

dx
− k2

‖b2 + ω2 d

dx
k⊥b2

−k⊥b2 d

dx
−k2

⊥b2 − k2
‖b2 + ω2

⎞
⎟⎠
(

ξ̂

η̂

)
= iω

⎛
⎝ X

Y

⎞
⎠ . (10.48)

Only transverse motion needs to be studied. In this equation we have kept terms of
unequal order in k‖ and k⊥ because large terms cancel upon elimination of η̂ . After
elimination we keep terms of comparable order only, resulting in the following
equations:

− 1

k2
0

[
(ω2 − ω2

A) ξ̂ ′
]′ + (ω2 − ω2

A) ξ̂ = iω

(
X + 1

k0
Y ′
)

, (10.49)

η̂ = − 1

k0
ξ̂ ′ − iω

Y

k2
0b2

, (10.50)

where all equilibrium variations are expressed by the Alfvén frequency,

ω2
A = ω2

A(x) = k2
‖b2(x) . (10.51)

Introducing the short-hand notation

P(x; ω2) ≡ −ρ(ω2 − ω2
A)/k2

0 ,

Q(x; ω2) ≡ −ρ(ω2 − ω2
A) , (10.52)

R(x; ω2) ≡ iρω
(

X + Y ′/k0

)
,

the inhomogeneous second order differential equation (10.49) may be written as

(P ξ̂ ′)′ − Q ξ̂ = R . (10.53)

Of course, the basic equation is of the same form as the general equation (10.17)
so that the solution ξ̂ (x) may be represented by the integral (10.19) involving a
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Green’s function G(x, x ′) which is a solution of the differential equation (10.20)
subject to the boundary conditions (10.21).

10.3.1 Green’s function�

The inhomogeneous equation (10.20) allows for a unique solution for the Green’s
function (Fig. 10.2(a)) when the homogeneous equation does not have a non-trivial
solution (Fredholm alternative). Proper and improper solutions of the homoge-
neous equation (Figs. 10.2(b) and (c)) occur for values of ω2 inside the spec-
trum, which is confined to the real ω2-axis, so that we certainly have a unique
Green’s function for complex values of ω on the Laplace contour. The procedure
is then to construct the Green’s function for complex values of ω2 where exis-
tence is guaranteed and to deform the contour in such a way that the spectrum is
approached.

x1 x2

x

G (x,x';ω  )2

x'

x1 x2

x

ξ   (x)n

x1 x2

x

ξ   (x;ω  )A
2

x  (ω  )A
2

a

b

c

Fig. 10.2. (a) Green’s function for ω2 ∈ {ω2
A(x), ω2

n} ; (b) proper eigenfunction
for ω2 = ω2

n ; (c) improper eigenfunction for ω2 ∈ {ω2
A(x)} .
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As in Section 10.2.1, the symmetric expression for G(x, x ′; ω2) is found in
terms of the fundamental solutions U1(x; ω2) and U2(x; ω2) of the homogeneous
equation satisfying the left and right boundary conditions, respectively:

(PU1
′)′ − Q U1 = 0 , U1(x1) = 0 ,

(PU2
′)′ − Q U2 = 0 , U2(x2) = 0 . (10.54)

In terms of these functions one finds for the Green’s function:

G(x, x ′; ω2) = (x, x ′; ω2)

�(ω2)
, (10.55)

where

(x, x ′; ω2)≡ U1(x<; ω2)U2(x>; ω2) (10.56)

= U1(x; ω2)U2(x ′; ω2)H(x ′ − x) + U1(x ′; ω2)U2(x; ω2)H(x − x ′),

�(ω2)≡ P(x; ω2)
[
U1(x; ω2)U ′

2(x; ω2) − U ′
1(x; ω2)U2(x; ω2)

]
. (10.57)

Here, we have introduced the notation

x< ≡ inf(x, x ′) , x> ≡ sup(x, x ′) . (10.58)

The expression inside the square brackets in the definition of � is recognized as
the Wronskian. By means of Eqs. (10.54) one proves

∂�

∂x
= P ′(U1U ′

2 − U ′
1U2) + P (U1U ′′

2 − U ′′
1 U2)

= U1(PU2
′)′ − U2(PU1

′)′ = Q U1U2 − Q U2U1 = 0 , (10.59)

so that � = �(x) . For eigenfunctions, the solution of the homogeneous equation
satisfies both left and right boundary conditions, so that U1 = U2 . In that case
�(ω2) = 0 . For that reason, �(ω2) is called the dispersion function.

Let us again specify the profile ω2
A = ω2

A(x) to be monotonically increasing
on the interval (x1, x2) , as in Section 7.4, and construct the inverse profile xA =
xA(ω2). For example, for a simple linear profile (Fig. 10.3) the explicit functions
would read:

ω2
A(x) = ω2

0(x) + ω2
A

′
(x − x0) , ω2

0 ≡ 1
2 (ω2

A1 + ω2
A2) ,

(10.60)
x A(ω2) = x0 + (ω2 − ω2

0)/ω
2
A

′
, x0 ≡ 1

2 (x1 + x2) .

In Section 7.4 we expanded around the singularity x = xA(ω2) of Eq. (10.60)
in terms of the variable s = x − xA(ω2) . Here, ω2 is complex so that the corre-
sponding singularity of Eq. (10.54) occurs in the complex z-plane for z = z A(ω2)

(see Fig. 10.4) where zA(ω2) is the analytic continuation of x A(ω2) . For the linear



10.3 Damping of Alfvén waves� 511

ω 2

xA(ω  )2
x1 x2

ω 2
A1

b ω 2
A2

x
x1

ω 2
A(x)

x2

ω 2
A2

a

ω 2
A1

Fig. 10.3. Inversion of ω2
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A(x) for linear profiles.
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Fig. 10.4. Analytic continuation of xA(ω2) .

profile the explicit expression for z A(ω2) would be

z A(ω2) = x0 + (ω2 − ω2
0)/ω

2
A

′
. (10.61)

Introducing a complex variable ζ replacing s,

ζ = ζ(x; ω2) ≡ x − z A(ω2) , (10.62)

the solutions U1 and U2 of the equations (10.54) may be expressed as a linear
combination of the functions { u(ζ )

u(ζ ) ln ζ + v(ζ ), (10.63)

where u(ζ ) and v(ζ ) are the analytic continuations of the functions u(s) and v(s)
introduced in Eq. (7.140), which may be written as a power series in ζ : u = a +
bζ + · · · , and similarly for v. Hence,

U1(ζ ) =
[

ln
ζ(x; ω2)

ζ1(ω2)
− v1(ω

2)

u1(ω2)

]
u(ζ ; ω2) + v(ζ ; ω2) ,

U2(ζ ) =
[

ln
ζ(x; ω2)

ζ2(ω2)
− v2(ω

2)

u2(ω2)

]
u(ζ ; ω2) + v(ζ ; ω2) . (10.64)
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Substituting these expressions into Eq. (10.55) provides us with the formal solution
of the Green’s function:

G(x, x ′; ω2) =
{[

ln
ω2 − ω2

A(x<)

ω2 − ω2
A1

− v1(ω
2)

u1(ω2)

]
u(x<; ω2) + v(x<; ω2)

}

×
{[

ln
ω2 − ω2

A(x>)

ω2 − ω2
A2

− v2(ω
2)

u2(ω2)

]
u(x>; ω2) + v(x>; ω2)

}
/[

ln
ω2 − ω2

A2

ω2 − ω2
A1

− v1(ω
2)

u1(ω2)
+ v2(ω

2)

u2(ω2)

]
. (10.65)

Here, the logarithmic expression in terms of ζ has been converted into the more
transparent form in terms of ω2 − ω2

A(x) by means of the relation

ζ = x − zA(ω2) = −(ω2 − ω2
A(x))/ω2

A
′
, (10.66)

which is, strictly speaking, only valid for the linear profile. However, for an ar-
bitrary monotonically increasing profile Eq. (10.65) is also valid if the func-
tions u and v are redefined such that the expressions for the basic solutions are
written as {

u(ω2 − ω2
A(x))

u(ω2 − ω2
A(x)) ln(ω2 − ω2

A(x)) + v(x; ω2) (10.67)

instead of Eq. (10.63). Clearly, for the derivation of the expression (10.65) of the
Green’s function no other property has been used than the fact that ω2

A(x) is a
monotonic function and that the slow continuum is far away so that we are dealing
with only one singularity at a time.

10.3.2 Spectral cuts�

For the completion of the initial value problem we now need to study the behaviour
of the Green’s function when ω approaches the spectrum. We have already seen
that the zeros of the denominator �(ω2) represent the discrete spectrum. The con-
tinuous spectrum arises as a result of the multi-valuedness of the logarithmic terms
appearing in both (x, x ′; ω2) and �(ω2) . In order to make these logarithmic
terms single-valued one needs to cut the complex ω-plane along branch cuts that
precisely correspond to the continuous spectra ±{ωA(x)} , as we will see.

In order to make a logarithmic function ln z single-valued one may cut the
z-plane along any curve starting at the branch point z = 0 and extending to ∞ .
Let us choose the negative real axis as a branch cut (Fig. 10.5). Along this branch
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Fig. 10.5. Branch cut for ln z .

cut one may write

lim
y→0±

ln z = ln |z| ± π i (10.68)

(on the principal, n = 0, Riemann sheet), where +π i is the value immediately
above the branch cut and −π i immediately below. If one wishes to deform a con-
tour across a branch cut one moves to another Riemann sheet of the logarithmic
function. These sheets are labelled by n, and the logarithmic function increases by
an amount 2π i every time one encircles the branch point and moves to the next Rie-
mann sheet. Therefore, the general expression for the logarithmic function when
approaching the real axis may be written as

lim
y→0±

ln z = ln |x | ± π iH(−x) + 2nπ i , (10.69)

where the jump of the Heaviside function occurs at the branch point. Accordingly,
for complex values of ω = Re ω + iν , one may write for a logarithmic expression
of the type ln[(ω2 − ω2

β)/(ω2 − ω2
α)] when approaching the real axis:

lim
ν→0±

ln
ω2 − ω2

β

ω2 − ω2
α

= ln

∣∣∣∣ω
2 − ω2

β

ω2 − ω2
α

∣∣∣∣
± iπ

[
H(ω − ωα) − H(ω − ωβ) − H(ω + ωα) + H(ω + ωβ)

]
+ 2nπ i.

(10.70)

Hence, assuming ω2
β > ω2

α , the branch cuts and jumps are as indicated in
Fig. 10.6. Here, we have indicated how one moves from the principal sheet to
the n = 1 and n = −1 sheets when crossing the branch cuts.

On the basis of the expression (10.67) we find that the function (x, x ′; ω2)

has branch points ω2
A<

≡ ω2
A(x<) , ω2

A>
≡ ω2

A(x>) , ω2
A1 , and ω2

A2 , whereas the
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Fig. 10.7. Branch cuts for: (a) numerator, and (b) denominator of the Green’s
function.

function �(ω2) only has branch points at ω2
A1 and ω2

A2 . One may connect these
branch points as indicated in Fig. 10.7. For the Green’s function G = /� these
branch points should be joined. One may do this by choosing the branch cuts for
� differently, so that the Laplace contour C may be deformed to a contour C ′ as
shown in Fig. 10.8 (see Sedláček [206]). This clearly shows that the contribution
of the continuous spectrum is due to the jump in the logarithmic function along the
branch cuts.

Let us now calculate the typical contributions of the spectral cuts to the solution
of the initial value problem. Take special initial data: ξi (x) = 0 , ξ̇i (x) = ηi (x) =
η̇i (x) = 0 . The solution of the initial value problem can then be written from the
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Fig. 10.8. Laplace contours for the Green’s function G(x, x ′; ω2) ≡
(x, x ′; ω2)/�(ω2) .

Eqs. (10.1), (10.50) and (10.19) as:

ξ(x; t) = 1

2π

∫
C

dω
iω

�(ω2)
e−iωt

∫ x2

x1

dx ′ (x, x ′; ω2)ξi (x ′) ,

(10.71)

η(x; t) = − 1

k0

∂

∂x
ξ(x; t) .

From Eq. (10.70) one then finds as the typical contribution from a jump of the
logarithmic function at some real frequency ωα:

ξ(t) ∼
∫

C
iωe−iωt H(ω − ωα) dω = −

∫
C

ω
∂

∂ω

(e−iωt

t

)
H(ω − ωα) dω

=
∫

C

e−iωt

t
H(ω − ωα) dω +

∫
C

ω
e−iωt

t
δ(ω − ωα) dω . (10.72)

Asymptotically, the first integral may be neglected because the rapidly oscillating
integrand kills this contribution for large t . Thus, as shown by Tataronis [224], the
asymptotic behaviour in time of the Alfvén continuum modes is given by:

ξ(t) ∼ ωα

t
e−iωα t , η(t) ∼ −i

ωαω′
α

k0
e−iωα t . (10.73)

Consequently, the continuous spectrum of Alfvén modes yields oscillatory normal
components that are damped like t−1 and undamped oscillatory tangential com-
ponents, perpendicular to the field lines, where each point oscillates with its own
local Alfvén frequency. As time goes on, the factor exp(−iωαt) gives rise to an
ever more fluctuating spatial structure of the motion, finally resulting in completely
uncoordinated oscillations, which is called phase mixing. In this way, large spatial
gradients are built up so that, eventually, dissipative effects lead to dissipation of
the energy of the continuum modes and heating of the plasma (see Chapter 11).
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10.4 Quasi-modes�

In contrast to the situation just described, another kind of motion exists that dis-
plays coherent oscillations. To exhibit this, let us start with a profile ω2

A(x) that
has a step discontinuity at some value of x , say in the middle of the slab at
x = x0 ≡ 1

2(x1 + x2) (Fig. 10.9). The singularities of the continuous spectrum
ω2

A1 ≤ ω2 ≤ ω2
A2 are now all concentrated in the point x = x0 . This gives rise to

a special mode which is called a surface mode. It may be found from the homoge-
neous equation corresponding to Eq. (10.49):

1

k2
0

[
(ω2 − ω2

A)ξ ′
]′ − (ω2 − ω2

A)ξ = 0 , (10.74)

where ω2
A(x) = ω2

A1 H(x0 − x) + ω2
A2 H(x0 − x) . On the left and right intervals

x1 ≤ x < x0 and x0 ≤ x < x2 this equation reduces to

ξ ′′ − k2
0ξ = 0 , (10.75)

having the solutions exp(k0x) and exp(−k0x) , when ω2 = ω2
A1 and ω2 = ω2

A2 ,
respectively. The solution ξ1 = sinh[k0(x − x1)] satisfying the left hand bound-
ary condition may be combined with the solution ξ2 = sinh[k0(x2 − x)] satisfying
the right hand boundary condition to form a cusp-shaped perturbation which is an
eigenfunction of the system (Fig. 10.10). That this is so may be seen by apply-
ing the proper boundary condition to join ξ1 to ξ2 . This condition is found from
Eq. (10.74) by integrating across the jump:∫ x+

0

x−
0

{[
ω2 − ω2

A1 H(x0 − x) − ω2
A2 H(x − x0)

]
ξ ′
}′

dx

= (ω2 − ω2
A1)ξ

′
1 − (ω2 − ω2

A2)ξ
′
2 = 0 ,

or [[
(ω2 − ω2

A)ξ ′
]]

x=x0
= 0 . (10.76)

x1 x2

x
x

0

ω2
A2

ω2
A1

Fig. 10.9. Step discontinuity of the Alfvén frequency.
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Fig. 10.11. Smoothing the discontinuity.

This condition is fulfilled for ω2 = ω2
0 ≡ 1

2 (ω2
A1 + ω2

A2) , which is the eigenfre-
quency of the cusped surface wave.

10.4.1 Dispersion equation�

Let us now remove the degeneracy of the step and introduce a genuine contin-
uum by smoothing out the discontinuity (Fig. 10.11). This we do by replacing
the step by a linearly increasing profile between x = −a and x = a , where we
have fixed x0 = 0 . For simplicity, we also take x1 → −∞ and x2 → +∞ . The
spectrum of the system then changes as shown in Fig. 10.12. Notice that for the
stepped and the continuous profile there are also infinitely many discrete Alfvén
modes with eigenfrequencies ω = ±ωA1 and ω = ±ωA2 . These are localized on
the left and the right homogeneous intervals, respectively (Fig. 10.13). That this
is so may be seen from Eq. (10.74) by pulling out the factor ω2 − ω2

A which is
constant on the homogeneous intervals:

(ω2 − ω2
A)(ξ ′′ − k2

0ξ) = 0 . (10.77)

Hence, for ω2 = ω2
A1 on the left homogeneous interval ξ may be chosen arbi-

trarily. Each choice of this function is a proper Alfvén eigenfunction. Likewise,
for ω2 = ω2

A2 on the right interval. However, here we wish to concentrate on the
influence of the inhomogeneity. In particular, we want to see what happened to
the surface wave by the introduction of the linear profile. Does the appearance
of a continuous spectrum imply that all of a sudden the coherent oscillations of
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Fig. 10.12. Change of the spectrum due to smoothing.
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Fig. 10.13. Alfvén modes localized left and right of the inhomogeneity.

the surface wave have disappeared to make place for the kind of chaotic response
expressed by Eq. (10.73)? This is hard to believe.

We already noticed that the discrete spectrum comes about from the poles of
the Green’s function, i.e. the zeros of the dispersion function �(ω2) . Let us,
therefore, study the expression �(ω2) for the present case. To that end, we need
the explicit solutions U1 and U2 to the homogeneous equations (10.54) on the
three intervals (−∞, −a) , (−a, a) and (a, ∞) . The virtue of the choice of a lin-
ear profile on (−a, a) is that the homogeneous equation for this interval may be
written as

d

dζ
ζ

dU1

dζ
− k2

0ζ U1 = 0 , ζ ≡ −2a
ω2 − ω2

A(x)

ω2
A2 − ω2

A1

, (10.78)

so that we obtain modified Bessel functions of complex argument as solutions:

U1, U2 =
{

I0(kζ ) = 1 + 1
4(k0ζ )2 + · · ·

K0(k0ζ ) = −(ln 1
2 k0ζ + γ )I0(k0ζ ) + 1

4 (k0ζ )2 + · · · , (10.79)

where γ ≈ 0.577 is Euler’s constant.
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Consequently, the following solutions are obtained:

U1 =

⎧⎪⎨
⎪⎩

ek0x

A1 I0(k0ζ )+B1 K0(k0ζ )

C1ek0x+D1e−k0x

, U2 =

⎧⎪⎨
⎪⎩

C2ek0x+D2e−k0x (−∞, −a)

A2 I0(k0ζ )+B2K0(k0ζ ) (−a, a)

e−k0x (a, ∞).

(10.80)

The constants A1,2 , B1,2 , C1,2 and D1,2 are fixed by equating functions and first
derivatives at the boundaries of the intervals. For the calculation of �(ω2) we
actually only need to compute A1,2 and B1,2 because �(ω2) is independent of x ,
so that we may choose to evaluate it in the inhomogeneous layer. The solutions U1

and U2 on (−a, a) read:

U1 = k0ζ1e−k0a
{[

K0(k0ζ1) + K1(k0ζ1)
]

I0(k0ζ )

−
[

I0(k0ζ1) − I1(k0ζ1)
]

K0(k0ζ )

}
,

U2 = − k0ζ2e−k0a
{[

K0(k0ζ2) + K1(k0ζ2)
]

I0(k0ζ )

−
[

I0(k0ζ2) + I1(k0ζ2)
]

K0(k0ζ )

}
, (10.81)

where

ζ1,2 ≡ −2a (ω2 − ω2
A1,2)/(ω

2
A2 − ω2

A1) . (10.82)

Inserting these solutions into the dispersion function we find

� = P(U1U ′
2 − U ′

1U2)

= Cζ1ζ2

{[
I0(k0ζ1) − I1(k0ζ1)

][
K0(k0ζ2) − K1(k0ζ2)

]

−
[

K0(k0ζ1) + K1(k0ζ1)
][

I0(k0ζ2) + I1(k0ζ2)
]}

, (10.83)

where C is a constant that is not important for the present purpose. To obtain
Eq. (10.83) we have used the property z[I0(z)K1(z) + I1(z)K0(z)] = 1 .

The dispersion equation is given by

�(ω2) = 0 . (10.84)

Note that the two trivial solutions ζ1 = 0 and ζ2 = 0 on the homogeneous inter-
vals, corresponding to the two discrete eigenvalues ω2 = ω2

A1 and ω2 = ω2
A2 , are

not contained in this dispersion equation because the factors ζ1 and ζ2 cancel out
against the singularities of the exponential Bessel functions.
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10.4.2 Exponential damping�

Let us now investigate whether some more solutions exist, hopefully correspond-
ing to the surface wave solution of the step function model. To that end we study
a situation where the continuous profile is close to the step function model, i.e.,
a is considered to be small. Since the other intervals are infinite, the only scale to
compare a with is the perpendicular wavelength k−1

0 . Hence, we assume k0a � 1
and expand Eq. (10.84) in orders of k0a . By means of the expansions (10.79) of
the Bessel functions we find to leading order

ln
ζ2

ζ1
+ 1

k0

(
1

ζ1
+ 1

ζ2

)
= 0 , (10.85)

or

ln
ω2 − ω2

A2

ω2 − ω2
A1

− ω2
A2 − ω2

A1

2k0a

[
1

ω2 − ω2
A1

+ 1

ω2 − ω2
A2

]
= 0 . (10.86)

Let us now study this expression in the neighbourhood of the real axis so that
ν � ω . We then have from Eq. (10.70) for ω in the range of the continua:

ln
ω2 − ω2

A2

ω2 − ω2
A1

≈ ln

∣∣∣∣ω2 − ω2
A2

ω2 − ω2
A1

∣∣∣∣
+ sg(ω)sg(ν) π i + 2nπ i + 2iνω

ω2
A2 − ω2

A1

(ω2 − ω2
A1)(ω

2 − ω2
A2)

, (10.87)

where the last term may be dropped again as it is small compared to the other
imaginary contributions. This gives

ln

∣∣∣∣ω2 − ω2
A2

ω2 − ω2
A1

∣∣∣∣− ω2
A2 − ω2

A1

k0a

ω2 − 1
2(ω2

A1 + ω2
A2)

(ω2 − ω2
A1)(ω

2 − ω2
A2)

+ sg(ω)sg(ν) π i + 2nπ i + i
νω(ω2

A2 − ω2
A1)

k0a

(ω2 − ω2
A1)

2 + (ω2 − ω2
A2)

2

(ω2 − ω2
A1)

2(ω2 − ω2
A2)

2
= 0 .

(10.88)

The real and imaginary parts of this dispersion equation give the roots we are
looking for:

Re ω = ±ω0 ≡ ±
√

1
2(ω2

A1 + ω2
A2) ,

(10.89)

ν = ν0 ≡ −1

8
πk0a

[
sg(ν)sg(ω) + 2n

]ω2
A2 − ω2

A1

sg(ω)ω0
.
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Fig. 10.14. Poles of the Green’s function.
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Fig. 10.15. Deformation of the Laplace contour.

This seems to give a satisfactory generalization of the surface mode as it reduces
to ω = ω0 for a = 0 . If a = 0 a ‘mode’ is obtained which has a small imaginary
part to the ‘eigenfrequency’. We have put quotation marks here because we have
proved already that in ideal MHD normal modes cannot have complex eigenvalues.
On the other hand, we have obtained a genuine pole of the Green’s function, which
certainly will influence the response to the initial data.

For n = 0 the expression for ν0 in Eq. (10.89) gives a contradiction, so that
no solutions are found on the principal Riemann sheet, corresponding to the fact
that complex eigenvalues do not exist in ideal MHD. For n = 1 and n = −1 ,
however, we find two poles (see Fig. 10.14) with

|ν0| = 1

8
πk0a (ω2

A2 − ω2
A1)/ω0 . (10.90)

We may now deform the Laplace contour across the branch cuts so that the con-
tributions of the complex poles on the neighbouring Riemann sheets are picked
up (Fig. 10.15). Ignoring the contributions of the branch cuts corresponding to
the continuous spectrum (and also the contribution of the branch points which
are simultaneously poles corresponding to the degenerate Alfvén modes), we find
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asymptotically for large t for the contributions of these poles:

ξ(t) ∼ 1

2π

∫
dω

iω

�(ω2)
e−iωt ∼ 1

2π

∫
dω

iω

ω − ω0
e−iωt

= ω0e−iω0t ∼ e−|ν0|t e−iω0t . (10.91)

Likewise, η(t) ∼ e−|ν0|t e−iω0t .
Hence, we have found a ‘mode’ that is exponentially damped. Since the pole

is not on the principal branch of the Green’s function, there is no contradiction
with the general proof that complex eigenvalues do not occur for self-adjoint lin-
ear operators. On the other hand, it is clear that the present ‘mode’ of the plasma
is of physical interest as it represents a coherent oscillation of the inhomogeneous
system. In contrast to the chaotic response produced by the branch cuts of the con-
tinuous spectrum this ‘mode’ constitutes a very orderly motion. The plasma as a
whole oscillates with a definite frequency that cannot be distinguished from a true
eigenmode during times τ � ν−1

0 . ‘Modes’ like these occur in many branches of
physics and, accordingly, they have received many different names, like quasi-
modes, collective modes, virtual eigenmodes, resonances, etc. The damping is
completely analogous to the well-known phenomenon of Landau damping in the
Vlasov description of plasmas. Landau damping is due to inhomogeneity of the
equilibrium in velocity space. Damping of Alfvén waves is due to inhomogeneity
of the equilibrium in ordinary space.

The expression (10.89) for the frequency of a quasi-mode in a plasma–plasma
interface configuration has been derived under the assumption that the density is
constant (so that ω2

A variations are due to the magnetic field). Permitting a jump in
the density, the expression for the real part of the quasi-mode becomes a weighted
average of the Alfvén frequencies on both sides,

Re ω = ±
√

ρ1ω
2
A1 + ρ2ω

2
A2

ρ1 + ρ2
. (10.92)

In this form, the expression also describes the quasi-modes of a plasma–vacuum
interface configuration (in the limit ρ2 → 0), which play an important role in res-
onant absorption processes (see Section 11.1).

10.4.3 Different kinds of quasi-modes�

The quasi-modes derived above originate from surface waves propagating along a
thin transition region between two homogeneous plasmas. However, quasi-modes
can originate from many different kinds of waves and the term is used for any
‘discrete’ mode with an oscillatory part of the frequency in the range of the con-
tinuous spectrum, so that it couples to the continuum modes resulting in damping.
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Fig. 10.16. Eigenfrequencies of the first three fast eigenmodes (grey lines) with
upper and lower bound of the Alfvén continuum (black lines) as functions of kz
(for L = a = 1, and ky = 0). (From De Groof et al. [61].)

In MHD, quasi-modes can be due to fast and slow magneto-sonic waves, discrete
Alfvén waves, and different kinds of ‘gap’ modes in two-dimensional configura-
tions. Even kink modes in a plasma–vacuum configuration with a wall may turn
into quasi-modes when the wall is moved in and the kink mode moves into the
Alfvén continuum, see Chance et al. [50].

To demonstrate how easily fast magneto-sonic waves can turn into quasi-
modes, we consider a pressureless plasma slab with a uniform magnetic field
B0 = B0z = 1. Assume that the slab has a finite width a in the x-direction, L
in the z-direction, and is infinite in the y-direction. The wave number in the
z-direction is then quantized, kz = nπ/L , and the eigenfrequencies of the first
three fast magneto-sonic eigenmodes (0, 1 and 2 nodes in the x-direction) are
shown in Fig. 10.16 as functions of kz . The different grey lines connect fast modes
with the same number of nodes in the x-direction. The figure also shows the upper
and lower limits of the Alfvén continuum as functions of kz . The density for this
case is chosen as ρ0(x) = 0.6 + 0.4 cos(π/a x). Keeping ky fixed while increasing
kz then results in ever more fast magneto-sonic modes ‘swallowed’ by the contin-
uum. Since ky = 0, the fast eigenmodes with an eigenfrequency within the range
of the Alfvén continuum couple to the shear Alfvén continuum modes and become
quasi-modes. For more realistic (larger) values of L , many more quasi-modes are
present, see De Groof et al. [61].

10.5 Leaky modes�

Most of the plasmas we considered so far were isolated from their surroundings
by either a perfectly conducting wall or a vacuum, or both. In the previous section
we considered an inhomogeneous, thin, plasma layer surrounded on both sides
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Surface mode

Body mode

Leaky mode

Fig. 10.17. Typical structures of surface waves, body waves and leaky waves
inside a plasma, where the boundaries are represented by the two vertical lines.
The leaky waves are defined completely by their outward propagating external
behaviour. (Courtesy of A. De Groof .)

by homogeneous plasmas supporting wave modes, where we concentrated on the
surface waves and the effect of the inhomogeneity on them. This configuration is
generic for many applications in solar astrophysics and, more particular, coronal
seismology.

In general, in solar astrophysics, one considers magnetic structures, such as
loops and arcades, embedded in another plasma that may, or may not, be mag-
netized. The possible wave solutions in the magnetic structures are then classified
on the basis of their spatial and temporal character inside and outside the magnetic
structure (see Fig. 10.17). A wave that is propagating along the boundary of the
magnetic structure, and shows exponentially damped behaviour both in the central
and in the surrounding plasma, is called a surface wave. An oscillating wave so-
lution that shows evanescent behaviour in the surrounding plasma is called a body
mode. Both surface and body modes thus have a non-propagating character in the
surrounding plasma and are therefore called non-leaky modes, as they do not leak
out energy from the magnetic structure to the environment. Waves that have an
outward propagating behaviour in the surrounding plasma are called leaky waves.

In this section we will derive leaky wave solutions in a simple configuration
so that analytical methods can be exploited and the derivation is not too compli-
cated. In Section 10.5.1, we discuss the equations to be solved and the boundary
conditions to be imposed. Section 10.5.2 is devoted to the normal-mode analy-
sis of this problem, where the eigenvalue problem is formulated and solved. In
Section 10.5.3, the initial value problem is solved by means of the Laplace trans-
form. The wave equation is Laplace transformed with respect to time to obtain
a second order ODE with an RHS given by the initial conditions. Just like in



10.5 Leaky modes� 525

Section 10.2, the Green’s function is constructed by joining two linearly indepen-
dent solutions. The conjunct of these solutions is a function dependent only on the
complex frequency. The Laplace transform of the solution is then expressed by
means of this Green’s function. In this initial value problem approach, the leaky
modes correspond to the poles of the Green’s function (the zeros of the conjunct).
These poles are independent of the spatial coordinates and correspond to the eigen-
values found in Section 10.5.2, demonstrating that the two approaches of the prob-
lem are equivalent.

10.5.1 Model equations and boundary conditions�

Consider a uniform, pressureless, plasma slab confined in the x-direction between
x = ±a and infinite in the y- and z-directions. In the x-direction, the plasma is sur-
rounded on both sides by another uniform plasma that supports waves and extends
up to ±∞. The Alfvén velocity inside the plasma slab, indicated by b, is assumed
to be lower than the Alfvén velocity in the external plasma, indicated by be. This
model problem can be regarded as a slab version of the uniform tube model for
solar coronal loops studied by Cally [49]. Here, we consider a different parameter
regime.

The profiles of the Alfvén frequency and the cutoff frequency (ω f 0) are illus-
trated in Fig. 10.18. In this figure, the frequencies of the surface mode and the first
three ‘fast’ modes are also indicated. The lowest two of the latter modes are situ-
ated below the cutoff frequency in the external plasma so that these two modes will
have an exponentially decreasing behaviour in the external plasma. Therefore, as
will be shown, these modes correspond to ‘body’ modes and have real frequencies.
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Fig. 10.18. Profiles of the Alfvén frequency (thin solid line) and the cutoff fre-
quency ω f 0 (thick solid line); a = 1, b = 0.5, be = 1, ky = 2, kz = 1.6. The hor-
izontal dotted lines indicate the real parts of the frequencies of the surface mode
(lowest) and the first three ‘fast’ modes.
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The third mode, however, lies above the external cutoff frequency and thus has a
propagating character in the external region. This is a ‘leaky’ mode with a complex
frequency.

Consider normal-mode solutions of the form

ξ(r, t) = ξ̂(x) ei(ky y+kz z−ωt). (10.93)

In the pressureless, uniform, plasma slab considered here, Eq. (7.91) for ξ ≡ ξ̂x

reduces to a simple Helmholtz equation:

ξ ′′ + k2
x ξ = 0, with k2

x ≡ ω2

b2
− k2

0, (10.94)

where k2
0 ≡ k2

y + k2
z . This equation also applies to the displacement in the external

plasma, ξe, with k2
x replaced by k2

xe ≡ ω2/be − k2
0. The general solution of these

equations can be written as

ξ =

⎧⎪⎨
⎪⎩

αLeikxex + βLe−ikxex for x < −a,

αeikx x + βe−ikx x for −a < x < a,

αReikxex + βRe−ikxex for a < x , (10.95)

where the coefficients are determined by applying the boundary conditions.
Note that the results of Chapter 5 are recovered when perfectly conducting walls

are put at x = ±a. The boundary conditions ξ(−a) = ξ(a) = 0 then yield the dis-
persion relation sin(2akx) = 0, so that

ω2
n = (k2

x + k2
0) b2, kx = nπ

2a
(n = 0, ±1, ±2, . . .) , (10.96)

gives the frequencies of the fast magneto-sonic modes of a finite homogeneous
slab.

In the plasma–plasma case considered here, however, there is an external plasma
and kxe ≡ (ω2/be − k2

0)1/2 can be real or imaginary, corresponding to oscillatory
or evanescent behaviour in the external region. The boundary conditions to be
considered in this case are

[[ξ ]]x=−a = 0 , [[ξ ]]x=a = 0 and [[�]]x=−a = 0 , [[�]]x=a = 0 , (10.97)

where � denotes the total perturbed pressure. These boundary conditions can be
written in terms of the mechanical impedance, the ratio of the alternating force to
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the alternating velocity:

[[
�

−iωξ

]]
x=−a

= 0 ,

[[
�

−iωξ

]]
x=a

= 0 . (10.98)

Imposing these equivalent boundary conditions is known as ‘impedance match-
ing’. As a matter of fact, the internal solution gives rise to the ‘transmitted’ or
‘internal mechanical’ impedance ZT ≡ �/(−iωξ). The external solution can be
split into outgoing and incoming waves (see Keppens [121, 122]), each with a
corresponding impedance:

Z I ≡ �in

−iωξin
, and Z O ≡ �out

−iωξout
. (10.99)

The boundary conditions can be written in terms of these impedances as follows:

ξout

ξin
= Z I − ZT

ZT − ZO
. (10.100)

To determine the possibly complex eigenfrequencies of the leaky modes, we have
to consider the case of no incoming waves. The impedance criterion to be satisfied
is then ZT = ZO . (In the next chapter, we have to impose the impedance criterion
ZT = Z I to find the frequencies that yield 100% absorption of the corresponding
incoming wave, i.e. no outgoing waves.)

A similar treatment for the boundary conditions was carried out by Stenuit
et al. [216] in the case of a cylindrical flux tube. The cylindrical geometry com-
plicates the analysis considerably and equation (10.94) takes the form of a Bessel
equation. The in- and outgoing wave solutions can then be expressed in terms of
Hankel functions, where the issue of the boundary conditions becomes non-trivial.
In order to determine what boundary conditions have to be imposed, one has to
check the asymptotic behaviour of the Hankel functions and their contribution to
the radial energy flux. In the slab geometry considered here this issue is trivial.
The energy flux averaged over a period is defined as Sx ≡ 1

2 Re(−�∗iωξ), where
the asterisk denotes the complex conjugate. It is clear that, in the RHS plasma for
instance, the solution αR exp(ikxex) yields a positive outward energy flux in the
limit of infinitely large x, i.e. limx→∞ Sout

x > 0. On the other hand, the solution
βR exp(−ikxex) yields limx→∞ Sin

x < 0. Hence, to find the leaky modes, the in-
coming wave has to be rejected and one has to set βR = 0. For non-leaky or body
modes, the outgoing wave has to be rejected, i.e. αR = 0. Similarly, for the LHS
plasma.
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10.5.2 Normal-mode analysis�

To get the leaky modes, we set αL = βR = 0 and define

F ≡ −ρb
ω2 − ω2

A

ω2 − ω2
f 0

ikx , Fe ≡ −ρebe
ω2 − ω2

A

ω2 − ω2
f 0

ikxe . (10.101)

Impedance matching at s = ±a discussed in the previous section then yields a
homogeneous system for the constants α and β:

F
(
αeikx a − βe−ikx a

)
αeikx a + βe−ikx a

= +Fe ,
F
(
αe−ikx a − βe+ikx a

)
αe−ikx a + βe+ikx a

= −Fe . (10.102)

This system has non-trivial solutions if

(F + Fe)
2

(F − Fe)2
= e4ikx a . (10.103)

This is the dispersion relation for the leaky modes we were looking for.
Let us consider the simple case with ky = kz = 0, so that ωA = ω f 0 = 0 and

k2
x = ω2/b2, while k2

xe = ω2/b2
e . The dispersion relation can then be solved ana-

lytically:

ω = −πb

2a
n − ib

2a
log

(
ρb + ρebe

ρb − ρebe

)
, (n = 0, ±1, ±2, . . .) . (10.104)

For b = 0.5, be = 1 and a = 1, this then yields the following leaky modes:

ω = −π

4
n − i

4
log(3) (n = 0, ±1, ±2, . . .) . (10.105)

A typical eigenfunction is shown in Fig. 10.19.

–20

–15

–10

–5

0

5

10

–10 –8 –6 –4 –2 2 4 6 8 10

x

ξ

Fig. 10.19. The profile of ξ for the leaky mode with n = 2 and b = 0.5, be = 1,
a = 1, ky = 0, kz = 0.
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Before we proceed, let us also consider the non-leaky modes. As the slab plasma
is uniform, no coupling with continuum modes is possible. For body modes, the ex-
ternal solution is non-propagating so that there is no damping mechanism and the
corresponding eigenfrequencies must be purely real. Thus, kxe = ω2/b2

e − k2
0 ≤ 0.

A similar analysis as above, but now ignoring the outgoing wave solutions in the
external plasma, gives rise to the dispersion relation

1 = e4ikx a. (10.106)

For b = 0.5, be = 1 and a = 1, this then yields the following body modes:

ω = −π

4
n (n = 0, ±1, ±2, . . .) . (10.107)

Notice that in the limit ρe → 0 (plasma surrounded by a vacuum), i.e. ω f 0e →
∞ and be → ∞ (while ω stays finite), no propagation is possible in the external
region so that only body modes are found. Applying the limit to the dispersion
relation found above indeed yields the dispersion relation for the body modes. In
the opposite limit, ρe → ∞ and be → 0, we also only find body modes so that no
outward propagation is possible.

10.5.3 Initial value problem approach�

In order to show how the modes found appear in the response of the slab to an ini-
tial perturbation, we now formulate the corresponding initial value problem which
we will solve by means of a Laplace transform. As usual, the Laplace transform of
the solution of the wave equation for positive times is defined by the formula

ξ̂(r; ω) ≡
∫ ∞

0
ξ(r; t)eiωt dt. (10.108)

Applying this transformation to the wave equation (10.1) yields, after reduction to
the one-dimensional representation in terms of ξ (see Section 10.2.1),

ξ̂ ′′(x; ω) + k2
x ξ̂ (x; ω) = iω

b2
ξ(x; 0) − 1

b2 ξ̇ (x; 0), (10.109)

which is a simplified form of Eq. (10.4) applied to the uniform, pressureless, slab
plasma considered here. The solution of this ODE for ξ̂ (x; ω) can be obtained
conveniently by means of a Green’s function. According to the general theory, the
latter may be expressed in terms of two linearly independent solutions ξ̂1 and ξ̂2

to the homogeneous equation, where the first satisfies the boundary condition at
x = −∞, and the second the boundary condition at x = +∞. The two solutions
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read:

ξ̂1 =

⎧⎪⎨
⎪⎩

e−ikxex for x < −a,

α1eikx x + β1e−ikx x for −a < x < a,

αReikxex + βRe−ikxex for a < x , (10.110)

and

ξ̂2 =

⎧⎪⎨
⎪⎩

αLeikxex + βLe−ikxex for x < −a,

α2eikx x + β2e−ikx x for −a < x < a,

eikxex for a < x . (10.111)

According to the general theory, the conjunct ξ̂ ′
2ξ̂1 − ξ̂ ′

1ξ̂2 is independent of x .
Hence, we determine the two solutions only in the region −a < x < +a, i.e. we
determine the constants α1,2 and β1,2 by applying the boundary conditions speci-
fied in Section 10.5.1. The zeros of this conjunct give rise to poles of the Green’s
function and determine the discrete spectrum of the problem. These poles are the
solutions of the equation

(F + Fe)
2

(F − Fe)2
= e4ikx a , (10.112)

which is exactly the same as the dispersion relation found in Section 10.5.2!
Clearly, the solutions are also the same, so that both normal-mode and initial value
problem approaches yield the same discrete spectrum.

10.6 Literature and exercises�

Notes on literature

Alfvén resonance: mode conversion:

– An alternative treatment of waves in inhomogeneous plasmas can be found in ‘Waves
in plasmas’ by Stix [218]. Chapter 13 considers wave propagation through an inho-
mogeneous plasma. Starting from a WKB approach, the Alfvén resonance is dis-
cussed in terms of the singular-turning-point theory and mode conversion.

Continuous spectrum in cold plasma oscillations:

– Barston [16] elegantly solves the problem of cold plasma oscillations by means of a
normal-mode analysis.

– Sedláček [206] analyses ‘Electrostatic oscillations in cold inhomogeneous plasmas’
and shows that inhomogeneities of the plasma lead to dissipationless damping. He
applies both normal-mode analysis and the initial value problem approach and shows
that the two are equivalent. However, since the normal-mode analysis may overlook
collective modes, he concludes that it cannot replace the Laplace transform technique
completely.
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Continuous spectrum and damping in MHD:

– Tataronis & Grossmann [225] show that the continuous spectrum of ideal MHD, due
to spatial inhomogeneities of the plasma, leads to dissipationless damping as a result
of phase mixing (see further in Chapter 11).

– Chen & Hasegawa [54] extend the analysis of Tataronis & Grossmann [225] to com-
pressible plasmas with magnetic shear (see further in Chapter 11).

– Goedbloed [85] constructs the resolvent operator, involved in the general solution
of the initial value problem, for one-dimensional MHD problems (as presented in
Section 10.2).

Leaky modes:

– Wilson [246] studies the eigenspectrum of a flux tube of finite width embedded in
a non-magnetized medium and considers complex frequencies and leakage of en-
ergy into the surroundings. This leakage of wave energy is further developed by
Spruit [215], in the thin flux tube approximation, and by Cally [49] for a tube with
arbitrary radius. Cally sets up a classification scheme with seven types of non-leaky
modes.

Exercises

[ 10.1 ] Derivation of Eq. (10.92)

Generalize the derivation in Section 10.4.2 by considering a density profile that is constant
but different in each of the two plasmas to derive Eq. (10.92).

[ 10.2 ] Continuum damping in cylindrical plasmas

In Chapter 9 we studied the continuous MHD spectrum in cylindrical plasmas. Consider a
uniform cylindrical plasma with radius 1 and Alfvén frequency ωAi separated from another
uniform surrounding plasma, characterized by ωAe, by a thin transition region 1 − a ≤ r ≤
1 + a in which the square of the local Alfvén frequency varies linearly from ω2

Ai to ω2
Ae.

Repeat the derivation of the quasi-mode in Section 10.4 in this set-up.

[ 10.3 ] Quasi-modes in real plasmas

Use the tables in Appendix B to get a rough estimate of the oscillatory frequency and the
damping time scales of the quasi-mode resulting from a surface wave in laboratory plasmas
and in solar coronal loops (cf. Eq. (10.89)).

[ 10.4 ] Damping of quasi-modes

The damping rate of ideal quasi-modes does not correspond to a heating rate of the plasma.
Why not? What is the meaning of this damping rate then? Explain.

[ 10.5 ] Understanding Fig. 10.16

Consider a finite (−a < x < +a), homogeneous, magnetized slab plasma surrounded by
another homogeneous plasma, also with uniform magnetic field (in the z-direction). Write
a Maple or Mathematica work sheet to plot the internal and external Alfvén frequency, ωAi
and ωAe, versus kz (choose parameter values so that these two frequencies are different).
Also plot the frequency ω f 0, both for the internal and external plasma. Now add plots of
the frequencies of the first three fast magneto-sonic modes (notice that kx is quantized).
Play around with the parameters (ky , internal and external magnetic field and density) and
observe that the frequencies of the fast magneto-sonic modes lie between ωAi and ωAe for
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large kz . What is the fundamental difference of the figure you get from Fig. 10.16? How
do you get Fig. 10.16 from here?

[ 10.6 ] Leaky waves in cylindrical geometry

Consider a uniform, cylindrical magnetic-flux tube embedded in a uniform, wave carrying
plasma and repeat the derivation of the leaky waves in Section 10.5 for this configuration.

[ 10.7 ] Resonant leaky modes

Combine the derivations in Sections 10.4 and 10.5 and derive the dispersion relation for
resonant leaky modes in a non-uniform plasma. (Consider a plane slab.)
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Resonant absorption and wave heating

In Chapters 7 and 9, the MHD spectral analysis of an ideal plasma with inhomo-
geneities in one spatial direction led to singular second order differential equations
for the plasma displacement in the direction of inhomogeneity: Eqs. (7.91) and
(9.31). The two singularities of these equations give rise to two continuous parts
of the MHD spectrum, as demonstrated in Section 7.4 for slab geometry and in
Section 9.2.2 for cylindrical geometry. It was shown that the eigenfunctions corre-
sponding to these Alfvén and slow magneto-sonic continua possess non-square in-
tegrable tangential components leading to extreme anisotropic behaviour. Clearly,
this has a dramatic effect on the dynamical behaviour of inhomogeneous plasmas.
In the present chapter, we will discuss the consequences of these continuous spec-
tra for the dynamical response of an inhomogeneous plasma slab or cylinder to
periodic, multi-periodic, or random external drivers. This will lead to the concepts
of resonant absorption of waves and phase mixing of neighbouring magnetic field
lines.

Resonant ‘absorption’ (or ‘dissipation’) and phase mixing are fundamental
properties of MHD waves that are studied in many different plasma systems.
These phenomena affect the dynamics of plasma perturbations significantly and
often dominate the energy conversion and transport in inhomogeneous plasmas.
Since they are basic to MHD wave heating and acceleration of plasmas, they de-
serve special attention. In fact, since all plasmas occurring in nature are – to a
higher or lower degree – inhomogeneous and since waves can be excited easily in
plasmas, resonant absorption and phase mixing frequently occur. These phenom-
ena have been studied in the context of wave damping and heating for controlled
thermonuclear fusion experiments (Tataronis and Grossmann [225], Chen and
Hasegawa [54], Balet et al. [15], Poedts et al. [185], Vaclavik and Appert [235])
and for solar and astrophysical plasmas (Ionson [116], Kuperus et al. [133],
Poedts et al. [177, 182], Goossens [93]), whereas resonant mode conversion is

533
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also studied in magnetospheric physics (Kivelson and Southwood [128], Zhu and
Kivelson [249], Kivelson and Russell [127], Mann and Wright [151]).

In the solar context, resonant absorption and phase mixing play a dominant role
in ‘sunspot seismology’ (Bogdan and Knölker [34]) and ‘coronal seismology’
(Nakariakov et al. [161]) in which the interactions of MHD waves with magnetic
structures are exploited as diagnostic tools. The goal here is to deduce the values
of plasma parameters from the comparison of theoretical results and observations
of MHD waves whose characteristics (amplitudes, frequencies, etc.) are deter-
mined by the ambient plasma, as in helioseismology [97]. In confined laboratory
plasmas, this method was called ‘MHD spectroscopy’ [88] (Section 7.2.4).
Clearly, MHD spectroscopy and coronal seismology are complicated by the
inhomogeneity of the studied plasmas, the nonlinearity of the dynamics, and the
complex magnetic geometries.

In this volume, we focus on the basics of the resonant absorption and phase
mixing mechanisms and only consider relatively simple geometries and physics.
Nonlinear, two-dimensional, resistive and viscous effects, etc. will be discussed in
the companion Volume 2 on Advanced Magnetohydrodynamics.

In this chapter, the physical mechanisms of resonant absorption and phase mix-
ing are first explained in detail for a simple model configuration (Section 11.1).
In Section 11.2 applications of this mechanism to wave damping and heating are
discussed and illustrated for a generic cylindrical plasma. In Section 11.3, alterna-
tive configurations with different boundary conditions are presented together with
their consequences for applications to solar and magnetospheric physics.

11.1 Ideal MHD theory of resonant absorption

11.1.1 Analytical solution of a simple model problem

Consider a semi-infinite plasma that occupies the half space x < 0 next to a vac-
uum in the half space x > 0. This is the plane slab version of model problem III
introduced in Section 4.6.1. Let us assume, for simplicity, that there is a uni-
directional magnetic field in both vacuum and plasma and choose the z-axis in
the direction of the magnetic field. We also assume that all equilibrium quantities
are constant for x < x1 (≡ −a) and only depend on x in a region x1 ≤ x ≤ x2

(≡ 0). In the vacuum (x > 0), we assume the presence of a sheet current j�c in a
coil which represents the external driving source or ‘antenna’ at x = c (see the
sketch in Fig. 11.1, where the plasma inhomogeneity is indicated by the quantity
ε that is still to be defined).

This configuration is a simplified version of the set-up studied in one of the first
papers in which the mechanism of resonant ‘absorption’ was investigated in the
framework of thermonuclear fusion [54], viz. as a possible supplementary heating
mechanism to bring tokamak plasmas into the ignition regime. (In the original set-
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Re(ε)

x

ε2

ε1

plasma vacuum

(1) (2) (3) (4)

antenna

x0 cx1 =0x2

a

Fig. 11.1. Sketch of the configuration in which the resonant absorption of Alfvén
wave energy is studied (adapted from Ref. [54]). The power source consists of an
external ‘antenna’ with surface current j�c situated in the vacuum region next to
the plasma. Here ε(x) ≡ ρ(x)[ω2 − ω2

A(x)].

up of Chen and Hasegawa the magnetic field is sheared. They generalized earlier
results of Grossmann and Tataronis [225] who did not include magnetic shear and
assumed incompressibility, so that the important role of fast magneto-sonic waves
was not fully considered.) As a matter of fact, the singular behaviour of the excited
waves results in the small length scales that are required for efficient dissipation
of wave energy in highly conductive plasmas. The solution derived by Chen and
Hasegawa will be discussed for the special case of a uni-directional magnetic field.

Since the equilibrium quantities are constant in time and do not depend on y
and z, we assume linear perturbations of the form

ξ(x, y, z; t) = ξ(x) ei(ky y+kz z−ωt) , (11.1)

where ω = ωd − iδ, with ωd the frequency of the external driver and δ a small
positive constant (0 ≤ δ � ωd ) that will be discussed below. We concentrate on
Alfvén wave absorption and separate off the slow magneto-sonic waves by con-
sidering the low-β approximation (p � 1

2 B2) of Eq. (7.89) of Section 7.3.2. Since
the magnetic field is uni-directional, the parallel and perpendicular ‘wave numbers’
are constant: f ≡ k‖ = kz and g ≡ k⊥ = ky . In the limit of vanishing gravitation,
we then get a system of two differential equations:⎛

⎜⎜⎜⎝
ρω2 + d

dx
B2 d

dx
− k2

‖ B2 d

dx
k⊥ B2

−k⊥B2 d

dx
ρω2 − k2

0 B2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ξx

iξ⊥

⎞
⎟⎟⎟⎟⎠ = 0 , (11.2)

where k2
0 ≡ k2

⊥ + k2
‖ . This system describes Alfvén modes and fast magneto-sonic

modes. (Note that we now exploit ξx ≡ ξ and iξ⊥ ≡ η as variables since we will
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need the symbol η for the plasma resistivity in Section 11.1.2.) In general, i.e. for
k⊥ �= 0, these two modes are coupled since the equations (11.2) are coupled. This
coupling is of vital importance for the mechanism of resonant absorption. We will
see that the mechanism does not work for k⊥ = 0, at least not in this set-up with
sideways excitation (see Section 11.2). The second equation is algebraic in ξ⊥ so
that it allows us to express ξ⊥ in terms of ξx :

iξ⊥ = k⊥B2

ρω2 − k2
0 B2

dξx

dx
. (11.3)

Upon substitution of this expression in the first part of Eq. (11.2) one obtains a
second order ODE for the variable ξx :

d

dx

(
ρω2 − k2

‖ B2

ρω2 − k2
0 B2

B2 dξx

dx

)
+ (ρω2 − k2

‖ B2) ξx = 0 , (11.4)

which is the simplified form of Eq. (7.91) under the assumptions made.
Note that the Alfvén frequency,

ωA ≡ k‖vA , vA ≡ B(x)
/√

ρ(x) , (11.5)

is a function of x in the layer −a ≤ x ≤ 0 through the inhomogeneity of the mag-
netic field or the density, or both. These inhomogeneities may be considered to be
arbitrary, although the equilibrium condition (p + 1

2 B2)′ = 0 would require the
gradient of the magnetic pressure to be balanced by −p′, which should be small
in general because of the low-β assumption. For definiteness, we will assume that
the magnetic field is constant and that inhomogeneities are exclusively due to the
density profile ρ(x).

We now focus on nearly perpendicular propagation, i.e. k‖ � k⊥ ≈ k0, and very
strong coupling (although the fast wave sub-spectrum is well separated from the
Alfvén wave sub-spectrum in this case: ω2

A = k2
‖v

2
A � ω2

f 0 ≈ k2
0v2

A ). We also as-
sume that the oscillatory part ωd of the frequency ω lies in the range of the Alfvén
continuum. Equation (11.4) then reduces to

d

dx

(
ρ [ω2 − ω2

A(x)]
dξx

dx

)
− k2

⊥ρ [ω2 − ω2
A(x)] ξx = 0 , (11.6)

which is equivalent to (10.53) since k2
0 ≈ k2

⊥ and the right hand side term is zero
in this case with an initial static equilibrium. (As a matter of fact, remark that
(10.53) was derived under the same assumptions.) Defining a complex quantity
ε(x) ≡ ρ(x)[ω2 − ω2

A(x)], we then get

d2ξx

dx2
+ 1

ε

dε

dx

dξx

dx
− k2

⊥ξx = 0 . (11.7)
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We now consider the simple case where Re[ε(x)] depends linearly on x in the
inhomogeneous layer:

Re[ε(x)] =
⎧⎨
⎩

ε1 (x < x1)

ε1 + ε2 − ε1

x2 − x1
(x − x1) (x1 ≤ x ≤ x2), (11.8)

as displayed in Fig. 11.1. The zero of the function Re[ε(x)] corresponds to the
resonant position x = x0 ≡ (ε1x2 − ε2x1)/(ε1 − ε2), where the driving frequency
matches the local Alfvén frequency: ωd = ωA(x0). For this simple configuration,
Eq. (11.7) can be solved analytically.

We can distinguish four regions in the set-up as sketched in Fig. 11.1. The
plasma occupies regions (1) and (2), while the vacuum is situated in regions (3)
and (4). The equations for the vacuum regions will be derived below. They can
also be solved analytically. The main issue is then to connect the solutions across
those regions. This ‘simple’ problem actually involves a mixture of all the labora-
tory plasma models introduced in Section 4.6.1, and elaborated for the linearized
interface problems in Section 6.6.1. Going from left to right, subsequently, the
following boundary conditions are to be imposed:

– At x = xl (→ −∞): the plasma–rigid wall (model I) boundary conditions (4.169)–
(4.170) for the plasma displacement at a conducting wall which, since it is actually
absent in the present case, is equivalent to imposing a boundary condition at −∞:

ξx → 0 (for x → −∞) ; (11.9)

– At x = x1 (≡ −a): the plasma–plasma (model II*) boundary conditions (4.164)–
(4.166) which, upon linearization about the perturbed boundary, yield the first and
second interface conditions (6.144) and (6.147) derived in Section 6.6.1:

[[ξx ]] = 0 (at x = x1) , (11.10)

[[ξ ′
x ]] = 0 (at x = x1) ; (11.11)

– At x = x2 (≡ 0): the plasma–vacuum (model II) boundary conditions (4.175)–(4.176)
which, upon linearization about the perturbed boundary, yield the first and second
interface conditions (6.140) and (6.143) derived in Section 6.6.1:

ik‖ B̂ξx = Q̂x (at x = x2) , (11.12)

Qz = −B(ξ ′
x + ik⊥ξy) = Q̂z (at x = x2) ; (11.13)

– At x = c : the antenna (model III) boundary conditions (4.179)–(4.180) for the jump
of the perturbed magnetic field produced by the currents in the antenna:

[[Q̂x ]] = 0 (at x = c) , (11.14)

n × [[Q̂]] = j�c (at x = c) ; (11.15)
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– At x = xr (→ ∞): the vacuum–rigid wall (model II) boundary condition (4.173) for
the perturbed magnetic field at a conducting wall which, since it is again absent in the
present case, is equivalent to imposing a boundary condition at ∞:

Q̂x → 0 (for x → ∞) . (11.16)

Now count: Eqs. (11.9)–(11.16) provide eight boundary conditions to determine
the eight arbitrary amplitudes of the independent solutions of the second order
differential equations for the plasma variable ξx and the vacuum variable Q̂z in
the four regions (1)–(4). Also note the difference between the present forced os-
cillation problem, where arbitrary values of ωd and the amplitude of the antenna
current j�c determine everything else, and the problem of free oscillations, where
j�c = 0 and ω becomes an eigenvalue (because eight boundary conditions is one too
much in that case, since the amplitude of a linear eigenoscillation is arbitrary then).

(a) Plasma solution In the left plasma region (1), the coefficient ε is constant so
that Eq. (11.7) reduces to a simple Helmholtz equation with the general solution

ξ (1)
x = A1 ek⊥(x+a) + B1 e−k⊥(x+a) , (11.17)

where B1 = 0 because of the boundary condition (11.9), and A1 will be determined
by one of the boundary conditions (11.10), (11.11). This specific form has been
chosen to simplify the implementation of the latter conditions.

In the right plasma region (2), the coefficient function ε varies linearly with x .
In terms of the normalized variable

X ≡ k⊥ε

dε/dx
, so that Re(X) = k⊥(x − x0) , (11.18)

Eq. (11.7) reduces to the zeroth order modified Bessel equation:

d2ξx

d X2
+ 1

X

dξx

d X
− ξx = 0 . (11.19)

Hence, the solution for ξx in region (2) can be written as a linear combination of
the modified Bessel functions of the first and second kind [1]:

ξ (2)
x = A1

[
A2 I0(X) + B2K0(X)

]
, (11.20)

where multiplication with A1 again serves the purpose of simplifying implemen-
tation of the boundary conditions at x = x1.

� Bessel function identities. The following identities are needed here:

I0
′ = I1 , I1

′ = I0 − X−1 I1 ,

K0
′ = −K1 , K1

′ = −K0 − X−1 K1 ,

I0 K1 + K0 I1 = X−1 , (11.21)

where the primes denote differentiation with respect to the argument X . �
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The boundary conditions (11.10) and (11.11) at x = x1 then yield

A2 I0(X1) + B2K0(X1) = 1 ,

A2 I1(X1) − B2K1(X1) = 1 ,

where the Bessel functions are evaluated for the value X1 ≡ X (x = x1) at the
left boundary of interval (2). From this system, the constants A2 and B2 can be
determined easily:

A2 = X1

[
K0(X1) + K1(X1)

]
, B2 = −X1

[
I0(X1) − I1(X1)

]
, (11.22)

so that ξx is determined in the whole plasma region up to a scale factor A1. This
scale factor depends on the current density in the external antenna and follows from
linking the plasma solution to the vacuum solution, which will be determined now.

(b) Vacuum solution The vacuum magnetic field perturbations in regions (3) and
(4) are determined by the simpler equations ∇ × Q̂ = 0 and ∇ · Q̂ = 0. The first
condition gives

Q̂y = k⊥
k‖

Q̂z , Q̂x = − i

k‖
d Q̂z

dx
, (11.23)

which upon substitution in the second condition yields a Helmholtz equation for
Q̂z:

d2 Q̂z

dx2
− k2

0 Q̂z = 0 . (11.24)

Hence, the solutions in regions (3) and (4) can be written in the convenient form

Q̂(3)
z = A3e−k0(x−c) + B3ek0(x−c) , Q̂(4)

z = A4e−k0(x−c) + B4ek0(x−c) ,

(11.25)

where the boundary condition (11.16) implies that B4 = 0.
Now comes the important part. The spatial and temporal dependence of the

dynamics is forced onto the system by means of the antenna surface current

j�c = J� ei(ky y+kz z−ωt) , (11.26)

where J� is the amplitude of j�c with components J �
y and J �

z , having the dimen-
sion of current per unit length. Since ∇ · j�c = 0, the wave vector k0 ≡ (0, k⊥, k‖)
will be perpendicular to the antenna current: k0 · J� = 0. Hence, four of the five
constants J �

y , J �
z , k⊥, k‖, ωd can be freely chosen, corresponding to a possible

construction of the antenna as a series of wires with a current per unit length
of amplitude |J�| that varies harmonically from wire to wire, with a spatial con-
stant k0 and with the same temporal constant ωd , whereas the inclination with
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respect to the z-axis determines J �
y /J �

z = −k‖/k⊥. The experimenter appears to
have complete control over everything! Not quite though: the external antenna
excites the ‘quasi-mode’ in the plasma that is related to the plasma–vacuum sur-
face mode (see Section 10.4). This collective mode has a frequency ω = ω0 + iν0,
where the parameter ν0 contains the information of the continuous spectrum of
Alfvén frequencies (11.5) in the inhomogeneous layer (2). Such easy-to-excite
quasi-modes will turn out to determine the efficiency of the resonant absorption
mechanism.

The jump of the vacuum magnetic field components at x = c is now determined
by the boundary conditions (11.14) and (11.15) giving two independent relations,

[[Q̂x ]] = Q̂(4)
x

∣∣∣
x=c

− Q̂(3)
x

∣∣∣
x=c

= i(k0/k‖) (A4 − A3 + B3) = 0 , (11.27)

[[Q̂z]] = Q̂(4)
z

∣∣∣
x=c

− Q̂(3)
z

∣∣∣
x=c

= A4 − A3 − B3 = −J �
y , (11.28)

whereas the third relation is not independent, [[Q̂y]] = (k⊥/k‖)[[Q̂z]], in agreement
with Eq. (11.23)(a). With these two conditions, the constants A3 and B3 can be
expressed in terms of A4 and the current in the antenna coil:

A3 = A4 + 1
2 J �

y , B3 = 1
2 J �

y , (11.29)

so that the magnetic field perturbation in regions (3) and (4) becomes

Q̂(3)
z = A4e−k0(x−c) + J �

y cosh[k0(x − c)] , Q̂(4)
z = A4e−k0(x−c) . (11.30)

Hence, the vacuum solution consists of a driven part, confined to region (3), that
depends on the current in the external coil, and an induced part with scale factor
A4 that depends on the plasma response, which is still unknown at this point.

(c) Linking the vacuum solution to the plasma solution We applied six of the
eight boundary conditions determining the plasma and vacuum solutions up to
the scale factors A1 and A4. Since we are dealing with a driven problem, there is
a unique solution. In order to determine it, we only have to find expressions for
these scale factors. They follow in a natural way from linking the vacuum solu-
tion to the plasma solution by means of the two boundary conditions (11.12) and
(11.13) at the plasma–vacuum interface:

k‖Bξ (2)
x

∣∣∣
x=x2

= − 1

k‖
d Q̂(3)

z

dx

∣∣∣∣∣
x=x2

, (11.31)

Bε

k2
⊥B2 − ε

dξ
(2)
x

dx

∣∣∣∣∣
x=x2

= Q̂(3)
z

∣∣∣
x=x2

. (11.32)
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By substituting the derived expressions ξ
(2)
x and Q̂(3)

z in these equations, one ob-
tains two equations for A1 and A4:

C A1 − ek0c A4 = J �
y sinh(k0c) ,

D A1 − ek0c A4 = J �
y cosh(k0c) ,

where

C ≡ (k2
‖/k0)B

[
A2 I0(X2) + B2 K0(X2)

]
,

D ≡ k⊥Bε2

k2
⊥B2 − ε2

[
A2 I1(X2) − B2K1(X2)

]
, (11.33)

involving the Bessel functions evaluated for the value X2 ≡ X (x = x2) at the right
boundary of interval (2), and the constants A2 and B2 determined in Eqs. (11.22).
The straightforward solution is:

A4 =
[
C cosh(k0c) − D sinh(k0c)

]
A1 , A1 = −J �

y
e−k0c

C − D
, (11.34)

so that all constants are proportional to J �
y .

11.1.2 Role of the singularity

Hence, the solution appears to be determined completely in the plasma as well
as in the vacuum: eight boundary conditions determine eight constants Ai , Bi

(i = 1, . . . , 4). Clearly, the whole solution is proportional to the current in the
external coil (J �

y ) and vanishes when there is no external driving current. Concern-

ing the dependence on the driving frequency ωd : when ω2
d is outside the range of

the Alfvén continuum {ω2
A(x)|x1 ≤ x ≤ x2}, we could assume δ = 0 and all con-

stants to be real so that the obtained solution would be adequate. When ω2
d is in the

continuum range, Chen and Hasegawa conveniently avoided the singularity at x0

where ωd = ωA(x0) by considering a complex ω = ωd + iδ with δ = 0+. The role
of the ‘artificial’ damping ([235, 185]) is to mimic real resistive (or viscous) dissi-
pation while keeping the analysis tractable. Below it will be shown that the actual
energy ‘absorption’ thus obtained corresponds to real damping when dissipation
is taken into account. This may appear strange since in ideal MHD there can be
no dissipation or heating. Hence, the early ideal MHD studies introduced the term
resonant ‘absorption’ rather than resonant ‘heating’ or ‘dissipation’. The point is,
however, that the actual energy absorption (or dissipation) rate does not depend
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on the value δ (nor on the resistivity or viscosity). It is the logarithmic singularity
that causes the wave phase mixing and, hence, the dissipation of the energy of the
excited wave. Mathematically, this process is reversible in ideal MHD but real dis-
sipation destroys the reversibility and converts the dissipated energy into thermal
energy.

Looking at the above solution in terms of modified Bessel functions one may
wonder what happened to the logarithmic singularity of ξx that was shown to be
characteristic for Alfvén continuum modes in Section 7.4. Of course, this singular-
ity is still present here. Indeed, close to the singularity we have |ε| � 1 and thus
|X | � 1. The modified Bessel functions of complex argument can be expanded
in this limit and to leading order we have I0(X) ≈ 1 and K0(X) ≈ ln(1

2 X). In
Fig. 11.2 the solution in region (2) has been plotted for a choice of parameters that
yields a singularity at x = 0.5. The artificial damping δ = −0.001 prevents un-
limited amplitudes and gives rise to nearly singular behaviour. However, the ideal
singularity is still clearly recognizable with the logarithmic behaviour near x = x0

in the imaginary part of ξx , the jump in the real part of ξx , and the corresponding
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Fig. 11.2. Solutions ξx and ξy in region (2) as a function of the shifted coor-
dinate x̃ ≡ x/a + 1 for a = B = 1 , ωd = k‖ = J �

y = 1 , and a density such that
Re(ε1) = 1 and Re(ε2) = −1 so that x̃0 = 0.5 ; δ = −0.001 , k⊥ = 5 .
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(x − x0)
−1 and δ(x − x0) behaviour of the tangential perpendicular component ξy .

The jump is due to the analytic continuation of the logarithm through the branch
cut (see Section 10.3.2) and the size of this jump determines the energy absorption
rate, as shown below.

The physical interpretation of Fig. 11.2 is not trivial. Remark that we have ex-
ploited the widely-used ‘complex notation’ throughout this book. This is done in
the interest of mathematical simplicity when calculating with harmonic functions
exploiting, instead of sines and cosines, exponential functions with imaginary ar-
gument. Physical quantities, however, are real. The rule for using the exponential
functions thus is that the harmonic function is obtained by taking the real part at
any convenient point in the calculation. With A = Ar + iAi the real part of Aeiωt

is Ar cos ωt − Ai sin ωt . Hence, Aeiωt represents a harmonic containing a compo-
nent of amplitude Ar in phase with cos ωt and a component of amplitude Ai in
phase with sin ωt (and thus in quadrature with cos ωt).

Hence, the temporal behaviour of the solution shown in Fig. 11.2 shows at the
beginning of each oscillation period (multiples of 2π/ω) the real parts (left) and
half a period later the imaginary parts (right). At any other moment a combina-
tion of both solutions is obtained. Clearly, the different magnetic surfaces (or field
lines) are ‘out of phase’ in this steady state solution. This is due to the ‘phase
mixing’ mechanism, as we will see below.

Energy ‘absorption rate’ Remark that in the complex notation, used throughout
this book, nonlinear operations such as multiplying together two harmonic func-
tions require special attention since the real part of, e.g., eiωt eiωt is cos 2ωt which
is not identical to cos ωt cos ωt . The time average of two harmonic quantities,
which are the real parts of Aeiωt and Beiωt , is half the product of A and the com-
plex conjugate of B, i.e. 1

2 AB∗. The latter result is useful when discussing energy
equations in linear MHD, the only place(s) in this book where nonlinear operations
of harmonic functions occur.

With the solution obtained in the previous section, the energy ‘absorption rate’
resulting from the resonant plasma dynamics can be determined explicitly for the
simple configuration considered. The easiest way to do this is by considering the
Poynting vector S = 1

2 E∗ × Q. Here we exploit the simplified notation Q for B1,
introduced in Eq. (6.25), while E denotes the perturbed electric field in this chapter
(the subscript 1 is dropped to simplify the notation). The energy absorption rate
(averaged over a driving period) in the steady state can then be written as

dW

dt
= L y Lz Re[S(x2) − S(x1)] · ex , (11.35)
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with L y and Lz the size of the plasma in the y- and z-direction, respectively. Since
E = iω ξ × B, we have

E‖ = 0, and E⊥ = −iω B ξx . (11.36)

Upon substituting this result in Eq. (11.35), we obtain

dW

dt
= ωd

2
L y Lz Im

[
B Q‖ξ∗

x

]x2
x1

,

= ωd

2
L y Lz Im

[
B2ε

k2
⊥B2 − ε

dξx

dx
ξ∗

x

]x2

x1

, (11.37)

by means of Eq. (11.3). Since we solved the complete boundary value problem for
ξx we can and will compute the energy absorption rate.

First remark, however, that most of the absorption will take place near the sin-
gular layer at x = x0 where ε(x) ≈ dεr/dxx0(x − x0) + iεi (x0) (with εr = Re(ε)
and εi = Im(ε)). Thus, since ε(x) ≈ 0 near x0, Eq. (11.7) reduces to

d2ξx

dx2
+ 1

x − x0 + iδ′
dξx

dx
− k2

⊥ ξx = 0, (11.38)

where δ′ = εi (x0)

(dεr/dx)x0

. In Chapter 10 we noticed that in the limit δ′ → 0 this

equation has a logarithmic singularity at x = x0 so that

ξx = C ln(x − x0 + iδ′). (11.39)

Consider now x1 = x0 − ε and x2 = x0 + ε with ε � |δ′| in Eq. (11.37) in order
to evaluate the energy absorption rate near the singularity (denoted as dW1/dt). In
the limit ε → 0 we then obtain

dW1

dt
= ωd

2
π L y Lz

|C |2
k2
⊥

dεr

dx

∣∣∣∣
x0

. (11.40)

Hence, due to the logarithmic singularity (C �= 0) energy is absorbed collision-
lessly by the plasma. As time progresses, the energy supplied by the driver accu-
mulates in an ever diminishing plasma layer around x = x0, where the frequency
of the driver matches the local Alfvén frequency. In this singular point the fields
grow unbounded as time proceeds and the external driver continues to pump en-
ergy in to the plasma. Since we determined the plasma solution analytically in the
previous section, we can calculate, in principle, the actual energy absorption rate
and express |C |2 in terms of the external driving source.

From Eq. (11.37) it is clear that the average energy absorption rate depends on
the driving frequency. The original idea of Chen and Hasegawa was to exploit the



11.1 Ideal MHD theory of resonant absorption 545

0

2

4

6

8

10

1 1.2 1.4 1.6 1.8 2
ωd

dW/dt

Fig. 11.3. Scan of the average energy absorption rate dW/dt in the steady state
versus the driving frequency for 1 ≤ ωd ≤ 2 for δ = 0.001, a = 0.005, c = 0.1,
k‖ = 1, k⊥ = 10, ρ1 = 1, ρ2 = 0 and J �

y = 1.

surface mode located at the plasma–vacuum surface. In the previous chapter it was
shown that this mode transforms to a weakly-damped quasi-mode for an inhomo-
geneous plasma. The surface mode character should guarantee a good plasma–
driver coupling while the coupling with the ideal Alfvén continuum modes should
guarantee a good plasma heating through the resonant behaviour near the singu-
larity. In Fig. 11.3 the average energy absorption rate, calculated from the above
solution, is plotted versus the driving frequency. The peak in the power absorption
profile is due to the presence of the quasi-mode. As a matter of fact, the oscillatory
part of the frequency of this mode is given by

ω0 =
√

2 ωA1, (11.41)

as is clear from Eq. (10.92) with ρ2 = 0 (vacuum) and for a uniform magnetic
field. For Fig. 11.3 the normalizing current in the antenna was fixed to 1 for all
driving frequencies. As expected, driving at the oscillatory part of the quasi-mode
frequency yields a much larger power absorption than driving at other continuum
frequencies. The quasi-mode is the natural oscillation mode of the system and,
hence, easy to excite. Due to the coupling of this mode to the singular shear Alfvén
continuum, the energy pumped into the quasi-mode is efficiently absorbed (or ‘dis-
sipated’ in non-ideal MHD). The latter remark brings us to an important issue, viz.
the efficiency of the resonant absorption or heating mechanism.
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Efficiency and role of the ‘quasi-modes’ In the literature, the efficiency of the res-
onant absorption mechanism has been expressed in terms of the coupling factor C ,
the fractional absorption fa , and the antenna impedance. Clearly, the definition of
these quantities is closely related to the energetics of the driven system. The power
emitted by the antenna is given by

Pant(ωd) = 1
2

∫
V̂

j�c · Ê∗ dV̂ , (11.42)

where V̂ denotes the volume of the vacuum region. The real part of this power
corresponds to the energy absorbed by the plasma, i.e. the quantity dW/dt defined
in Eq. (11.35). The imaginary part, however, corresponds to the energy fluctuating
in the system, i.e. the kinetic and potential energy of the plasma and the potential
(magnetic) energy of the vacuum, as will be shown below. The coupling factor C
depends on the driving frequency and is defined as:

C(ωd) ≡ Im(Pant)

Re(Pant)
. (11.43)

It gives the ratio of the amount of energy fluctuating in the system to the amount of
energy converted into heat (in a dissipative system) which depends on the driving
frequency (see e.g. [15], although these authors use the symbol Q to denote the
coupling factor). It is closely related to the impedance of the driven system (for
a real driving frequency it is proportional to it). This impedance can be measured
at the antenna as ImQz(c)/ImQx(c) which is ∼ ImA4/ReA4 for the solution ob-
tained in the previous subsection.

The fractional absorption fa , on the other hand, is defined (by [100]) as

fa(ωd) ≡ Re(Pant)

|Pant| , (11.44)

and thus compares the absorbed power to the total power of the disturbance in the
system in the steady state. The functional relation of the two quantities is given by

fa = 1

1 + C2
. (11.45)

Hence, perfect coupling, meaning that all the energy that enters the plasma remains
inside the plasma and is (at least in the dissipative steady state) converted into
heat,1 corresponds to C(ωd) = 0 and fa(ωd) = 1 (or 100%). No coupling at all
corresponds to C(ωd) → ∞ and fa(ωd) = 0.

The presence of quasi-modes in the Alfvén continuum is crucial for the effi-
ciency of the resonant absorption mechanism. The global character of the quasi-

1 i.e. the Poynting vector at the plasma surface is pointing inwards all the time.
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Fig. 11.4. Scan of the coupling factor C in the steady state versus the driving
frequency for δ = 0.001, a = 0.005, c = 0.1, k‖ = 1, k⊥ = 10, ρ1 = 1, ρ2 = 0,
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modes guarantees a good plasma–vacuum coupling, while the coupling of the
quasi-mode with the singular Alfvén continuum modes guarantees efficient dissi-
pation. The good plasma–vacuum coupling at ωd = √

2 is confirmed in Fig. 11.4
which displays the coupling factor versus the driving frequency. Fig. 11.4, how-
ever, reveals a second driving frequency that yields excellent plasma–vacuum cou-
pling. This is due to the presence of the antenna, which modifies the eigenvalue
problem to be solved. As a matter of fact, besides the plasma–vacuum surface
mode calculated in the previous chapter, there is now also a mode that ‘fits’ per-
fectly in the plasma–vacuum–antenna system.

This second mode can easily be derived. Consider the plasma to be completely
uniform (a = 0). The energy flux is given by the Poynting vector which is propor-
tional to Q̂x Q̂z in the vacuum region. In the eigenvalue problem, i.e. without the
driving current in the antenna, this energy flux must be continuous everywhere, in
particular at the antenna: [[Q̂x Q̂z]]c = 0. Since Q̂x is continuous everywhere, this
means that the boundary condition at the antenna can be written as

Q̂x

∣∣∣
c

[[Q̂z]]c = 0. (11.46)

For the surface mode we required both Q̂x and Q̂z to be continuous at the antenna
position x = c. There is, however, a second possibility to satisfy the above bound-
ary condition, viz. by requiring that Q̂x vanishes at x = c. This yields A3 = B3

and A4 = 0 which means that the induced solution vanishes at x = c. Linking the
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Fig. 11.5. Scan of the fractional absorption fa in the steady state versus the
driving frequency for δ = 0.001, a = 0.005, c = 0.1, k‖ = 1, k⊥ = 10, ρ1 = 1,
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vacuum solution to the plasma solution as before then yields an eigenvalue prob-
lem the solution of which is given by

ω2 = ω2
A1

1 + tanh(k0c)

k2
‖/k2

⊥ + tanh(k0c)
. (11.47)

When the antenna is placed far away from the plasma (c → +∞), tanh(k0c) ≈
1 and the frequency of this mode matches the frequency of the plasma–
vacuum surface mode, i.e. ω = √

2 ωA1. For the parameters chosen in
Fig. 11.4, however, one finds ω ≈ 1.52. When there is a transition layer
(a �= 0) this mode also couples to the continuum modes and its frequency be-
comes complex. When the system is driven externally, the oscillatory part of this
frequency yields perfect coupling, as can be concluded from Figs. 11.4 and 11.5.

Figure 11.5 displays the dependence of the fractional absorption on the driving
frequency which quantifies the efficiency of the resonant absorption mechanism
in a different way (see above). It shows that, in this case, both optimal driving
frequencies 1.41 and 1.52 yield total or perfect absorption, i.e. fa = 1 (or 100%).
This means that, in the steady state, all the energy that enters the plasma stays
in the plasma. For other driving frequencies the plasma–driver coupling is not
perfect.



11.1 Ideal MHD theory of resonant absorption 549

11.1.3 Resonant ‘absorption’ versus resonant ‘dissipation’

Clearly, dissipative effects will prevent unlimited growth and will cause a real,
dissipative, plasma to reach a stationary state after a finite time. In this stationary
state all physical quantities oscillate harmonically with a constant amplitude (in
time) and with the frequency imposed by the external source. The power supplied
by the external source is exactly balanced by the energy dissipation rate in the
plasma. In the above ideal MHD solution obtained in Section 11.1.1 this steady
state was simulated in ideal MHD by considering artificial damping in the form of
an imaginary part of the external driving frequency.

This is simpler than solving the dissipative MHD equations which are more
complicated. The visco-resistive MHD equivalent of Eq. (11.2), for example, reads

⎛
⎜⎜⎜⎜⎝

ρω2 + d

dx
B2 d

dx
− k2

‖ B2 − iωρ(η + ν)
d2

dx2

d

dx
k⊥B2

−k⊥B2 d

dx
ρω2 − k2 B2 − iωρ(η + ν)

d2

dx2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ξx

iξ⊥

⎞
⎟⎟⎟⎟⎟⎠ = 0 ,

(11.48)

where the scalar viscosity ν and the electrical resistivity η are only retained in
terms with derivatives in the x-direction. The reason for doing so is that these
dissipative effects are extremely small in hot plasmas (e.g. in the solar corona
or in tokamaks) and the dissipative terms only contribute in combination with
x-derivatives which become extremely large in the neighbourhood of ideal sin-
gularities, as we have seen in the above ideal solution. The visco-resistive terms
have the same effect as the artificial damping term in the previous sections, viz. to
remove the singularity from the equations and, hence, to keep the solution finite.
The fact that the dissipative effects are extremely small in the hot plasmas of in-
terest results in nearly-singular behaviour in the neighbourhood of the ideal MHD
resonance positions in a very similar way to that in the above solution. We will see
examples of this below when some numerical solutions of the dissipative MHD
equations are discussed.2

Remark on the resistive MHD solution and energetics Kappraff and Tataronis
[120] considered a similar configuration of a planar sheet pinch but with sheet
currents on both sides of the plasma and with finite plasma resistivity. These

2 Analytical solutions of Eqs. (11.48) have been derived but these will not be discussed here since the analysis
becomes quite involved. Moreover, for non-trivial equilibria the solutions are only partly analytical and the
help of a computer is required after all.
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authors demonstrated that the high absorption rate obtained in ideal MHD
indeed corresponds to an effective heating rate in highly conductive tokamak
plasmas. Their analysis is quite involved, including an asymptotic matching
procedure of the solution in the resistive layer with the ideal MHD solution
outside the layer and an inverse Laplace transformation of the resistive layer
solution. The analysis reveals two time periods which characterize the energy
absorption. Initially the energy accumulates at the singular layer, just like in
ideal MHD, up to a critical time th which scales as η−1/3. In our notation
their solution reads

ξ⊥(t) ∼=
{

N (ωd) t exp(−iωd t) (for t < th)

N (ωd) th exp(−iωd t) (for t > th),
(11.49)

with N (ωd) a multiplicative constant, that depends on the nature of the equilibrium
and the source but is independent of η, and with

th =
(

24µ0

ω2
dη

)1/3 (
2B′

1(x0)

B
− ρ′(x0)

ρ

)−2/3

. (11.50)

Hence, for t > th the growing solution in the resistive layer has reached a satu-
ration amplitude and the absorbed energy is transferred to heat through Ohmic
dissipation.

Sakurai et al. [200] and Goossens et al. [96] followed a similar approach but for
cylindrical geometry. These authors used asymptotic expansions of solutions of the
dissipative MHD equations to derive jump conditions or connection formulas that
are used to integrate the equations through the near-singularities at the resonance
points. This method was used in many papers on resonant absorption later on.

In resistive MHD, the plasma heating is treated consistently. This makes it pos-
sible to get a more detailed picture of the energetics in the driven system which
can be derived from the linearized MHD equations. Below, we will denote the per-
turbed current density by j1 (here we need the subscript 1 on j1 because there is
also j0). The perturbed electric field is still denoted by E. Combining Maxwell’s
law and Faraday’s law, for example, we easily get

−∇ · (E∗ × Q) = j1 · E∗ + Q · ∂Q∗

∂t
, (11.51)

which means that the inflow of electromagnetic energy (LHS term) produces elec-
trical energy for the plasma (first RHS term) and gives a rise in the magnetic en-
ergy (second RHS term). In turn, the electrical energy given to the plasma by the
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disturbance of the electromagnetic field may be rewritten:

j1 · E∗ = η|j1|2 + v∗ · j1 × B0. (11.52)

Thus, the electrical energy appears as heat by Ohmic dissipation (first RHS term)
plus work done by the j1 × B0-force. Furthermore, the scalar product of v∗ with
the equation of motion yields the so-called mechanical energy equation:

ρ0 v∗ · ∂v
∂t

= −v∗ · ∇ p1 + v∗ · j0 × Q + v∗ · j1 × B0. (11.53)

The above three equations may be combined and integrated over the plasma
volume V to give the resistive energy balance:

−1
2

∫
V

∇ · (E∗ × Q) dV = 1
2

∫
V

ρ0 v∗ · ∂v
∂t

dV︸ ︷︷ ︸
K̇

+ 1
2

∫
V

v∗ · ∇ p1 − v∗ · j0 × Q + Q · ∂Q∗

∂t
dV︸ ︷︷ ︸

Ẇp

+ 1
2

∫
V

η|j1|2 dV︸ ︷︷ ︸
Ḋ

. (11.54)

This means that the inflow of electromagnetic energy (LHS term) in the plasma
region yields a rate of change of the kinetic energy of the plasma (K̇ ), a rate of
change of the potential energy of the plasma (Ẇp) and a heating rate due to Ohmic
dissipation (Ḋ). Of course, the LHS term in the above equation is related to the
power emitted by the antenna. For η �= 0 the tangential components of the mag-
netic field perturbation are continuous at the plasma–vacuum boundary, and with
the help of Gauss’ theorem this means that the LHS term can be written as

−1
2

∫
V

∇ · (E∗ × Q) = 1
2

∫
V̂

j�c · Ê∗ dV̂ = −1
2

∫
V̂

ĵ�c · Ê∗

︸ ︷︷ ︸
Pant

− 1
2

∫
V̂

Q̂ · ∂Q̂∗

∂t︸ ︷︷ ︸
Ẇv

,

(11.55)

i.e., the inflow of electromagnetic energy in the plasma equals the outflow of elec-
tromagnetic energy out of the vacuum region, which is the power emitted by the
antenna (Pant) minus the rate of change of the vacuum magnetic energy (Ẇv).
Hence, combining Eq. (11.54) and Eq. (11.55) yields

Pant = K̇ + Ẇp + Ẇv + Ḋ, (11.56)

i.e., the power emitted by the antenna produces a change of the kinetic and poten-
tial energy of the plasma and of the potential (magnetic) energy of the vacuum plus
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heat by Ohmic dissipation. It is also clear that, in the steady state, RePant = Ḋ,
which means that the energy supply by the external harmonic source is exactly
balanced by the dissipation rate in the plasma.

For η sufficiently small, the Ohmic heating rate is very well approximated by the
energy accumulation rate obtained in ideal MHD. Hence, Kappraff and Tataronis
obtained the following expression for the resonant dissipation rate:∫

V
ηJ 2

1 dx = dW

dt

∣∣∣∣
ideal MHD

, (11.57)

in the limit η → 0.
The coupling factor and the fractional absorption express the efficiency of the

resonant absorption mechanism in the steady state by comparing quantities aver-
aged over a driving period. Hence, they do not contain any information on the time
scales of the mechanism, which are nonetheless important. As a matter of fact,
efficient absorption in the steady state means nothing if the steady state is only
reached in an asymptotic way. The latter remark is related to the quality factor Q
of the resonance which is defined as [178]:

Q = |K̇ | + |Ẇp| + |Ẇv|
2π |Ḋ| , (11.58)

i.e. the ratio of the total energy contained in the system to the Ohmic heating
per driving cycle in the stationary state. Notice that the norm of each component
of the total energy has been taken separately in the definition of Q. In perfect
coupling cases these terms can be quite large, but K̇ has the opposite sign of Ẇp

and Ẇv and, therefore, these terms cancel out and Im(Pant) vanishes so that the
fractional absorption becomes 1. In the quality factor, however, these terms do not
cancel out and Q compares the amount of dissipation in one driving period to the
amount of energy that has to be pumped into the system before the steady state
is reached. It thus tells us something about the time scales of the process. Good
quality resonances have little losses and thus high Q-values. This means that a
lot of energy needs to be put into the system to reach the steady state. Hence, for
efficient heating on short time scales, low Q-values are required. Good plasma–
driver coupling does not guarantee a low-Q resonance, and vice versa.

Remark that the quality of LRC-circuits or resonant cavities is sometimes
defined as

Q∗ = ω0

ω
, (11.59)

where ω0 is the resonance frequency and ω denotes the width at half-maximum
of the peak in the resonance curve which is obtained by plotting the power ab-
sorbed by the oscillator as a function of the driving frequency ω (see, e.g., [110]).
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The superscript ∗ is added to distinguish the two definitions. As a matter of fact,
it can be shown that the definitions are equivalent in the simple case of a resonant
LRC-circuit or a resonant cavity, at least when the damping is weak so that the
resonance is sharp. Here, however, the two definitions are not equivalent [178].

11.2 Heating and wave damping in tokamaks and coronal magnetic loops

As already mentioned, resonant absorption of Alfvén waves was first studied in the
context of controlled thermonuclear fusion research to provide an additional heat-
ing mechanism for tokamak plasmas. In 1978, Ionson proposed the same heating
mechanism for solar coronal loops to explain the high temperature of the solar
corona [116]. Since then, the efficiency of resonant absorption or ‘Alfvén wave
heating’ has been studied extensively in this context too. In the present section, we
briefly discuss these applications and the main results are illustrated for a simple
cylindrical plasma.

11.2.1 Tokamaks

(a) Heating of tokamak plasmas In large tokamaks, Ohmic heating due to the
plasma current of a few MA yields ion temperatures of a few keV (recall that
1 keV ≈ 1.1 × 107 K), typically 30–40% of the required 108 K for the fusion of
deuterium and tritium (see Chapter 1). Hence, a considerable amount of supple-
mentary heating is required.3 In the early 1970s it was suggested that the Alfvén
continuum resonances be exploited for this purpose [225]. Due to the low fre-
quencies involved (a few MHz), it was relatively easy and cheap to build antennas
that generate the required power at the required frequencies. Experiments, such
as with the ‘Tokamak Chauffage Alfvén’ (TCA) and its successor the ‘Tokamak
à Configuration Variable’ (TCV) in Lausanne [28], were done to check the the-
oretical predictions and it was demonstrated that the antennas can indeed couple
electromagnetic energy to the plasma efficiently and that resonant absorption is
an efficient heating mechanism for tokamak plasmas. However, it turned out that
most of the resonances occur close to the plasma edge so that the experiments
yielded edge heating instead of heating of the inner core [15]. The TCA toka-
mak is living its second life in Brazil as the TCA-BR, at present installed in the
plasma laboratory of the Applied Physics Department of the University of São
Paulo [7].

3 An alternative would be to increase the plasma current, which requires a tokamak with a very large magnetic
field. Such an experiment has been suggested in the IGNITOR project but it has not been built so far for various
economic and political reasons [37].
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Nowadays, similar heating mechanisms are used to deposit energy in the inner
plasma layers of tokamaks but involving higher frequencies, such as ion cyclotron
resonance heating (ICRH), with frequencies �i in the range 20–120 MHz depend-
ing on the magnetic field and the ion species involved, lower hybrid resonance
heating (LHRH) with frequencies between �i and �e (1–8 GHz), and electron cy-
clotron resonance heating (ECRH), with frequencies �e in the range 50–200 GHz.
These methods are known under the common name radio frequency (RF) heat-
ing. They are usually operated in conjunction, and supplemented with alternative
heating methods like neutral beam injection.

(b) Damping of global Alfvén waves Additional plasma heating by neutral beam
injection or ICRH at frequencies of the order of the MHD continuum frequencies
generates energetic He nuclei flying through the plasma at supra-thermal speeds.
These α-particles can then destabilize the global toroidicity induced Alfvén eigen-
modes (so-called TAEs) by a particle–wave interaction which leads to the loss of
them before their energy can be thermalized. Since the confinement of α-particles
is essential for ignition, this particle–wave interaction has been studied in detail.
TAEs are observed routinely in large tokamaks, such as for example TFTR, DIII-
D, JET, JT-60 [232]. Experiments have shown that TAEs can indeed be desta-
bilized by the energetic particles, but the threshold for instability turned out to
be much higher than expected from theoretical estimates based on collisionless
Landau damping (see Section 2.3.3). Cylindrical or slab geometry simplifications
cannot be applied here since TAEs owe their existence to the toroidicity of the
plasma, which results in ‘gaps’ in the continuous spectrum due to coupling of the
poloidal wave numbers. Hence, the models are necessarily two-dimensional and
will be discussed in detail in the chapter on waves and instabilities in tokamaks in
the companion Volume 2. Numerical investigations showed that the global Alfvén
modes also experience resonant damping, which might explain the increased in-
stability threshold [185].

11.2.2 Coronal loops and arcades

The temperature increase above the photosphere of the Sun (Fig. 8.13) requires
work which is, most probably, done by the motions of the convection zone. These
motions produce much more energy than required to heat the upper solar atmo-
sphere, which has a very low heat capacity due to its extremely low density. Hence,
the only problems left are to explain (1) how this energy gets to the upper layers of
the solar atmosphere, and (2) how it is transformed into heat in those layers. There
is an additional problem associated with the inhomogeneity of the upper atmo-
spheric layers which consist of many magnetic structures. All of these structures,
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with a variety of length scales, have to be heated. Many solar physicists think it
is not likely that one single heating mechanism is responsible for the heating of
all these magnetic structures but that, instead, several heating mechanisms oper-
ate. These may be more or less effective in coronal holes, short coronal loops,
long coronal loops, etc. However, it is almost certain that the heating mechanisms
that are responsible for the heating of the upper layers of the solar atmosphere are
magnetic in nature.

The magnetic heating mechanisms that have been proposed, and that are still
investigated, can be divided into two types [133] differing with respect to the time
scales of the external driving source. The first type is the wave heating mechanism.
Here, problem (1) is ‘solved’ by MHD waves that are generated by the upwelling
convective motions in the photosphere and that propagate through the photosphere
and the chromosphere to reach the corona. For the efficient dissipation of this wave
energy in the upper atmospheric layers (problem (2)), small length scales have to
be created in order to make the time scale for magnetic diffusion (τd ∼ µ0l2/η)
reasonably short. Such small length scales could be produced, for example, by the
transformation of the waves into shocks or by ‘resonant absorption’. Clearly, the
time scale of the driving source must be relatively short compared to the time a
perturbation needs to cross the loop in order to generate waves in the loop. The
second kind of magnetic heating mechanism involves Joule dissipation of electric
current sheets along the coronal magnetic field lines and involves much longer
perturbation time scales. These currents could be generated by slow twisting of the
flux tubes by the photospheric convective motions (problem (1)) and the release of
energy could take place in narrow current layers (problem (2)). In the following,
we will concentrate on resonant heating.

11.2.3 Numerical analysis of resonant absorption

The efficiency of the resonant absorption mechanism has been investigated quan-
titatively in tokamak plasmas, coronal plasmas and magnetospheric plasmas. The
coronal loops and arcades are usually modelled by a straight cylinder or even a
slab, so that the curvature of the loops along their length is not taken into account
(see Fig. 11.6). As we have seen, in the early studies the geometry of tokamak plas-
mas was simplified in the same way. Later, however, numerical studies quantifying
resonant absorption took into account the full geometry of the plasma, including
the toroidal curvature and the non-circularity of the poloidal cross-section as, e.g.,
in Ref. [185]. Here, the main numerical results for cylindrical plasmas are briefly
reviewed. To illustrate these results, we consider a generic cylindrical equilib-
rium (coronal loop or tokamak) in which the profile of the local Alfvén frequency
ωA(r) = (m Bθ/r + k Bz)/

√
ρ is parabolic (Fig. 11.7). For m = 2 and kz = 0.05,
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Fig. 11.6. Straightening a coronal magnetic loop with sideways wave excitation
into a cylindrical model.

Fig. 11.7. Profile of the local Alfvén frequency resulting from a parabolic cur-
rent density profile jz(r), constant magnetic field Bz , plasma density ρ, and wave
numbers m = 2 and kz = 0.05.

the ideal Alfvén continuum then ranges from ωA(1) = 0.15 to ωA(0) = 0.25 in
dimensionless units (since a = Bz = ρ = 1).

(a) Temporal evolution This equilibrium is now excited periodically at a fre-
quency ωd = 0.205 located in the range of the continuum. The ideal singular layer
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Fig. 11.8. Snapshots of v1⊥(r) for ωd = 0.205, η = 10−6 (other parameters as
in Fig. 11.7).

that corresponds to this oscillation frequency is located at r = 0.671, i.e. ωd =
ωA(0.671). In Fig. 11.8, snapshots of the radial profile of the velocity perturbation
tangential to the magnetic surfaces and perpendicular to the magnetic field lines,
v1⊥ = (v1θ Bz − v1z Bθ )/B, are plotted versus dimensionless time. The time step
between the snapshots is five driving periods and the magnetic Reynolds number
Rm = 106. In the initial phase, the relatively small plasma response is global and
phase mixing only occurs as time progresses. The plasma response localizes in
a gradually diminishing plasma layer around r = r0 = 0.671, where large gradi-
ents build up. This localization and the growth of the oscillation amplitude in the
resonant layer end after about 50 driving periods. From then on, the plasma os-
cillates purely harmonically, i.e. all the magnetic surfaces oscillate with constant
amplitude and with the frequency ωd of the external source. In other words, the
system has reached a stationary state. The delta function δ(r − r0) and singular-
ity (r − r0)

−1, characteristic for the perpendicular tangential component of the
ideal Alfvén mode (see Eq. (7.154)), are still recognizable in this typical resistive
solution.

(b) Energetics The time dependence of the energetics of the externally driven re-
sistive plasma column is shown in Fig. 11.9. Here, the mean power P emitted by
the external antenna, the mean rate of change of the kinetic energy K̇ and of the
potential energy Ẇp of the plasma, the mean Ohmic dissipation rate Ḋ, and the
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Fig. 11.9. Time-averaged power (curve a), change of kinetic energy (curve b),
change of potential plasma energy (curve c), Ohmic dissipation rate (curve d) and
change of vacuum magnetic energy (curve e) versus number of driving periods
for ωd = 0.205 and η = 10−6 (other parameters as in Fig. 11.7).

mean rate of change of the vacuum magnetic energy Ẇv are plotted versus the
number of driving periods. These quantities are defined in Eqs. (11.54) and (11.55),
and satisfy the relation (11.56). The initially oscillatory behaviour of these quan-
tities is a consequence of the ‘beats’ that result from the initial excitation of the
ideal quasi-mode.4

Initially, in the first 10 to 15 driving periods, the power supplied by the exter-
nal source produces mainly a change of the kinetic and potential energy of the
plasma and also, to a lesser degree, a change of the vacuum magnetic energy.
In this phase, the Ohmic dissipation rate is very low. As time progresses, how-
ever, the rate of change of the kinetic and potential plasma energy and the rate
of change of the vacuum magnetic energy gradually decrease and the Ohmic dis-
sipation rate increases. Then, after about 55 driving periods the system attains a
stationary state: the kinetic and potential plasma energy and the vacuum magnetic

4 The beat frequency that results from sin(ωd t) + sin(ωqmt) is 1
2 (ωd − ωqm) .
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Fig. 11.10. Scaling of the time needed to reach the stationary state with the mag-
netic Reynolds number for typical coronal loop parameter values.

energy do not change any more (K̇ = Ẇp = Ẇv = 0) and the power supplied by
the external source is exactly balanced by the Ohmic dissipation rate in the plasma
(P = Ḋ).

The time interval needed to reach the stationary state, τss, depends on the plasma
resistivity. We computed this dependence by means of numerical simulations keep-
ing all parameters fixed except the plasma resistivity η. The time needed to reach
the steady state is proportional to the cubic root of the magnetic Reynolds num-
ber. Hence, in terms of η, we get τss ∼ η−1/3 (see Fig. 11.10), in agreement with
the analytical result of Kappraff and Tataronis [120] (see also Eq. (11.50)). How-
ever, the additional excitation of an ideal quasi-mode in the initial phase yields a
different η-scaling, viz. τss ∼ η−1/5 (upper curve of Fig. 11.10).

(c) Discussion We have seen that the ideal quasi-modes play an important role
in resonant absorption and affect both the efficiency and the time scales of this
heating mechanism considerably. Excitation of a plasma at the frequency of such
a weakly-damped quasi-mode yields 100% absorption, which means that all the
energy that is supplied by the external source is absorbed by the plasma and, in
the stationary state, converted into heat by Ohmic dissipation. Driving at an arbi-
trary frequency in the range of the ideal Alfvén continuum yields a less efficient
plasma–driver coupling. This is a result of the fact that Alfvén waves cannot be
driven directly by a sideways external driver as they propagate the energy mainly
along the magnetic field lines. The contribution of the global mode is that it can
transport the energy from the external driver across the magnetic surfaces to the
inner plasma. The global mode has a frequency inside the continuous spectrum and
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thus couples to an Alfvén wave, and it is this (nearly-singular) wave energy that
is finally dissipated. However, for ‘ordinary’ continuum frequencies the fractional
absorption can still be very high, depending on the equilibrium profiles. For typical
coronal loop parameter values, driving at frequencies in the continuous spectrum
often yields more than 90% ‘absorption’, i.e. more than 90% of the energy sup-
plied by the external driver is actually dissipated and converted into heat. Driving
at the foot points turns out to be even more efficient. This is due to the fact that in
this way the Alfvén waves can be driven directly and there is no need for a global
mode to transport the energy from the external driver to the inner plasma (see
Section 11.3.1).

For sideways driving, it has been confirmed now that the basic time scale of res-
onant absorption depends on the proximity of the driving frequency to the quasi-
mode frequency: for driving at the quasi-mode frequency, τss ∼ η−1/5, while for
driving frequencies in the range of the ideal continuum but not close to the quasi-
mode frequency, τss ∼ η−1/3. The results of the numerical simulations have been
presented in dimensionless units. In active region loops on the Sun, the Alfvén
continuum frequencies ω ≈ 0.1–1 typically correspond to 0.005–2 Hz. For realis-
tic loop equilibria, τss varies from a few minutes to a few hours, i.e. much shorter
than the typical life time of coronal loops (1 day), even for realistic values of
η. Hence, resonant absorption is very efficient for typical coronal loop values
and a viable mechanism for heating of solar coronal loops. In tokamaks, the
time scales for resonant absorption are much shorter. For a fully ionized toka-
mak plasma with an ion number density of 1020 m−3, a small radius of 0.2 m, and
a toroidal magnetic field of 2 T, the driving frequency ω = 0.205 corresponds to a
frequency of 1 MHz. Hence, for typical parameter values for small tokamaks, the
time scale to reach the steady state is very short: for Rm = 108 the steady state is
reached after about 150 driving periods in the simulation discussed above, i.e. after
about 150 µs.

The cylindrical model considered here in the framework of linearized MHD is
only a first approximation. For a final conclusion on the role of resonant absorp-
tion in coronal heating, more realistic simulations including effects of line-tying,
curvature, foot point excitation, and nonlinearity need to be taken into account.
Such simulations are being conducted at present. Line-tying has a drastic influ-
ence on the waves that appear in the loops and on the continuous spectrum. Also,
for realistic magnetic Reynolds numbers the dynamics of the shear flow in the
resonant layers turns out to be very nonlinear [170, 180, 186]. Nonlinear effects
include background flows (leading to Doppler shifts of the continuum frequen-
cies), nonlinear mode coupling, and Kelvin–Helmholtz instability of the resonant
layers [170, 186]. Last but not least, a final conclusion also requires observational
data on the power spectrum of the waves that are incident on the coronal loops.
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11.3 Alternative excitation mechanisms

In the previous section we considered the simplest possible model to describe the
mechanism of resonant absorption in a laboratory situation where the plasma is
excited by a current in an external coil. In that case, the fast magneto-sonic wave
mode plays the crucial role of energy carrier. As a matter of fact, shear Alfvén
waves are unable to transfer the energy emitted by the external antenna from the
antenna to the resonant layer since Alfvén waves can only transport energy along
the magnetic field lines. Their group velocity is directed along the magnetic field,
as discussed in Section 5.3. This is also clear from the system of equations (11.2)
and the solution derived in the previous section: for k⊥ = 0 the Alfvén mode de-
couples completely from the fast magneto-sonic mode and the resonant absorption
mechanism simply does not work. Indeed, the constants A3 and B3 are zero in that
case (since X = 0 when k⊥ = 0) and the plasma does not respond to the external
driver.

As mentioned in the introduction, the resonant absorption mechanism is in-
tensively studied for many different situations. From a topological point of
view these different physical set-ups can be classified into three configurations
which are schematically displayed in Fig. 11.11. The first configuration, dis-
played in Fig. 11.11(a), is the plane slab version of the model problem III, dis-
cussed in Section 4.6. It corresponds to the sideways driven plasma discussed in
the previous section. This configuration is used to study resonant absorption in
tokamak devices, sideways driven coronal loops, and the Earth’s magnetopause
(Section 11.3.3). The second configuration (Fig. 11.11(b)) refers to the model

B0 B0 B0

Y

X

Z

X

Z

X

Z(a) (b) (c)

Y Y

Fig. 11.11. Three different configurations corresponding to model problems III,
IV and V of Section 4.6: (a) a sideways driven finite (‘closed’) loop, (b) the same
system but driven at the ‘foot points’, and (c) an ‘open’ system without resonances
but with phase mixing.
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problem IV and is used to model the heating of solar coronal loops by foot point
driving. From the physical point of view, this set-up is simpler than the previous
one in the sense that the Alfvén waves can be excited directly, i.e. without the
need of fast magneto-sonic wave modes, since the location of the energy source
does not require the transfer of energy through magnetic flux surfaces here. Hence,
this situation is mathematically tractable, even when dissipation is taken into ac-
count. It will be discussed in further detail below in Section 11.3.1. The first and
second configurations have a finite length in the direction parallel to the magnetic
field. The configuration can be periodic in this direction (as in a tokamak), or the
ends of the field lines may be fixed (as in a coronal loop). The third configuration
(Fig. 11.11(c)) corresponds to the plane slab version of model problem V of Sec-
tion 4.6. It differs from the two previous ones by the fact that the field lines are
‘open’, i.e. very much longer than the wavelength in the parallel direction. It is
representative for extremely long loops (as compared to the excited wavelengths)
or coronal holes. In this situation, no resonances can occur but small length scales
can still be created by phase mixing of the field lines. This process also occurs in
resonant absorption and will be discussed in further detail in Section 11.3.2.

11.3.1 Foot point driving

Consider a simple slab model with a uniform magnetic field B in the z-direction
and a density that is stratified in the x-direction only. Let us neglect the effect of
plasma pressure and gravity for the time being and suppose the slab is bounded
in the z-direction by two boundaries at z = 0 and z = L (Fig. 11.12). This
set-up corresponds to configuration (b) of Fig. 11.11 and could be a simple
model for a solar coronal loop. With L = 108 m and an average Alfvén veloc-
ity vA = 2 × 106 m s−1, the characteristic time scale of such a loop would be
τA = L/vA = 50 s. As a result of the non-uniformity of the density, the Alfvén
velocity and, hence, the local Alfvén frequency are functions of x . Thus, the ideal
MHD spectrum of this simple model plasma contains an Alfvén continuum.

Let us assume that the above system is excited by a mono-periodic driver at
one of the foot points of the loop, e.g. at z = 0, with a frequency ωd in the range
of the continuous spectrum. Then, as in the situation discussed in the previous
section, a resonance will occur at x = x0, where ωd = ωA(x0) = kz B/[ρ(x0)]1/2

(see Fig. 11.12). Hence, in the stationary state a solution of the form

ξy(x, z, t) = A(x) ei(kz z−ωd t) , (11.60)

is obtained. (We here ignore the fact that, in general, a Fourier series is required
in the z-direction in order to satisfy the line-tying boundary conditions at z = 0
and z = L [87, 103], according to Eq. (4.189) for model IV of Section 4.6.3.)
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Fig. 11.12. Simple slab model for a coronal loop, ignoring curvature effects of
the field lines and magnetic shear effects but taking into account ‘line-tying’,
i.e. ‘anchoring’ of the ‘foot points’ of the magnetic field lines in the dense
photosphere.

There are two important remarks to be made at this point. First of all, notice that
the driving frequency is real now. This is because we will include viscosity and
resistivity so that there is no need to include artificial damping to circumvent the
singularity in the equations. Secondly, we simplified the model by considering per-
turbations which are polarized in the y-direction. The divergence-free condition
for the perturbed magnetic field then reduces to ky Q̂y = 0 so that k⊥ = ky = 0
and the physical quantities do not depend on the y-coordinate. (Notice that, as a
result of this assumption, the perturbations become automatically incompressible,
∇ · v1 = ikyv1y = 0 , so that the assumption k‖ � k⊥ must be dropped. This gives
an additional dissipative term ∼ k2

z in Eq. (11.61) below.) We can then take dis-
sipative effects into account while keeping the analysis tractable. As a matter of
fact, the equations in the system (11.48) then decouple and the dynamic equation
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for the Alfvén waves can be studied separately. This decoupling of the Alfvén and
fast wave modes means that in the present configuration the mechanism discussed
in the previous section would not work. With the foot point driver, however, the
fast wave modes are not required since the energy does not have to be transferred
across the magnetic surfaces and the Alfvén waves are excited directly by foot
point motions that are polarized in the tangential perpendicular (y) direction. As
we will see below, considering k⊥ = ky �= 0, i.e. coupling between Alfvén and fast
waves, affects the efficiency quite substantially, though, especially when random
driving is considered.

The visco-resistive dynamic equation for the Alfvén wave then reads:

∂2ξy

∂t2
− (η + ν)

(
∂2

∂x2
− k2

z

)
∂ξy

∂t
+ ω2

A(x) ξy = F(x) ei(kz z−ωd t), (11.61)

where the effect of an external harmonic driving term F with frequency ωd is taken
into account. The explicit form of F(x) depends on details of the driver, i.e. the
velocity profiles given on the boundaries at z = 0 and z = L . Equation (11.61) is
the equation of a continuum of coupled forced oscillators which are damped.

� Amplitude and phase at resonance. The resonant behaviour described by Eq. (11.61) is
similar to the well-known resonance of a driven oscillator described in many textbooks; see
e.g. [39]. We can trace this comparison further by making a local analysis around a point
x = x0, i.e. a specific field line. This yields the classic equation for a forced and damped
oscillator:

∂2ξy

∂t2
+ (η + ν)(k2

x + k2
z )

∂ξy

∂t
+ ω2

0 ξy = F0 e−iωd t , (11.62)

where F0 ≡ F(x0) and ω0 ≡ ωA(x0). Substitution of a solution of the form ξy(x, z; t) =
A0 exp{i(kx x + kzz − ωd t)} yields

A0 = F0

(ω2
0 − ω2

d) − iωd(η + ν)(k2
x + k2

z )
. (11.63)

For η = ν = 0, the amplitude A0 becomes real (the plasma response is in phase or in
opposite phase with the external driving force) and infinite when the driver frequency ωd
matches the ‘natural’ frequency ω0 of the system. This is called ‘resonance’. The behaviour
of the field line resonator changes considerably if we include dissipation (η �= 0 and/or
ν �= 0). First of all, the absolute value of A0 is reduced for every value of ωd and remains
finite for ωd = ω0. Next, the phase angle between the motion of the field line and the
external driving force depends on the frequency,

tan−1 Im(A0)

Re(A0)
= tan−1 ωd(η + ν)(k2

x + k2
z )

(ω2
0 − ω2

d )
, (11.64)

going through π/2 at the resonance. �
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The characteristic time and length scales of the resonant absorption process
can be estimated fairly easily. Let us assume that the system has been driven at a
single frequency, viz. ωd , for a long time so that it has reached a steady state. In
this steady state, all physical quantities have a time behaviour of the form e−iωd t .
Making the resonance condition explicit by using the linear Taylor expansion of
ω2

d − ω2
A around the point x0 where ωd = ωA(x0),

ω2
d − ω2

A = −(x − x0)
dω2

A

dx

∣∣∣∣
x=x0

, (11.65)

a simplified version of Eq. (11.61) is obtained which is valid only in the vicinity
of the resonance position:

(x − x0) 2 ωA(x0)
dωA

dx
(x0) ξy + iωd(η + ν)

∂2ξy

∂x2
= F(x, z) e−iωd t . (11.66)

Here, we also exploited the fact that |kz| = |∂/∂z| � |∂/∂x | in the steady state to
drop the terms with k2

z . The dissipation is only significant when the absolute value
of the second, dissipative, term in the above equation becomes comparable with
the first term. This comparison leads to an estimate of the characteristic length
scale l0 of the resonant absorption process:

l0 ∼
(

η + ν

2 |ωA
′|x=x0

)1/3

, (11.67)

where the prime denotes the derivative with respect to x . Upon substitution of
this characteristic dissipation length scale in the expressions for the time scales of
resistive diffusion, τres = l2

0/η, and viscous diffusion, τvis = l2
0/ν, we find that the

characteristic time scale for resonant absorption scales as

τra ∼ (ν + η)−1/3 |ωA
′|−2/3. (11.68)

Notice that, if the profile of the local Alfvén frequency is not monotonic, there
may exist two or more dissipation layers, even if the driver is mono-periodic. Also,
a multi-periodic driver will create many dissipation layers in the plasma so that the
whole plasma volume can be heated by resonant absorption.

11.3.2 Phase mixing

Let us again consider the ‘closed’ configurations discussed in the previous subsec-
tion. So far we assumed a mono-periodic driver. In a more realistic model for the
solar corona, the driver has a broad spectrum and the time evolution of the wave
amplitude is given by a superposition of the nearly-singular solutions discussed
above. When each field line picks up its own characteristic frequency from the
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Fig. 11.13. ‘Cascade’ of energy to small length scales due to phase mixing: (a)
in the initial state (t = 0 and/or z = 0) all field lines are in phase; (b) at t = t1 > 0
phase mixing sets in; (c) at later times small length scales develop.

broad spectrum of the driver, we get a solution of the form

ξy(x, z, t) = A(x) ei[kz z−ωA(x)t], (11.69)

which means that the field lines get more and more out of phase as time evolves,
i.e. we get phase mixing. This yields an effective wave number

kx,eff = ωA
′ t , (11.70)

which is proportional to t , meaning that the effective wavelength becomes smaller
and smaller as time proceeds (see Fig. 11.13). This ‘cascade’ of the energy to
ever smaller length scales continues until the effective wavelength becomes of
the order of the length scale l0 of Eq. (11.67) when the dissipative terms become
important. Hence, we can define a phase mixing time τmix as the time at which
kx,eff = 1/ l0, i.e.

τmix = 1

l0|ωA
′| ∼ (η + ν)−1/3 |ωA

′|−2/3. (11.71)

This phenomenon of phase mixing also occurs in the resonant absorption pro-
cess discussed in the previous section. There too the field lines are initially in
phase, but in the steady state shown in Fig. 11.2 the phases of the field lines are
clearly not the same any more. In fact, the process of bringing neighbouring field
lines out of phase is essential to get short length scales. Notice that we do not re-
ally need a resonance condition to get phase mixing. This process can also occur in
coronal holes in which running waves along the ‘open’ field lines get phase mixed
as time evolves. As a matter of fact, considering now the configuration displayed
in Fig. 11.11(c) and assuming the foot points of the field lines are excited by a
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mono-periodic driver, we obtain running wave solutions of the form

ξy(x, z, t) ∼ ei[kz(x)z−ωd t] , (11.72)

where now, instead of the frequency, the wave number depends on x : kz(x) =
ωd/vA(x). Since the phase speed of the waves depends on x , the running waves
phase mix as they propagate along the field lines. This results in an effective wave
number in the x-direction which scales with z:

kx,eff ∼ 1

ξy

∂ξy

∂x
∼ k ′

zz. (11.73)

Hence, large wave gradients are built up in the wave front as the waves propagate
and z increases. These large gradients will appear at lower heights when the plasma
is more inhomogeneous, i.e. when k ′

z(x) is larger. This means that we can define a
phase mixing height zmix as the height where kx,eff = 1/ l0:

zmix = 1

l0k′
z
. (11.74)

Phase mixing of running Alfvén waves has been proposed as a possible means
for explaining the heating of coronal holes and the acceleration of the solar wind
[171]. The energy dissipation is now spread over the whole plasma volume even
for a mono-periodic driver, in contrast to the resonant absorption case described in
the previous section where it was limited to a narrow dissipative layer around the
ideal resonance position in that case.

11.3.3 Applications to solar and magnetospheric plasmas

(a) Heating of line-tied loops and arcades As mentioned above, early loop heating
models ‘copied’ the fusion set-up and considered a one-dimensional (periodic in
two directions) flux tube excited sideways by incident fast magneto-sonic waves.
Soon, however, it was realized that the foot points of the coronal loops are effec-
tively ‘anchored’ (‘line-tied’) in the photosphere due to the high conductivity and
the relatively high mass density of the latter. Moreover, the loops are also, perhaps
mainly, excited at their foot points as a result of the ‘anchoring’ in the turbulent
sub-photospheric plasma, and also due to the magnetic reconnection events that
take place at the ends of the loops.

In Ref. [219] resonant heating or dissipation was simulated in an incompressible
cylindrical line-tied plasma column excited at its foot points and it was remarked
that the locations of the resonances differ from those in a periodic plasma. Later,
these conclusions on the effect of line-tying were confirmed analytically [87, 103]:
line-tying couples the Alfvén and fast magneto-sonic waves and also modifies the
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continuous spectrum drastically. For a cylindrical plasma with a sheared magnetic
field, for example, the line-tied continuum is given by

ωA(r) = nπ

L

Bz(r)√
ρ(r)

, (11.75)

i.e. independent of the poloidal magnetic field component Bθ and the poloidal
wave number. For realistic coronal parameter values there are many quasi-modes
in this line-tied continuum which positively affects the plasma–driver coupling
[229], although they are, strictly speaking, not necessary here since the shear
Alfvén waves can be driven directly.

Wave heating of line-tied loops has been studied extensively with linear and
nonlinear methods, numerically and analytically, computing the steady state, the
eigenvalues and the time evolution (see e.g. Refs. [181, 170, 172], and literature
quoted there). Poedts and Boynton [179] showed with nonlinear MHD simulations
that the heating can be very efficient (even without quasi-modes), and that it can
easily compensate the radiative and conductive losses in a loop. Some studies even
take into account the variation of the density [104] and magnetic field strength
along the loops [22]. For realistic input power spectra the supplied energy is stored
in the quasi-modes, which couple to Alfvén waves resulting in global heating of
the loop on realistic time scales [229, 61, 62]. The outcome of all these studies
is unanimous: resonant dissipation is a viable heating mechanism even when the
heating rate drops due to 3D ‘Kelvin–Helmholtz-like vortices’ at the resonance
layers [172].

However, it is important to include the coupling of the coronal parts of the loops
with the transition region and chromosphere in order to take into account the effect
of leakage [25] and tuning/detuning effects due to variation of the lengths of the
loops. In a first attempt, Ofman et al. [173] tried this by using scaling laws in a 1D
model to update the density due to the expected chromospheric evaporation. This
yielded efficient heating concentrated in multiple resonant layers even for mono-
periodic driving. Beliën et al. [20] even take into account the thermal structur-
ing of the transition region and the higher chromosphere in a nonlinear numerical
study. They note that only about 30% of the energy supplied by the driver takes the
form of Alfvén waves. The bulk of this energy goes to slow magneto-sonic waves
which are resonantly dissipated in the foot points and never reach the coronal part
of the loops. This is actually compatible with the observed uniform temperature
along the loops, which requires a more efficient heating of the foot points in order
to compensate the larger radiation there due to the higher density. The results of
Ref. [20], which considered mono-periodic driving only, should be extended with
the consideration of more realistic drivers.
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Fig. 11.14. Temporal evolution of the spatial distribution of the energy stored
in Alfvén modes for a short loop with only five quasi-modes (from De Groof
et al. [62]).

Such radial and azimuthal drivers have been considered in Refs. [61, 62], and
reviewed in Ref. [94]. These linear MHD studies confirmed that for ky �= 0 the fast
magneto-sonic waves and the Alfvén waves are coupled. The fast magneto-sonic
body modes yield efficient coupling of the loops to the random (broadband) driver,
and the coupling to the Alfvén waves yields efficient dissipation which is spread
over the entire loop volume (Fig. 11.14).

(b) Absorption of acoustic waves by sunspots Since 1989, the resonant absorption
mechanism has also been studied in the context of p-mode absorption by sunspots.
Observations by Braun, Duvall and Labonte [42, 43] of high degree p-mode
oscillations in regions around sunspots have revealed that sunspots act as strong ab-
sorbers of p-mode wave energy. Adopting a cylindrical coordinate system centred
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on the sunspot, the amplitudes of the waves travelling inward and outward from
the sunspot were determined and it was found that as much as 50% of the acous-
tic wave power can be lost. In a subsequent investigation, the same authors [44]
explored the horizontal spatial distribution of high degree p-mode absorption
in solar active regions. They found that the absorption reaches a maximum in
the visible sunspot, but that it is not limited to the location of the visible spot
and it is also associated with magnetic fields in the surrounding plage. Larger
sunspots are observed to absorb even more p-mode energy. The discovery that
sunspots are strong absorbers of acoustic wave energy opens up the new avenue
of sunspot seismology [33], or active region seismology [228]: the effect of ac-
tive regions on solar oscillations can be directly observed. The aim is to use ob-
servations of p-mode oscillations outside sunspots to derive information on the
conditions inside the spots. This requires a basic theoretical model that describes
the observed properties of p-mode oscillations, in particular the strong absorp-
tion.

As a model for a sunspot we adopt an ideal static cylindrically symmetric
magnetic flux tube in which the equilibrium quantities are functions of the ra-
dial distance to the axis of symmetry only, similar to a model exploited by Lou
[147]. At the boundary r = a of the sunspot the total (plasma and magnetic) pres-
sure has to be continuous. In the idealized equilibrium state considered the mag-
netic field in the sunspot gradually drops to zero with increasing radial distance
r , and the non-uniform sunspot is surrounded by a non-magnetic and uniform
plasma, so that for r > a the equilibrium density, pressure and temperature are
constant.

When the amplitude of the incoming wave is denoted by Ai and the amplitude
of the outgoing wave by Ao the quantity we are interested in is the absorption
coefficient

α ≡ 1 − (Ao/Ai)2 . (11.76)

Numerical simulations of the resonant absorption of incident sound waves for this
simple sunspot model [95] reveal that the absorption coefficient α can indeed be
of the order of 50% for typical sunspot parameters and for typical solar p-modes.
This is illustrated in Figs. 11.15 and 11.16. In Fig. 11.15 the absorption coeffi-
cient is plotted versus the wave number k of the incident sound waves for two
sunspot radii. In Fig. 11.16, α is plotted versus the sunspot radius for a fixed
wave number. These results are for a spot with Bz(0) = 0.2 T (= 2000 gauss) and
total photospheric pressure p = 2.4 × 102 N m−2 (= 2.4 × 104 Pa), as taken by
Lou in a viscous MHD model [147] so that comparison is straightforward. In each
figure, results are displayed for oscillations with m = 1, 2, 3, and 5 to see how the
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Fig. 11.15. Absorption coefficient α as a function of the wave number of acous-
tic oscillations of a sunspot with straight magnetic field and radius (a) R =
4.2 × 106 m, and (b) R = 6.3 × 106 m.

absorption coefficients vary as a function of azimuthal wave number. Since the
magnetic field is straight, the absorption is independent of the sign of m so that it
suffices to consider positive values only. Figures 11.15 and 11.16 apply to p-mode
oscillations with a frequency ω = 0.02 rad s−1. For comparison, Lou’s results for
oscillations with m = 1 are also displayed.

From extensive parameter studies such as the ones discussed, the following con-
clusions can be drawn:
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Fig. 11.16. Absorption coefficient α as a function of the radius of a sunspot with
straight magnetic field, Bz(0) = 0.2 T, ω = 0.02 rad s−1, k = 1 × 10−6 m−1 and
m = 1, 2, 3, 5. Crosses refer to resistive MHD, dots to viscous MHD [147].

– The results obtained in viscous MHD [147] are recovered in resistive MHD [95]
showing that, in fact, the energy absorption rate is independent of the actual dissi-
pation mechanism;

– Observed absorption coefficients of 50% and higher can easily be explained by reso-
nant absorption;

– The variation of the absorption coefficient with the azimuthal wave number depends
in a complicated way on the sunspot equilibrium and the characteristics of the incident
acoustic mode (i.e. wavelength and angle of incidence);

– Resonant absorption of p-modes is more efficient in larger sunspots. (This does not
conflict with the notion of ‘scale independence’ (see Chapter 4) since in these studies
the mode number (wavelength) is fixed so that k R varies.) It is also more efficient in
sunspots with twisted magnetic fields, in particular for higher azimuthal wave num-
bers.

The results discussed above are obtained for rather simple equilibrium models
for sunspots. Clearly, for final conclusions numerical simulations are required
based on more realistic sunspot models. These should take into account the flaring
out of the field lines in the upper photospheric part (due to the decrease of the
external pressure) and the stratification of the density with height (due to gravity).
Also, there are other possible explanations for the p-mode absorption by sunspots
which deserve further attention such as p-mode/s-mode conversion. In that
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mechanism, the incident p-modes couple to the slow magneto-sonic (s-)modes in
the sunspot, in effect redirecting the energy flux downwards (or upwards) in the
sunspot. Another explanation can be found in fibril models for sunspots. In such
bundles of flux tubes multiple scattering resonances occur which can drastically
damp the waves [123].

(c) Phase mixing of coronal loops and holes As already mentioned, phase mixing
does not really need resonances to be effective. In ‘open field’ configurations, such
as coronal holes, this mechanism also works. Phase mixing of coronal loops and
holes was studied rigorously by many authors. It was realized that the flaring out of
the magnetic field lines at the base of the coronal holes or long loops must affect
the slope of the local Alfvén frequency substantially [186, 198, 64]. In the last
reference, the authors considered a realistic two-dimensional configuration with
diverging magnetic field and also took into account the plasma flow along the mag-
netic field lines. Their WKB solutions agree well with three-dimensional nonlinear
MHD simulations. Strong damping is found in the layer where the velocity shear is
concentrated. The total heat deposited in the coronal hole seems not to be affected
by the vertical stratification, but the efficiency of the heating mechanism does de-
pend on the geometry, the scale height, and the amplitude of the excited waves.

(d) Magnetospheric applications In 1861(!), Stewart observed ultra-low frequency
(ULF) oscillations of magnetic fields on the surface of the Earth. These oscillations
turned out to be caused by waves with periods ranging from seconds to minutes.
They correspond to standing Alfvén waves with fixed ends in the ionosphere. In the
‘box’ model, the magnetic field lines are straightened and the natural frequencies
are determined only by the length of the dipole magnetic flux tubes, the strength
of the magnetic field, and the plasma density. Hence, for a given (known) mag-
netic geometry, the plasma density can be derived from the observed Alfvén wave
frequencies [127]. This resonant field line model with the solar wind as sideways
external driver is very successful in explaining many important properties of the
ULF waves, e.g. the variation of the amplitude with latitude [127, 128].

11.4 Literature and exercises

Notes on literature

Resonant absorption in tokamaks:

– Tataronis & Grossmann [225] and Chen & Hasegawa [54] propose resonant absorp-
tion as a supplementary heating mechanism for tokamaks. Tataronis & Grossmann
consider an incompressible plasma and show that MHD waves decay due to phase
mixing. Chen & Hasegawa consider a compressible plasma slab with shear, using the
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surface wave for coupling since the fast magneto-sonic wave ‘may produce undesir-
able effects’.

– Kappraff & Tataronis [120] analyse the time evolution of resonant absorption in lin-
earized resistive MHD for a plane slab geometry. They confirm earlier ideal MHD
results on time scales, efficiency and energetics of the heating process.

– Balet, Appert & Vaclavik [15] review the results of the TCA experiment in Lausanne
where the theory of resonant absorption is tested. They also report the detection of a
‘collective’ mode as a ‘natural oscillation mode of the system’.

– Poedts & Kerner [183] compute the resistive MHD spectrum and show that the ideal
quasi-modes (important for excitation) correspond to resistive global eigenmodes.
Poedts et al. [185] also analyse another application of resonant absorption, viz. damp-
ing of toroidicity-induced Alfvén eigenmodes (‘gap’ modes), further discussed in
Volume 2.

Resonant absorption and phase mixing in coronal heating:

– Ionson [116] suggests resonant absorption as a heating mechanism for coronal loops,
applying the model of Chen & Hasegawa [54] with parameter values for the solar
corona.

– Heyvaerts & Priest [108] suggest a simple model for phase mixing as a mechanism
to heat coronal loops as well as coronal holes.

– Kuperus, Ionson & Spicer [133] compare the different heating mechanisms proposed
for the solar corona up to 1981, Goossens [93] reviews the resonant absorption mod-
els up to 1991, and Aschwanden [11] makes an evaluation for active regions based
on observations by Yohkoh, SOHO and TRACE up to 2001.

– Grossmann & Smith [100] investigate the efficiency of resonant absorption for coro-
nal heating with the power spectrum of driving photospheric oscillations as input.

– Hollweg & Yang [111], in ‘Resonance absorption of compressible MHD waves at
thin surfaces’, calculate the damping of quasi-modes in finite loops.

– Most numerical results on resonant absorption are obtained with ideal MHD codes.
Poedts, Goossens & Kerner [181, 182] solve the linearized resistive MHD equa-
tions with an accurate finite-element numerical code to obtain the resonant dissipa-
tion rate. An alternative, based on integration of the ideal MHD ODEs replacing the
steep gradients in the dissipative layer by jump conditions, is developed by Sakurai
et al. [200, 96].

Resonant absorption in sunspots:

– Thomas, Cram & Nye [228] propose the concept of sunspot seismology. They sug-
gest that the response of the spots to forcing by the 5-minute oscillations from the
surrounding photosphere ‘may be used as a probe of sunspot structure below the sur-
face’.

– Braun, Duvall & LaBonte [42, 43, 44] characterize the interaction of p-modes with
sunspots by comparing the amplitudes of inward and outward propagating waves
in an annular region around the sunspot or active region. They show that the loss, or
absorption, of power of the incoming acoustic waves is robust enough to be measured.

– Hollweg [109] suggests that the observed p-mode absorption by sunspots is due
to resonant absorption. His restrictions of plane slab and thin transition region are
lifted by Lou [147], who solves the viscous MHD equations and obtains absorption
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coefficients of 40–50%. These results are confirmed by Goossens & Poedts [95] in
resistive MHD, demonstrating that the actual dissipation mechanism is of secondary
importance.

– Bogdan & Braun [33] review the field of Active Region Seismology anno 1995.

Resonant absorption in magnetospheres:

– Kivelson & Southwood [128] discuss the role of global quasi-modes coupling to field
line resonances in magnetospheric plasmas.

– Kivelson [126], in ‘Pulsations and magnetohydrodynamic waves’, explains the box
model of the magnetosphere, and describes how wave disturbances at the magne-
topause pump energy into the magnetospheric cavity and deposit it near magnetic
shells where the conditions for transverse resonances are satisfied.

Exercises

[ 11.1 ] Time average

In Section 11.1.2 it was stated that the time average of two harmonic quantities, which are
the real parts of Aeiωt and Beiωt , is half the product of A and the complex conjugate of B,
i.e. 1

2 AB∗. Check this statement.

[ 11.2 ] Radial excitation

In Section 11.3.1 we assumed that the perturbations were polarized in the tangential per-
pendicular (y) direction. Under which condition(s) can the Alfvén wave heating mecha-
nism work with radially polarized foot point oscillations? Explain why.

[ 11.3 ] Resonant absorption

Write a Maple or Mathematica work sheet to reconstruct Fig. 11.5 and verify how the
parameters a, c, k‖, and k⊥ affect the fractional absorption.

[ 11.4 ] Time and length scales of resonant absorption

Use the tables in Appendix B to get a rough estimate of the resonant heating time scales
and the width of the resonant layers both in laboratory plasmas and in solar coronal loops
(cf. Section 11.3.1).

[ 11.5 ] Basic phase mixing result

Consider Eq. (11.61) without the external driving term and assume that the gradients in the
x-direction are much larger than the gradients in the z-direction (∼ kz):

∂2ξy

∂t2 = v2
A(x)

∂2ξy

∂z2 + (η + ν)
∂2

∂x2

∂ξy

∂t
.

Heyvaerts and Priest [108] assume in their analysis a solution to this equation of the form

ξy ∼ ξy(x, z) exp i[�t − k(x)z].

Derive the solution for ξy(x, z) obtained by Heyvaerts and Priest, viz.

ξy(x, z) = ξy(x, 0) exp

[
−
(
k(x)z

)3

6RT

]
, where RT = �

η + ν

[
d

dx
log k(x)

]−2

,
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which is valid under the condition of weak damping and strong phase mixing:

1

k

∂

∂z
� 1, and

z

k

∂k

∂x
� 1,

and thus only for large z.

[ 11.6 ] Phase mixing time and length scales

Use the tables in Appendix B to get a rough estimate of the phase mixing time scales in
solar coronal loops and the phase mixing height zmix in coronal holes.



Appendix A

Vectors and coordinates

A.1 Vector identities

A list of the most frequently exploited identities:

a · (b × c) = c · (a × b) = b · (c × a) , (A.1)

a × (b × c) = a · c b − a · b c , (a × b) × c = a · c b − b · c a, (A.2)

∇ × ∇� = 0 , (A.3)

∇ · (∇ × a) = 0 , (A.4)

∇ × (∇ × a) = ∇ ∇ · a − ∇2a , (A.5)

∇ · (� a) = a · ∇� + � ∇ · a , (A.6)

∇ × (� a) = ∇� × a + � ∇ × a , (A.7)

a × (∇ × b) = (∇b) · a − a · ∇b , (A.8)

(a × ∇) × b = (∇b) · a − a ∇ · b , (A.9)

∇(a · b) = (∇a) · b + (∇b) · a

= a · ∇b + b · ∇a + a × (∇ × b) + b × (∇ × a) , (A.10)

∇ · (a b) = a · ∇b + b ∇ · a , (A.11)

∇ · (a × b) = b · ∇ × a − a · ∇ × b , (A.12)

∇ × (a × b) = ∇ · (b a − a b) = a ∇ · b + b · ∇a − b ∇ · a − a · ∇b , (A.13)

577
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∇ · a dτ =

∫
©
∫

a · n dσ (Gauss), (A.14)

a → a × c(onst) ⇒
∫∫∫

∇ × a dτ =
∫
©
∫

n × a dσ , (A.15)

a → � c(onst) ⇒
∫∫∫

∇� dτ =
∫
©
∫

� n dσ , (A.16)

a → �∇� − �∇� ⇒∫∫∫
(�∇2� − �∇2�) dτ =

∫
©
∫

(�∇� − �∇�) · n dσ (Green), (A.17)

∫ ∫
(∇ × a) · n dσ =

∮
a · dl (Stokes) , (A.18)

a → a × c(onst) ⇒
∫ ∫

(n × ∇) × a dσ =
∮

dl × a, (A.19)

a → � c(onst) ⇒
∫ ∫

n × ∇� dσ =
∮

� dl . (A.20)

A.2 Vector expressions in orthogonal coordinates

Considering the position vector as a function of orthogonal coordinates xi ,

r = r(x1, x2, x3) ⇐⇒
⎧⎨
⎩

x = x(x1, x2, x3)

y = y(x1, x2, x3)

z = z(x1, x2, x3), (A.21)

the following geometric quantities are generated:

hi ≡ ∣∣∂r/∂xi
∣∣ (scale factors), (A.22)

ei ≡ (1/hi ) ∂r/∂xi , ei · e j = δi j (dimensionless unit vectors), (A.23)

d� =
√∑

i (hi dxi )
2 (line element), (A.24)

dτ = h1h2h3 dx1dx2dx3 (volume element). (A.25)

Vector representation:

V = ∑
i V̂i ei (V̂i – physical components, same dimension as V). (A.26)
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Products:

A · B = ∑
i Âi B̂i (inner product), (A.27)

A × B = ∑
i
∑

j
∑

k εi jk Â j B̂ j ei (vector product), (A.28)

εi jk ≡
{

1 if i jk even permutation of 123
−1 if i jk odd permutation of 123

0 otherwise (permutation symbol),
(A.29)

εi jkεilm = δ jlδkm − δ jmδkl . (A.30)

Differential operators:

∇ψ =
∑ 1

hi

∂ψ

∂xi
ei , (A.31)

∇2ψ = 1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂ψ

∂x1

)
+ ∂

∂x2

(
h1h3

h2

∂ψ

∂x2

)
+ ∂

∂x3

(
h1h2

h3

∂ψ

∂x3

)]
,

(A.32)

∇ · A = 1

h1h2h3

[
∂

∂x1
(h2h3 Â1) + ∂

∂x2
(h1h3 Â2) + ∂

∂x3
(h1h2 Â3)

]
, (A.33)

∇ × A = 1

h2h3

[
∂

∂x2
(h3 Â3) − ∂

∂x3
(h2 Â2)

]
e1

+ 1

h1h3

[
∂

∂x3
(h1 Â1) − ∂

∂x1
(h3 Â3)

]
e2

+ 1

h1h2

[
∂

∂x1
(h2 Â2) − ∂

∂x2
(h1 Â1)

]
e3.

(A.34)

Derivatives of the unit vectors:

∂e1

∂x1
= − 1

h2

∂h1

∂x2
e2 − 1

h3

∂h1

∂x3
e3 ,

∂e2

∂x1
= 1

h2

∂h1

∂x2
e1 ,

∂e3

∂x1
= 1

h3

∂h1

∂x3
e1 ,

∂e1

∂x2
= 1

h1

∂h2

∂x1
e2 ,

∂e2

∂x2
= − 1

h1

∂h2

∂x1
e1 − 1

h3

∂h2

∂x3
e3 ,

∂e3

∂x2
= 1

h3

∂h2

∂x3
e2 ,

∂e1

∂x3
= 1

h1

∂h3

∂x1
e3 ,

∂e2

∂x3
= 1

h2

∂h3

∂x2
e3 ,

∂e3

∂x3
= − 1

h1

∂h3

∂x1
e1 − 1

h2

∂h3

∂x2
e2 .

(A.35)
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Hence,

A · ∇B =
[

Â1

h1

(
∂ B̂1

∂x1
+ ∂h1

∂x2

B̂2

h2
+ ∂h1

∂x3

B̂3

h3

)
+ Â2

h2

(
∂ B̂1

∂x2
− ∂h2

∂x1

B̂2

h1

)

+ Â3

h3

(
∂ B̂1

∂x3
− ∂h3

∂x1

B̂3

h1

)]
e1

+
[

Â1

h1

(
∂ B̂2

∂x1
− ∂h1

∂x2

B̂1

h2

)
+ Â2

h2

(
∂ B̂2

∂x2
+ ∂h2

∂x1

B̂1

h1
+ ∂h2

∂x3

B̂3

h3

)

+ Â3

h3

(
∂ B̂2

∂x3
− ∂h3

∂x2

B̂3

h2

)]
e2

+
[

Â1

h1

(
∂ B̂3

∂x1
− ∂h1

∂x3

B̂1

h3

)
+ Â2

h2

(
∂ B̂3

∂x2
− ∂h2

∂x3

B̂2

h3

)

+ Â3

h3

(
∂ B̂3

∂x3
+ ∂h3

∂x1

B̂1

h1
+ ∂h3

∂x2

B̂2

h2

)]
e3.

(A.36)

� Notation: The awkward hat, used until here to avoid conflict with the covariant compo-
nents of non-orthogonal coordinate systems, is dropped in the explicit expressions for the
different coordinate systems below, by writing Axi instead of Âi . �

A.2.1 Cartesian coordinates (x, y, z)

x ≡ x1 , y ≡ x2 , z ≡ x3 	⇒ h1 = h2 = h3 = 1 . (A.37)

∇ψ = ∂ψ

∂x
ex + ∂ψ

∂y
ey + ∂ψ

∂z
ez , (A.38)

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
, (A.39)

∇ · A = ∂ Ax

∂x
+ ∂ Ay

∂y
+ ∂ Az

∂z
, (A.40)

∇ × A =
(

∂ Az

∂y
− ∂ Ay

∂z

)
ex +

(
∂ Ax

∂z
− ∂ Az

∂x

)
ey +

(
∂ Ay

∂x
− ∂ Ax

∂y

)
ez .

(A.41)

� Note: The vector identities of Section A.1, in particular the complicated ones involv-
ing vector products and curls, are most easily derived in Cartesian coordinates, exploiting
Eqs. (A.31)–(A.36) with hi = 1 (see, e.g., Goldston and Rutherford [92], p. 461). �
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A.2.2 Cylinder coordinates (r, θ, z)
(see Fig. A.1)

Scale factors and unit vector derivatives:

⎧⎪⎨
⎪⎩

x = r cos θ

y = r sin θ

z = z

	⇒ h1 = 1 , h2 = r , h3 = 1 .

(A.42)

∂er

∂θ
= eθ ,

∂eθ

∂θ
= −er (only 
= 0 derivatives) . (A.43)

Differential operators:

∇ψ = ∂ψ

∂r
er + 1

r

∂ψ

∂θ
eθ + ∂ψ

∂z
ez , (A.44)

∇2ψ = 1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂θ2
+ ∂2ψ

∂z2
, (A.45)

∇ · A = 1

r

∂ (r Ar )

∂r
+ 1

r

∂ Aθ

∂θ
+ ∂ Az

∂z
, (A.46)

∇ × A =
(

1

r

∂ Az

∂θ
− ∂ Aθ

∂z

)
er

+
(

∂ Ar

∂z
− ∂ Az

∂r

)
eθ +

(
1

r

∂(r Aθ )

∂r
− 1

r

∂ Ar

∂θ

)
ez , (A.47)

∇2A =
(

∇2 Ar − 1

r2
Ar − 2

r2

∂ Aθ

∂θ

)
er

+
(

∇2 Aθ − 1

r2
Aθ + 2

r2

∂ Ar

∂θ

)
eθ + ∇2 Az ez , (A.48)

z

rθx

y

Fig. A.1.
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∇ × ∇ × A =
[

− 1

r2

∂2 Ar

∂θ2
− ∂2 Ar

∂z2
+ 1

r2

∂2(r Aθ )

∂θ ∂r
+ ∂2 Az

∂z∂r

]
er

+
[

∂

∂r

(
1

r

∂ Ar

∂θ

)
− ∂

∂r

(
1

r

∂(r Aθ )

∂r

)
− ∂2 Aθ

∂z2
+ 1

r

∂2 Az

∂z∂θ

]
eθ

+
[

1

r

∂

∂r

(
r
∂ Ar

∂z

)
+ 1

r

∂2 Aθ

∂θ∂z
− 1

r

∂

∂r

(
r
∂ Az

∂r

)
− 1

r2

∂2 Az

∂θ2

]
ez,

(A.49)

A · ∇B =
[

Ar
∂ Br

∂r
+ Aθ

r

(
∂ Br

∂θ
− Bθ

)
+ Az

∂ Br

∂z

]
er

+
[

Ar
∂ Bθ

∂r
+ Aθ

r

(
Br + ∂ Bθ

∂θ

)
+ Az

∂ Bθ

∂z

]
eθ

+
[

Ar
∂ Bz

∂r
+ Aθ

r

∂ Bz

∂θ
+ Az

∂ Bz

∂z

]
ez. (A.50)

A.2.3 Spherical coordinates (r, θ, φ)
(see Fig. A.2)

Scale factors and unit vector derivatives:⎧⎪⎨
⎪⎩

x = R cos φ , R = r sin θ

y = R sin φ

z = r cos θ

	⇒ h1 = 1 , h2 = r , h3 = r sin θ . (A.51)

z

r
θ

x

y

φ
R

Fig. A.2.
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∂er

∂θ
= eθ ,

∂eθ

∂θ
= −er ,

∂er

∂φ
= sin θ eφ ,

∂eθ

∂φ
= cos θ eφ ,

∂eφ

∂φ
= − sin θ er − cos θ eθ . (A.52)

Differential operators:

∇ψ = ∂ψ

∂r
er + 1

r

∂ψ

∂θ
eθ + 1

r sin θ

∂ψ

∂φ
eφ , (A.53)

∇2ψ = 1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2
, (A.54)

∇ · A = 1

r2

∂

∂r
(r2 Ar ) + 1

r sin θ

∂

∂θ
(sin θ Aθ ) + 1

r sin θ

∂ Aφ

∂φ
,

(A.55)

∇ × A = 1

r sin θ

[
∂

∂θ
(sin θ Aφ) − ∂ Aθ

∂φ

]
er

+ 1

r

[
1

sin θ

∂ Ar

∂φ
− ∂

∂r
(r Aφ)

]
eθ + 1

r

[
∂

∂r
(r Aθ ) − ∂ Ar

∂θ

]
eφ ,

(A.56)

∇2A =
[

(∇2 Ar ) − 2

r2
Ar − 2

r2 sin θ

∂

∂θ
(sin θ Aθ ) − 2
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[214] L. Spitzer and R. Härm, ‘Transport phenomena in a completely ionized gas’, Phys.

Rev. 89 (1953), 977–981.
[215] H. C. Spruit, ‘Propagation speeds and acoustic damping of waves in magnetic flux

tubes’, Solar Phys. 75 (1982), 3–17.
[216] H. Stenuit, R. Keppens and M. Goossens, ‘Eigenfrequencies and optimal driving

frequencies of 1D non-uniform magnetic flux tubes’, Astron. Astrophys. 331
(1998), 392–404.

[217] M. Stix, The Sun, An Introduction, 2nd edition (Berlin, Springer-Verlag, 2002).
[218] T. H. Stix, Waves in Plasmas (New York, American Institute of Physics, McGraw

Hill, 1992).
[219] H. R. Strauss and W. S. Lawson, ‘Computer-simulation of Alfvén resonance in a

cylindrical, axially bounded flux tube’, Astrophys. J. 346 (1989), 1035–1040.
[220] T. E. Stringer, ‘Low-frequency waves in an unbounded plasma’, Plasma Physics

(J. Nucl. Energy Part C) 5 (1963), 89–107.
[221] P. A. Sturrock, Plasma Physics: an Introduction to the Theory of Astrophysical,

Geophysical, and Laboratory Plasmas (Cambridge, Cambridge University Press,
1994).

[222] B. R. Suydam, ‘Stability of a linear pinch’, in Proc. 2nd U.N. Intern. Conf. on
Peaceful Uses of Atomic Energy 31, 157–159 (New York, Columbia University
Press, 1959).

[223] D. G. Swanson, Plasma Waves (Boston, Academic Press, 1989).
[224] J. A. Tataronis, ‘Energy absorption in the continuous spectrum of ideal MHD’,

J. Plasma Phys. 13 (1975), 87–105.
[225] J. A. Tataronis and W. Grossmann, ‘Decay of MHD waves by phase mixing’,

Z. Physik 261 (1973), 203–216.
[226] R. J. Tayler, ‘The influence of an axial magnetic field on the stability of a

constricted gas discharge’, Proc. Roy. Soc. (London) B70 (1957),
1049–1063.

[227] J. B. Taylor, ‘Relaxation of toroidal plasma and generation of reversed magnetic
fields’, Phys. Rev. Lett. 33 (1974), 1139–1141.

[228] J. H. Thomas, L. E. Cram and A. H. Nye, ‘Five-minute oscillations as a probe of a
sunspot structure’, Nature 297 (1982), 485–487.

[229] W. J. Tirry and D. Berghmans, ‘Wave heating of coronal loops driven by
azimuthally polarised footpoint motions; 2. The time-dependent behaviour in ideal
MHD’, Astron. Astrophys. 325 (1997), 329–340.
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complex notation, 543
computational MHD
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continuous spectrum
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implications, 496
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coupling factor, 546
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relativistic, 40

cylindrical plasmas
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apparent singularities, 444
boundary condition at origin, 441
boundary conditions, interface, 445–450
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dimensionless scaling, 433
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singularities, 442
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tokamak approximation, 456
wave equation, 438–450
waves in a θ -pinch, 454

discontinuities, 167–173
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dissipation
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dynamo
Babcock model, 390
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Cowling’s theorem, 394
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magnetic buoyancy, 392
magnetic diffusivity, 393
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Spitzer resistivity, 393
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electrodynamics, 131
Ampère’s law, 133
displacement current, 39, 133
electromagnetic waves, 39
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energy
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dissipation rate, 549
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energy principle, 261–263
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proof of, 266
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equilibrium, 230
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magnetic surfaces, 233
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fluid description, 65–79
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force operator, 237–249

equation of motion, 237
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fractional absorption, 546
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generalized eigenvalue problem, 193
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global conservation laws, 148

energy, 151
magnetic flux, 151
mass, 151
momentum, 151

gravitating fluid instabilities
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convective cells, 313
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gravitating fluid slab
boundary conditions, 311
exponential stratification, 313
HD wave equation, 309–312
planar stratification, 308

gravitating plasma instabilities
energy principle, 366
Euler–Lagrange equation, 368
gravitational instabilities, 365–379
gravitational interchange, 344
gravitational quasi-interchange, 344
interchange point (F = 0), 334, 347,
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interchanges with shear, 371
interchanges without shear, 376
local interchange stability, 348, 373
magnetic shear, 345, 372
marginal equation of motion, 368
Newcomb’s procedure, 368
Parker instability, 344
Rayleigh–Taylor instability, 341, 374
Suydam’s criterion, 374

gravitating plasma slab
Clebsch coordinates, 329
derivation wave equation, 327–335
exponential stratification, 335
field line projection, 328–333
first order differential equations, 334
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homogeneous wave problem, 323
matrix wave equation, 330
MHD wave equation, 322–345
one-dimensional representation, 498
one-dimensional systems, 322
second order differential equation,
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total pressure perturbation, 334
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gravito-acoustic waves, 313–317
acoustic cutoff frequency, 315

Brunt–Väisäläa frequency, 312
cavity modes, 311
dispersion equation, 314
effective ‘wave number’, 314
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free-boundary modes, 316
g-modes, 314
Lamb frequency, 315
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Sturmian, anti-Sturmian, 315
turning point frequencies, 314

gravito-MHD waves, 335–345
apparent crossing slow/Alfvén, 342
Brunt–Väisäläa frequency NB , 336
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dimensionless scaling, 338
dispersion equation, 337
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parallel waves, 337
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Green’s function, 509
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uniqueness, 509

guiding centre approximation, 37
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helioseismology, 308, 317–322, 534
5 minute oscillations, 316
analogy quantum mechanics, 320
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power spectrum oscillations, 318
radial wave equation, 318
spherical geometry, 317
systematics, 321

Hilbert space, 242–244
inner product, 242
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self-adjoint operators, 244, 452

hydrodynamics
convective instability, 307
isentropic motion, 307
Rayleigh–Taylor instability, 307
Schwarzschild criterion, 307
solar interior, 300
wave equation of a gravitating slab,

309–312

ideal fluids, 67
impedance, 527, 546
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incompressibility, 285
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initial data, 140
initial value problem, 497, 529
interchange instability, 44
interface plasmas, 274–296

boundary conditions, 276–280
first interface condition, 278, 279
plasma–plasma (model II*), 279
plasma–vacuum (model II), 277
second interface condition, 278, 280
self-adjointness, 280–282
variational principles, 283–285

interface plasmas (nonlinear)
energy conservation, 178–180

kinematic expressions, 152–153
line element, 152
surface element, 152
volume element, 153

kinetic plasma theory, 47–65, 84–98
Balescu–Lenard collision integral, 88
BBGKY hierarchy, 85
Boltzmann equation, 49, 84–88
closure of kinetic equations, 94
collisionless Boltzmann equation, 84
collisions, 49
definition of heat flow, 91
definition of heat transfer, 92
definition of stress tensor, 91
definition of temperature, 91
distribution function, 48, 84
initial value problem, 61
Landau collision integral, 49, 87
Landau damping, 58–65, 356
local thermal equilibrium, 93
Maxwell distribution, 52, 92
moments of Boltzmann equation, 50,
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phase mixing, 59
phase space, 84
Rosenbluth potentials, 87
thermal fluctuations, 90
thermal quantities, 52
van Kampen modes, 59, 356
Vlasov equation, 49, 84
Vlasov–Poisson problem, 59

kink instability, 76
Kruskal–Shafranov condition, 78, 458

Lagrangian displacement vector, 235
Laplace contour, 509, 514, 515

deformation, 521
Laplace transform

contour and convergence, 254
forward, 253, 497
Green’s function, 509
inverse, 254, 498, 506
leaky modes, 524

leaky mode, 523, 526
initial value problem, 529

normal-mode analysis, 528
linearization

MHD equations, 232–236
plasma oscillations, 55

linearized MHD
counting boundary conditions, 238
damped and overstable waves, 239
Eulerian representation, 238
initial value problem, 253–256
Lagrangian representation, 238
stable waves and instabilities, 239

linked magnetic loops, 158
Liouville’s theorem, 49
local conservation laws, 152

energy, 154
magnetic flux, 154
mass, 153
momentum, 153

Lorentz force, 70
loss cone, 45
low β plasma, 507, 535
Lundquist number, 163

macroscopic scales, 66
magnetic bottle, 43
magnetic confinement, 10

θ -pinch, 10, 75
cusp, 44
magnetic mirror, 44
optimization problem, 12
screw pinch, 185
spheromak, 4
stellarator, 3
tokamak, 3, 10
z-pinch, 10, 75

magnetic field
no spherical symmetry, 23
shear, 158
solenoidal condition, 156

magnetic field lines
frozen-in, 155
inverse pitch, 157, 433
reconnection, 163
safety factor (q), 435
tearing, 163
x-point separatrix, 164

magnetic flux, 140–144
magnetic flux tube, 140
magnetic helicity, 155–161
magnetic moment, 44
magnetic pressure, 77
magnetic Reynolds number, 71, 162
magnetic rigidity, 41
magnetic stress, 149
magnetic structures, 20
magnetic tension, 149
magnetic topology, 156
magneto-seismology accretion discs, 322
magneto-acoustic waves

fast, 200–201, 208, 213
slow, 200–201, 208, 213
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magnetohydrodynamics (MHD), 7, 29
electric field secondary, 29
Ohm’s law, 29
spatial and temporal aspects, 186
symmetric hyperbolic equations, 193, 219, 223

magnetosphere
ring current, 46

magnetospheres, 415–425
bow shock, 422
flux transfer event, 424
geomagnetic storm, 413, 419
Kelvin–Helmholtz instability, 424
magnetic pressure, 420
magnetopause, 422
magnetospheric substorm, 413
magnetotail, 424
neutral sheet current, 424
ultra low frequency wave, 424

Maxwell stress tensor, 149
Maxwell’s equations, 38
MHD equations, 71, 133

conservation form, 145–148
non-relativistic approximation, 133
Ohm’s law, 70
scale independence, 138–139

MHD spectral theory
σ -stability, 371
accumulation fast waves, 326
accumulation slow waves, 326
Alfvén and slow continua, 351–356
apparent singularities, 453
body mode, 524, 526
cluster point, potential, 347
cluster spectra, 363–365, 462, 467, 493
clustering at edges of continua, 363
complex indices, 373
continuous spectrum, 345–365, 452, 453, 496,

520
D = 0 apparent singularities, 334, 335, 351
damping of Alfvén waves, 356, 533, 534, 541
degenerate Alfvén waves, 326, 454
discrete spectrum, 452
essential spectrum, 325, 341
fast cluster point singularities, 356
Frobenius expansion, 349
HD & MHD, relation spectra, 341
heating by Alfvén waves, 356, 533, 534, 541
historical note, 356
improper Alfvén eigenfunction, 353
indicial equation, 349
leaky mode, 523, 526
MHD, initial value problem, 356
N = 0 genuine singularities, 333
non-singular ODE, 346
normal dependence ω2

A , 347
number of nodes of eigenfunction, 325
orthogonality of eigenfunctions, 362
oscillation theorem for MHD wave equation,

360–362
oscillation theorems, 357–363, 453
quasi-mode, 516, 522, 540, 545, 546

regular singularities, 348
resolvent operator, 356
role in temporal evolution, 496
shooting method, 370
singular differential equations, 345–351
small and large solutions, 350, 352
small solution may jump, 353
spectral structure, 345–365, 460
Sturm’s oscillation theorem, 358
Sturm’s separation theorem, 358
Sturm–Liouville system, 357, 451
Sturmian, anti-Sturmian, 359, 462
surface mode, 516, 525
tangential components, non-square integrable,

354
turning point frequencies, 326
variational procedures, 453

MHD spectroscopy, 317–322, 534
MHD wave equations, 190–204

3 × 3 representation, 198
7 × 7 representation, 196
8 × 8 representation, 192
admitting monopoles, 197
compressibility, 196
counting variables, 186–198
dimensionless variables, 191
dispersion equation, 199, 205
gravitating plasma slab, 332
inhomogeneous media, 198
marginal solution, 194
numerical ∇ · B wave, 197
plane wave solutions, 192
spurious eigenvalues, 194
symmetric operator, 193
velocity representation, 198–201
vorticity, 196
wave vector projection, 196

MHD waves
asymptotic properties, 212
carrier wave, 206
constructive interference, 206
cusp velocity, 211
dispersion diagrams, 202–204
eigenfrequency ordering, 202
envelope wave fronts, 206
Friedrichs diagrams, 208
group diagrams, 205–213
group velocity, 205
local propagation, 204
low-β approximation, 210
non-dispersive, 205
orthogonal eigenfunctions, 202
parallel propagation, 203
parameter β, 204
perpendicular propagation,

202
phase diagrams, 205–213
phase velocity, 205
relation to spectrum, 204
relation to stability, 204
return angle in group diagram, 211
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mirror effect, 43
mirror ratio, 45
misnomers

Larmor frequency, 36
local field line coordinates, 329
Larmor radius, 36

model problems, 173–182

nature
flaw in standard view of, 21
fundamental forces, 21

nuclear fusion reactions, 4–6, 18
α-particle heating, 4
Bremsstrahlung losses, 7
CNO cycle, 6
confinement time, 9
core of the Sun, 5
CTR, 3
deuterium–deuterium reactions, 9
deuterium–tritium reactions, 5
heat transport losses, 7
ignition condition, 8
in stars, 18
Lawson criterion, 8
Li6/ Li7 blanket, 4
mass defect, 4
product nτET , 9
proton–proton chain, 6
thermonuclear output power, 7

Ohmic dissipation, 70
one-fluid equations, 119–126

generalized Ohm’s law, 121
maximal ordering, 119–123
resistive and ideal, 124–126

orbit theory, 37

partial differential equations
Burgers’ equation, 215
Cauchy problem, 216
domain of dependence, 219
domain of influence, 219
elliptic, 218
hyperbolic, 218
linear advection equation, 213
parabolic, 218
quasi-linear, 219

phase mixing, 533, 565
coronal loops and holes, 573
height, 567
running waves, 567
standing waves, 566
time scale, 566

pinch effect, 75
planetary magnetism, 407–415

Earth, 407
field reversal, 412
geomagnetic dynamo, 409
geomagnetic field, 408
Jupiter, 407
magnetic core spot, 410

magnetic dipole, 408
magnetic dipole moment, 408
magnetic fields of planets, 413–415
non-dipolar field, 410
periodicity of geomagnetic field, 411
time scale of resistive decay, 411

plasma
β, 44, 433
Coulomb interaction, 25
crude definition, 3
Debye length, 25, 57
Debye shielding, 26
Debye sphere, 26
Langmuir waves, 54
macroscopic approach, 28–29
microscopic definition, 23–28
occurrence, 3, 22
perfectly conducting fluid, 7
plasma frequency, 56
plasma oscillations, 54
quasi charge-neutrality, 25
Saha equation, 24

Poynting vector, 150, 151, 543
primitive variables, 148

quadratic forms in MHD, 256–263
linearized kinetic energy, 243
linearized potential energy, 257

quality factor, 552
quantum mechanics

de Broglie frequency, 40
de Broglie wavelength, 40
energy, 40
momentum, 40

quasi-mode, 516, 522, 540, 545, 546

Rayleigh–Taylor instability, 287–296
growth rate, 294
interchange instability, 287, 293
magnetic shear, 287, 293
Parker instability, 287
wall stabilization, 287, 293

relativity
energy, 40
Lorentz transformation, 39, 42
momentum, 40
rest mass, 40

resistive energy balance, 551
resistive MHD equations, 69, 161

induction equation, 70
time scale of resistive diffusion, 70

resolvent operator, 498
resonant absorption, 533, 534, 541

absorption coefficient, 570
applications, 553
coupling factor, 546
efficiency, 546
energetics, 550, 557
energy absorption rate, 543
foot point driving, 562
length scale, 565
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resonant absorption (cont.)
line-tied loops, 567
magnetosphere, 573
quality factor, 552
role of quasi-modes, 546
solar applications, 567
solar loops, 554
sunspots, 569
temporal evolution, 556
time scale, 565
tokamak, 553
total, 548

resonant damping, 554
resonant dissipation, 552, 554, 567
resonant dissipation rate, 552
resonant heating

line-tied loops, 567
solar loops, 554
tokamaks, 553

Reynolds number, 71
Reynolds stress tensor, 149
Riemann sheet, 513
runaway electrons, 41

Schwarzschild radius, 137
Shafranov shift, 436
shocks

collisionless, 167
entropy condition, 170
gas dynamics, 167
MHD, 167

single particle motion, 34–47
solar magnetism, 385–407

butterfly diagram, 388
coronal heating problem, 406, 426
coronal hole, 384, 403
coronal loops, 401, 403
coronal mass ejection, 403, 424
granules, 388, 399
heliosphere, 406
helmet streamer, 404
magnetograph (Babcock), 387
Maunder minimum, 388
neutral current sheet, 406
penumbra, 397
photospheric network, 388
polar plume, 404
polarities (p, f), 390
prominence, 397, 401
solar cycle, 387–395
solar dynamo, 390
solar flares, 402, 426
solar maxima/minima, 388
sunspots, 387
supergranules, 388, 399
umbra, 397
Zeeman splitting, 387, 396

solar wind
critical point, 417
interplanetary magnetic field, 418
Parker model, 415
solar breeze, 417

transonic flow, 418
sound waves, 186–190

compressible, 189
in static media, 188
longitudinal, 189
sound velocity, 188
wave equation, 187

space missions, 20
Cluster, 415, 425, 426
Skylab, 384, 403, 406
SOHO, 384, 426
Solar Orbiter, 426
Ulysses, 426
Voyager, 384, 415

space weather, 385, 426
specific heats (γ ), ratio of, 53
spectral cut, 512
spectral theory

alternatives, 250–256
analogy with quantum mechanics, 243, 271, 451
approximate spectrum, 251
compact operator, 251
continuous spectrum, 251, 266
discrete (point) spectrum, 252
eigenvalue problem, 250
Fredholm alternative, 251
Heisenberg ‘picture’, 271
ideal MHD spectrum, 238
inhomogeneous equation, 250
quadratic forms, 250
resolvent operator, 252
resolvent set, 252
Schrödinger ‘picture’, 271
self-adjoint operators, 244
unbounded operator, 251

Spitzer resistivity, 54
stability

σ -stability, 268
compressibility, 241
constraints, 232, 236
currents, 241
exchange of stabilities, 265
field line bending, 241
gravity, 241
homogeneous plasma, 258
inhomogeneous plasma, 258
internal and external modes, 273
intuitive approach, 230–232
inverted glass of water, 232, 273
marginal (neutral), 230, 240, 265
marginal equation of motion, 240
nonlinear, 232
perturbation, 230
pressure gradients, 241

stability of cylindrical plasmas
σ -stability, 467–469
σ -stable configurations, 469
constant-pitch field, 471–474
effective wall at singularity, 450, 458
external kink mode, 455
force-free magnetic fields, 475–482
general energy expression, 484
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instabilities of a z-pinch, 469
kink modes in force-free fields, 480
Mercier criterion, 466
Newcomb’s procedure, 463–467
oscillation theorems, 462
pure interchanges, 460, 472
quasi-interchanges, 460, 472
skin current at singularity, 477
skin current model, 455
skin current perturbation, 450, 458
‘small’ solutions, 478
‘straight tokamak’, 482–492
surface mode, 456
Suydam’s criterion, 463–467

stability of ‘straight tokamak’
q0 = 1, 487
energy expression, 486
enhanced MHD activity, 491
external kink modes, 488
internal kink modes, 486
low-β tokamak ordering, 472, 484
rational magnetic surfaces, 489
sawtooth oscillations, 487
toroidal mode number (n), 456
‘virtual singularity’, 490
wall stabilization, 458

Sun
chromosphere, 386, 395
chromospheric spicules, 401
convection zone, 301, 305–308, 385
convective stability, 307
core, 301, 305, 385
corona, 386
coronagraph, 404
differential rotation, 386, 387
Doppler shift, 396
dynamo, 308
Fraunhofer lines, 395
heliosphere, 386, 406, 418
hydrodynamics of interior, 300–301
hydrostatic equilibrium, 303
luminosity, 300
photosphere, 386, 395
radiative equilibrium, 301–305
radiative transport, 302
radiative zone, 301, 385
Schwarzschild criterion, 307
solar constant, 300
standard solar model, 300
thermal conduction coefficient, 302
thermonuclear energy, 302
thermonuclear reactions, 300
turbulent mixing, 307

sunspot seismology, 322, 397, 570
supersonic flow, 167

Mach number, 167
surface current, 173
surface mode, 516, 525
surface vorticity, 173

thermodynamic variables, 134
entropy, 134
internal energy, 134

time derivative
Eulerian, 132, 235
Lagrangian, 132, 235

tokamak
disruptions, 150
resonant absorption, 553
safety factor, 78, 157

transport theory, 53, 93
Chapman–Enskog procedure, 93
neo-classical transport, 98
transport coefficients, 53
turbulent transport, 98

two-fluid equations, 67, 98–118
electron skin depth, 69, 107
heat flow, 67
ideal, 108
quasi charge-neutrality, 69
ratio of masses over charges, 111
resistive, 68, 108
viscosity, 67

Universe
big bang, 21
plasmas everywhere, 20, 23

Van Allen belts, 44
variational analysis, 291

Euler–Lagrange equations, 292
variational principles in MHD,

256–263
choice of norms, 262
energy principle, 261
extended σ -stability principle, 285
extended energy principle, 285
extended spectral principle, 283
Hamilton’s principle, 259
interface extensions, 283–285
modified energy principle, 270
Rayleigh–Ritz principle, 259

vector potential, 156
for vacuum field, 276

viewpoints
differential equations, 231
energy and force, 230–232
variational quadratic forms, 231

wave packet shapes
δ function, 206
Gaussian, 206

waves in two-fluid plasmas, 108–118
cutoff frequencies, 116
dispersion equation, 113
high-frequency limits, 117
MHD limit, 117
resonance limits, 117

Wronskian, 510
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